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ABSTRACT

Parent selection in evolutionary algorithms for multi-objective

optimization is usually performed by dominance mechanisms or

indicator functions that prefer non-dominated points, while the

reproduction phase involves the application of diversity mecha-

nisms or other methods to achieve a good spread of the population

along the Pareto front. We propose to re�ne the parent selection

on evolutionary multi-objective optimization with diversity-based

metrics. �e aim is to focus on individuals with a high diversity

contribution located in poorly explored areas of the search space, so

the chances of creating new non-dominated individuals are be�er

than in highly populated areas. We show by means of rigorous

runtime analyses that the use of diversity-based parent selection

mechanisms in the Simple Evolutionary Multi-objective Optimiser

(SEMO) and Global SEMO for the well known bi-objective functions

OneMinMax and Lotz can signi�cantly improve its performance.

Our theoretical results are accompanied by additional experiments

that show a correspondence between theory and empirical results.
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1 INTRODUCTION

Evolutionary algorithms have been shown to achieve high perform-

ing results for problems from multi-objective optimization. �e

area of evolutionary multi-objective optimization (EMO) design

population-based evolutionary algorithms where the population is

used to approximate the so-called Pareto front. Given that evolu-

tionary algorithms use a population which is a set of solutions for a

given problem, evolutionary algorithms are suited in a natural way
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for computing trade-o�s with respect to two (or more) con�icting

objective functions.

Multi-objective evolutionary algorithms (MOEAs) have two basic

principles. First of all, the goal is to push the current population

close to the “true” Pareto front. �e second goal is to “spread” the

population along the front such that it is well covered. �e �rst

goal is usually achieved by dominance mechanisms between the

search points or indicator functions that prefer non-dominated

points. �e second goal involves the use of diversity mechanisms.

Alternatively, indicators such as the hypervolume indicator play a

crucial role to obtain a good spread of the di�erent solutions of the

population along the Pareto front.

In this paper, we explore the use of di�erent parent selection

mechanisms in EMO. �e goal is to speed up the optimization

process of an EMO algorithm by selecting individuals that have

a high chance of producing bene�cial o�spring. In the context of

EMOparent selection is usually uniformwhereas o�spring selection

is based on dominance and the contribution of an individual to the

diversity of the population.

�e parent selection mechanisms studied in this paper use the

diversity contribution of an individual in the parent population to

select promising individuals for reproduction. �e parent selection

mechanisms include ignoring individuals with a low (or minimum)

diversity score, rank of individuals in the parent population where

the rank is given based on the dominance relation and its contribu-

tion to diversity and the classical tournament selection where the

outcome of the tournament is de�ned according to the diversity

score and not in the �tness values.

�e main assumption is that individuals with a high diversity

score (high hypervolume indicator or crowded-comparisonmethod)

are located in poorly explored or a less crowded areas of the search

space, so the chances of creating new non-dominated individuals

are be�er than areas where there are several individuals, in this

sense we have designed a MOEA that focused on individuals where

the neighbourhood is not fully covered and in consequence, force

the reproduction in those areas and to the spread of the population

along the search space.

We show by means of rigorous runtime analyses that the use of

the mentioned parent selection methods taking into account the

diversity of the di�erent search points can signi�cantly improve

the performance of MOEAs. �e area of runtime analysis has

contributed signi�cantly to the theoretical understanding of EMO
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algorithms [5, 7, 8] and allows to study di�erent components of

EMO methods from a rigorous perspective.

In order to gain insights into the potential bene�ts of the parent

selection mechanisms, we study the classical functions OneMin-

Max and Lotz problem introduced in [7] and [9], respectively.

OneMinMax generalizes the classical OneMax function and Lotz

generalizes the well-known LeadingOnes problem to the multi-

objective case. Both functions have been examined in a wide range

of theoretical studies for variants of the Simple Evolutionary Multi-

Objective (SEMO) algorithm. Other studies in the area of runtime

analysis of MOEAs consider hypervolume-based algorithms [10]

and MOEAs incorporating other diversity mechanisms for survival

selection [8].

We show that the use of various parent selection mechanisms

speeds up SEMO by a factor of n for OneMinMax and Lotz. For

Lotz the use of rank-based parent selection can reduce the runtime

to compute the whole Pareto front from Θ(n3) to O(n2). Study-

ing OneMinMax, we show a similar e�ects, i.e. that the runtime

reduces fromΘ(n2 logn) toO(n logn) for our best performing rank-

based parent selection methods.

GSEMO needs time Θ(n3) on Lotz. Can we do be�er? Check

work on FEMO [9]

2 PRELIMINARIES

We focus our analysis on two simple MOEAs, SEMO and its variant

called Global SEMO (GSEMO) which uses a more general mutation

operator. Our aim is to develop rigorous runtime bounds of SEMO

and GSEMO introducing di�erent parent selection mechanisms

taking into account the diversity contribution of each individual in

the population. We want to study how these diversity-parent selec-

tion mechanisms help to improve the performance of the MOEAs.

So, we �rst de�ne the diversity contribution metrics and then the

diversity-parent selection mechanisms.

Diversity metrics used Hypervolume indicator, how the

hypervolume indicator helps to the spread of the popula-

tion?

How about if we use HYP for parent selection?

Runtime bound for (µ + 1)SIBEA when µ ≥ n + 1 is O(µn2).

Drawbacks: Finding the individual with the approximately least

contribution to hypervolume indicator is NP-hard [1, 2]. But we can

de�ne the contribution in a way that does not need the calculation

of exact hypervolume indicator.

�ere is a paper [11] introducing an MOEA with parent selector

using prospect indicator which is similar to hypervolume indicator.

And for the survivor selection they use the hypervolume indicator.

But they only focus on the experimental results.

If we give a biased possibility for the individual to be selected

as parent to produce new o�spring based on their contribution to

hypervolume indicator, the possibility of ge�ing new individual

in the unexplored area should be higher(?). Larger contribution to

the hypervolume indicator indicates that the neighbourhood is not

fully covered.

Change the hypervolume contribution de�nition into al-

gorithm format maybe?

Let the population be sorted according to the value of f1(x) such

that f1(x0) < f1(x1) < f1(x2) < · · · < f1(xµ ).

De�nition 2.1. �e contribution of an individual si to the popu-

lation diversity in objective space is de�ned as

c(si ) = (f1(si ) − f1(si−1)) · (f2(si+1) − f2(si )).

x0 donotes the reference point and how to select a proper refer-

ence point is important as it in�uences the decision involving the

extreme points. For the initial experiment, my suggestion is to use

(−1,−1) as the reference point.

�e calculation of c(xi ) is then O(µ log µ) since only two objec-

tives here. (the de�nition is similar to the crowding distance in

NSGA2)

One possible mutator can select one of the individuals with the

least contribution c(xi ) and �ip the last 1-bit or the �rst 0-bit. Before

the population covers the whole Pareto Front, there should be at

least one of the mutations that can improve the coverage. (not sure

whether we can improve the runtime bound or not…)

Other diversity metric applied to our framework is the crowding

distance used by the Nondominated Sorting Genetic Algorithm

II (NSGA-II) de�ned in [4]. �e crowding distance operator is a

density metric of solutions surrounding a particular solution in the

population used to determine their extent proximity with other

solutions. So, a solution with a lower crowding distance value,

imply that the region occupied by this solution is crowded by other

solutions. �e solutions with a higher crowding distance value are

chosen/preferred for reproduction.

In the case of the NSGA-II, individuals are chosen for replace-

ment by means of a binary tournament selection operator but the

selection criterion is according to the crowded-comparison opera-

tor. Assuming that every individual si in the population has two

a�ributes, the nondomination rank (lower the rank, the be�er) and

the crowding distance, two solutions with di�erent nondomination

ranks, the solution with the lower rank is selected. Otherwise, if

both solutions have the same rank, then the solution that is located

in a lesser crowded region is chosen.

Now, since both SEMO and GSEMO use a population of nondim-

inated individuals, i.e., all individual have a nondimination rank of

0, we ignore the nondomination rank decision step and we directly

apply the crowding distance as our diversity metric. In the same

way that in [4], we apply the crowding distance operator as shown

in Algorithm 1.

Algorithm 1 Crowding Distance Operator

1: Let l := |P |.

2: for all i individuals ∈ P do

3: Set P[i]
.distance := 0

4: end for

5: for allm objectives do

6: Sort P according tom objective function value in ascending

order.

7: P[1]
.distance := P[l]

.distance := ∞.

8: for i = 2 to l − 1 do

9: P[i]
.distance := P[i]

.distance + (P[i + 1]
.m − P[i −

1]
.m )/(f max

m − f min
m )

10: end for

11: end for
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Although both diversity metrics follow di�erent ideas about how

to provide de�ne areas that have not being fully explored in the

search space, both promote the spread of the population toward

the Pareto front in the same way.

Let us focus on the hypervolume contribution metric, according

to the de�nition provided previously, the reference point can be

de�ned so that the current extreme individuals in the population

and individuals in intermediate empty areas have a high diversity

score, and a strong in�uence for the algorithm. In the case of the

crowding distance operator the same behaviour applies, extreme

points in the search space receive a high distancewhile intermediate

individuals surrounded by empty areas receive a higher distance

than the ones where the area is more crowded.

With this information we can de�ne selection mechanisms ca-

pable of selecting those extreme points and push the spread of the

population toward the extreme areas of the search space, and once

the extreme points on the Pareto front have been found, be �exi-

ble enough to ignore the extreme points and select intermediate

individuals surrounded by empty areas in the search space to fully

populate the Pareto front.

�e selection mechanisms de�ned in this paper use the previous

diversity contribution metrics but any other metric can be easily

applied that follows the behaviour mentioned before. In �rst place,

we have de�ned a modi�ed version of the uniform random selec-

tion used by SEMO and GSEMO, we have called it non-minimum

uniform at random selection (NMUARS), where the individuals with

the minimum diversity score are ignored and one individual is se-

lected uniformly at random from the population with high diversity

score, in this sense individuals with high diversity score have be�er

chances to be selected and the approach is �exible enough to choose

between extreme and intermediate individuals.

In second place, we have de�ned di�erent ranking-based se-

lection schemes in which the probability of selecting individuals

with a high diversity score is higher than individuals with lower

diversity score. For this selection mechanisms we have de�ned 3

selective pressures that provide di�erent degrees of pressure to the

best individuals. �e �rst called exponential, it strongly favours the

best-ranked individuals with a very small tail. �e second called

inverse quadratic, since
∑µ
j=1 ≤

∑∞
j=1 = π 2/6, there is a fat tail

and yet a constant probability of selecting the �rst constant ranks.

And �nally, the thirds ranking scheme called harmonic, with a fat

tail and only a probability ofO(1/(log µ)) for selecting the best few

individuals.

De�nition 2.2 (Selective pressures). �e probability of selecting

the i-th ranked individual is

2−i∑µ
j=1 2

−j
,

1

i ·
∑µ
j=1

1
j

,
1

i2 ·
∑µ
j=1

1
j2

for the exponential, inverse quadratic and harmonic scheme, re-

spectively.

And in third place, we use the classical tournament selection of

size µ, we choose µ number of individuals uniformly at random

from the population, then select the individual with the highest

diversity contribution from this group.

Now that we have de�ne the diversity contribution metrics, the

parent selection methods, we can incorporate all these mechanisms

into the basic SEMO and GSEMO. In the case of SEMO (see Algo-

rithm 2), it starts with a initial solution s ∈ {0, 1}n chosen uniformly

at random. All non-dominated solutions are stored in the popula-

tion P . We estimate the diversity contribution for all the individuals

in the population, and a new individual is selected according to

the diversity- based parent selection method, and a new search

point s ′ its created due to the mutation step. �e new population

contains for each non-dominated �tness vector f (s), s ∈ P ∪ {s ′},

one corresponding search point, and in the case where f (s ′) is not

dominated s ′ is chosen.

Algorithm 2 SEMO

1: Choose an initial solution s ∈ {0, 1}n uniformly at random.

2: Determine f (s) and initialize P := {s}.

3: loop

4: Estimate diversity contribution ∀s ∈ P .

5: Choose s ∈ P according to parent selection mechanism.

6: Choose i ∈ {1, . . . ,n} randomly.

7: De�ne s ′ by �ipping the ith bit of s .

8: Determine f (s ′).

9: Let P be unchanged, if there is an s ′′ ∈ P such that f (s ′′) ≻

f (s ′).

10: Otherwise, exclude all s ′′ where f (s ′) ≻ f (s ′′) from P and

add s ′ to P .

11: end loop

Asmentioned before, in the case of GSEMO (see Algorithm 3) the

steps 6 and 7 from SEMO are replaced with a more general mutation

operator. A new solution s ′ is created by �ipping each bit from a

solution s independently with probability 1/n and as in Algorithm

2 we estimate the diversity contribution for all individuals in the

population, and replace the uniform random selection approach

with our parent selection scheme.

Algorithm 3 Global SEMO (GSEMO)

1: Choose an initial solution s ∈ {0, 1}n uniformly at random.

2: Determine f (s) and initialize P := {s}.

3: loop

4: Estimate diversity contribution ∀s ∈ P .

5: Choose s ∈ P according to parent selection mechanism.

6: De�ne s ′ by �ipping each bit of s independently of the other

bits with probability 1/n.

7: Determine f (s ′).

8: Let P be unchanged, if there is an s ′′ ∈ P such that f (s ′′) ≻

f (s ′).

9: Otherwise, exclude all s ′′ where f (s ′) ≻ f (s ′′) from P and

add s ′ to P .

10: end loop

For our test functions we have considered the classical functions

OneMinMax and Lotz because both algorithms and functions

facilitate the theoretical analysis, also its choice allows compar-

isons with previous approaches such as [6, 7, 9]. Both consist in

the maximization of a 2-dimensional vector valued function. Intro-

duced in [7], OneMinMax (see De�nition 2.3) is the multi-objective
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version of the popular OneMax problem. OneMinMax has the par-

ticularity that every single solution represents a point in the Pareto

front, no search point is strictly dominated by another search point.

�e objective is to �nd all individuals in the search space {0, 1}n .

De�nition 2.3 (OneMinMax). �e OneMinMax problem is de-

�ned as a pseudo-Boolean function with the objective functions

OneMinMax(x1, . . . ,xn ) :=

(
n −

n∑
i=1

xi ,

n∑
i=1

xi

)
,

where the aim is tomaximize both objectives (themaximumnumber

of zeroes and number of ones) at the same time.

In the case of Lotz (see De�nition 2.4), is the multi-objective

version of the well-known LeadingOnes function and was intro-

duced in [9]. One particular feature of Lotz is that all non-Pareto

optimal decision vectors only have 1-bit Hamming neighbours that

are either be�er or worse, but never incomparable to it. �is fact

facilitates the analysis of the population-based algorithms, which

certainly cannot be expected from other multi-objective optimisa-

tion problems.

De�nition 2.4 (Leading Ones, Trailing Zeroes, Lotz). �e pseudo-

Boolean function Lotz : {0, 1}n → N2 is de�ned as

Lotz(x1, . . . ,xn ) =
©«
n∑
i=1

i∏
j=1

x j ,

n∑
i=1

n∏
j=i

(1 − x j )
ª®¬
,

where the goal is to simultaneously maximize the number of leading

ones and trailing zeroes in a bit- string.

3 FAST SPREAD ON PARETO FRONTS

We show that diversity-based parent selection mechanisms can

achieve a fast spread on the Pareto front. �e following arguments

and analyses consider the situation where the population is located

on the Pareto front. �is is trivially the case for OneMinMax as

all search points are on the Pareto front. For Lotz we later supply

a separate analysis that covers the process of reaching the Pareto

front.

For OneMinMax and Lotz the most promising parents on the

are those that have a Hamming neighbour that is on the Pareto

front, but not yet contained in the population. We call these search

points good:

De�nition 3.1. With reference to a population P we call a search

point x ∈ P good if there is a Hamming neighbour of x that is on

the Pareto front, but not contained in P . Otherwise, x is called bad.

A diversity measure should encourage the selection of such

individuals.

De�nition 3.2. We call a measure C(x , P) diversity-favouring on

S ⊆ {0, 1}n if for all populations P and all x ,y ∈ P ∩ S we have

C(x , P) < C(y, P) if and only if x is x is bad and y is good.

Note that the de�nition is restricted to a subset S of the search

space. �e reason is to allow to exclude certain search points for

which the property is not true. For OneMinMax and Lotz, the

property does not hold for the extreme points on the Pareto front,

0n and 1n .

We show that both hypervolume contribution and crowding

distance contribution are both diversity-favouring.

Lemma 3.3. �e hypervolume contribution HVC(x , P) is diversity-

favouring on {0, 1}n \ {0n , 1n } if the reference point is dominated by

(−1,−1).

Proof. To do �

Lemma 3.4. �e crowding distance contributionCDC(x , P) is diversity-

favouring on {0, 1}n \ {0n , 1n }.

Proof. To do �

Note that in both above measures 0n and 1n , if contained in the

population, will always receive a high score, regardless of whether

they are good or bad.

With this in mind, the probability of selecting a good individual

can be bounded from below as follows.

Lemma 3.5. LetC(x , P) be a diversity-favouringmeasure on {0, 1}n\

{0n , 1n }. Imagine P being sorted according to non-increasing C(x , P)

values. Consider a parent selection mechanism based on C(x , P) such

that ri is the probability of selecting the i-th element of P in the sorted

sequence. �en the probability of selecting a good individual is at

least min{r1, r2, r3} unless P already covers the Pareto front.

Proof. To do �

�e parent selection mechanisms thus have the following proba-

bility of selecting good individuals.

Lemma 3.6. In the se�ing described in Lemma 3.5, the probability

of selecting a good individual is

(1) 1 for NMUAR,

(2) Ω(1) for the exponential and inverse quadratic ranking schemes,

(3) Ω(1/log(n)) for the Harmonic ranking scheme,

(4) Ω(1) for tournament selection with tournament size µ.

Proof. To do

(we can be quite brief here, e. g. for exponential just write that

the probability follows from Lemma 3.5 and

r1 ≥ r2 ≥ r3 =
2−3∑µ
j=1 2

−j
≥ 2−3 = Ω(1)

) �

4 ONEMINMAX PROBLEM

For any parent selectionmechanism de�ned before, the parent selec-

tion is focused on selecting an individual with a high diversity score.

In the case of hypervolume contribution or crowding distance, hav-

ing a high diversity contribution means that, the area around an

individual is empty or it is in a less populated area of the search

space, in this sense de�ning a selection mechanism that favours

those individuals to populate that area, and select the next less

populated area seems to be a good approach to �nd all individuals

in the Pareto front which is the case for OneMinMax.

So, for OneMinMax, it is just necessary that the selection mech-

anism provides the enough pressure to select a parent neighboured

by an empty area, we de�ne this empty area as a gap (see De�nition

4.1).
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De�nition 4.1 (Gap). In the objective space, we refer to a missing

point in a population on the Pareto front as a gap. In the follow-

ing, we will denote pgap as (a lower bound on) the probability of

selecting a parent x that is neighboured to a gap: formally, there is

a Hamming neighbour y of x such that y is Pareto-optimal, and the

population does not include a search point with the same objective

values as y.

Any gap can on any side of an individual in the Pareto front also,

this gap increase the probabilities of selecting an individual as a

parent.

Lemma 4.2. Suppose that the probability of selecting a parent on

the Pareto front that is neighboured to a gap is at least p. �en the

expected runtime for SEMO or GSEMO to �nd all solutions in the

Pareto front on OneMinMax is bounded above by O((n logn)/p).

Proof. We call a step a relevant step if the algorithm selects a

parent on the Pareto front such that it is neighbored to a gap on the

Pareto front. We show in the following thatO(n logn) relevant steps

are su�cient for covering the whole Pareto front of OneMinMax,

regardless of irrelevant steps performed. �is shows the claim as

the expected time for a relevant step is 1/p.

We use the accounting method (see, e. g. Section 17.2 in [3]) to

bound the number of relevant steps. Speci�cally, we count the num-

ber of relevant steps spent selecting a parent with i ones. Summing

up (upper bounds on) all these times across all 0 ≤ i ≤ n will imply

the claim.

Note that, once potential gaps at i − 1 and i + 1 (if existent)

are �lled, there can be no more relevant steps at i ones, due to the

de�nition of a relevant step. Hence the expected number of relevant

steps at i ones is bounded by the expected number of mutations

from i needed to �ll both these gaps. If an individual with i ones,

0 < i < n, is selected as parent, the probability of mutation creating

an individual with i − 1 ones is at least i/n · (1 − 1/n)n−1 ≥ i/(en),

and the probability of mutation creating an individual with i + 1

ones is at least (n− i)/n · (1−1/n)n−1 ≥ (n− i)/(en) (this holds both

for SEMO and GSEMO; for SEMO the factor 1/e can be removed).

�e time for �lling both gaps (if existent) is at most en/i+en/(n−i).

Hence the are at most en/i + en/(n − i) relevant steps selecting a

parent with i ones. In the special cases of i = 0 or i = n the time to

�ll the neighbouring gaps simpli�es to en/n = e .

Summing over all i , the expected total number of relevant steps

is hence at most

2e +

n−1∑
i=1

(en
i
+

en

n − i

)
= 2e + 2

n−1∑
i=1

en

i
= 2

n∑
i=1

en

i
≤ 2enH (n).

As H (n) = O(logn) this completes the proof. �

Now we de�ne the expected runtime for all the parent selection

mechanisms de�ned before.

4.1 Non-minimum uniformly at random
selection

Lemma 4.3. �e probability of selecting an i good individual with

non-minimum diversity score uniformly at random is

Prob(i = 1) = 1.

Prob(i = 2) =
1

2
.

Prob(i = 3) =
1

2
.

Prob(i ≥ 4) ≥
i − 2

i
≥

1

2
.

Proof. To proof this Lemma, �rst it is necessary to de�ne the

selection probability p. Due to the nature of the diversity mech-

anisms used, extreme points are always included in the selection

pool since they always are going to have a non-minimum diversity

score. �is behaviour do not present a problem since choosing

these points will contribute to the spread of the population in the

Pareto front.

However, once we have found the extreme points in the Pareto

front and if there still exists gaps in intermediate zones of the

Pareto front, the algorithms will need to select between the inter-

mediate and extreme individuals, once we have reached this point

we can distinguish between 2 types of individuals, good and bad

individuals. Good individuals are the intermediate individuals with

a non-minimum diversity score and its selection will allow us to

close a gap (make an improvement and continue with the remaining

ones if there are more gaps) and the extreme points became bad

individuals since they have a non-minimum diversity score but its

selection do not contribute any more to the expansion of the Pareto

front.

Now, since we start with only i = 1 good individual in the search

space, this individual is selected with probability 1, a�er we create

another search point as a result of mutation i = 2, both individuals

became the extreme points, from this several scenarios may arise

according to the location of those points in the Pareto front, the

worst case scenario is when both points are located in the furthest

area of the Pareto front making 1 search point bad, and the other

good for selection. In this case we have de�ned pessimistically the

probability of selecting the good individual at least ≥ 1/2. �e same

scenario applies for i = 3, the intermediate individual is ignored

by the selection scheme and the extreme point are considered for

selection but only one is considered as good and the other bad so

the probability of selecting the good individual again is at least

≥ 1/2.

Finally, the probability of selecting a good individual may change

according the position of the gaps in the search space, we have

bounded pessimistically p ≥ i−2
i ≥ 1/2 for i ≥ 4 where i represents

the number of individuals with a non-minimum diversity score,

excluding the two extreme points. Again, the worst case scenario

is the same as the the events mentioned above. �
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4.2 Exponential scheme

Lemma 4.4. �e expected runtime for �nding all solutions on the

Pareto front with SEMO or GSEMO with ranking-based exponential

selection scheme on OneMinMax is bounded below by Ω(1).

Proof. As in the previous Lemma, it is necessary to de�ne the

selection probability p. And as mentioned before, we still to deal

with the extreme points during all the evolution process. For this

case it is just enough to de�ne the probability of selecting the i-th

ranked individual for all i ∈ {1, 2, 3}. So the probability of selecting

the i-th ranked individual with the exponential scheme is de�ned

as

Prob(select i-th ranked individual) =
2−i∑µ
j=1 2

−j
=

2−i

1 − 2−µ
.

�e probability of selecting i-th ranked individual is at least 2−i .

So the probability of selecting of selecting the i ∈ {1, 2, 3} ranked

individual is

Prob(i = 1) ≥ 2−1 =
1

2
= Ω(1).

Prob(i = 2) ≥ 2−2 =
1

4
= Ω(1).

Prob(i = 3) ≥ 2−3 =
1

8
= Ω(1).

�

4.3 Harmonic scheme

Lemma 4.5. �e expected runtime for �nding all solutions on the

Pareto front with SEMO or GSEMO with ranking-based harmonic

selection scheme on OneMinMax is bounded above by O(1/log µ).

Proof. As on the previous Lemma, we de�ne the selection prob-

ability p as 1/(i · Hµ ) ≥ 1/(i · (ln (µ) + 1)). So the probability of

selecting the i-th ranked individual with the exponential scheme is

de�ned as

Prob(select i-th ranked individual) =
1

i ·
∑µ
j=1

1
j

=

1

i · Hµ
≥

1

i · (ln µ + 1)
.

So the probability of selecting of selecting the i ∈ {1, 2, 3} ranked

individual is

Prob(i = 1) =
1

1 · (ln µ + 1)
= O

(
1

log µ

)
.

Prob(i = 2) =
1

2 · (ln µ + 1)
= O

(
1

log µ

)
.

Prob(i = 3) =
1

3 · (ln µ + 1)
= O

(
1

log µ

)
.

�

4.4 Inverse �adratic scheme

Lemma 4.6. �e expected runtime for �nding all solutions on the

Pareto front with SEMO or GSEMO with ranking-based inverse qua-

dratic selection scheme on OneMinMax is bounded below by Ω(1).

Proof. As on the previous Lemma, we de�ne the selection prob-

ability p as 6/(i2 ·π 2). So the probability of selecting the i-th ranked

individual with the inverse quadratic scheme is de�ned as

Prob(select i-th ranked individual) =
6

i2π 2
.

So the probability of selecting of selecting the i ∈ {1, 2, 3} ranked

individual is

Prob(i = 1) ≥
6

π 2
= Ω(1).

Prob(i = 2) ≥
3

2π 2
= Ω(1).

Prob(i = 3) ≥
2

3π 2
= Ω(1).

�

4.5 Tournament selection

Tournament selection size µ

5 LOTZ PROBLEM

De�nition 5.1. De�ne

L(x) = LO(x) +TZ (x),

which denotes the total number of leading ones and trailing zeros

of a certain individual x .

5.1 SEMO with local search

Starting with a single initial solution, before reaching the Pareto

front, SEMO keeps only one individual in the population.

Lemma 5.2. If a solution is not on the Pareto front, a 1-bit �ip can

only generate an o�spring which either dominates the parent or is

dominated by the parent.

Proof. In order to generate a non-dominating or non-dominated

solution, both objectives need to be changed by the 1-bit �ip. In

Lotz problem, the objective values is decided by position of the

�rst 0-bit a�er the leading ones and the �rst 1-bit before the trailing

zeros. However, through a 1-bit �ip, the mutator can only change

one of these 2 bits, which means it can only change one of the

objectives. 1-bit �ip leads to an o�spring which has at least one

objective that is the same as its parents, which implies the o�spring

either dominates the parent or is dominated by the parent. �

�e population size remains unchanged before there is a solution

on the Pareto front. For a solution on the Pareto front, SEMO with

local search only accepts its o�spring which is also on the Pareto

front since the possible o�spring of such a solution from local

search is dominated by it if not on the Pareto front.

Lemma 5.3. Assume the probability of selecting a solution on the

Pareto front with a gap on either side in the population is at least p.

�e expected runtime for SEMOwith local search to reach a population

covering the whole Pareto front is bounded above by O(n2/p).

Proof. Starting from a popualtion with single individual, the

population size remains 1 before achieving at least one solution on

the Pareto front. Let Lmax = maxx ∈P (L(x)). An individual x ′ with
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L(x ′) = n implies this individual is on the Pareto front. �en when

Lmax = n, there is at least one solution in the current population

that is on the Pareto front. Flipping the �rst 0-bit or the last 1-bit

of an individual x results in an o�spring x ′ with L(x ′) ≥ L(x) + 1.

�erefore, the probability of increasing Lmax when Lmax < n − 1

is at least 2/n. �e expected runtime for obtaining a solution on

the Pareto front is at most

n−2∑
Lmax=0

n

2
= O(n2).

When there exists at least one solution on the Pareto front,

among all possible o�spring from a solution on the Pareto front with

a gap next to it, only the o�spring that are also on the Pareto front

will be accepted according to the algorithm. Let µ represent the

current population size. Since there are only solutions on the Pareto

front in the population once reaching the front, when µ = n + 1,

the population covers the whole Pareto front. �e probability of

increasing µ is at least p · 1
n . �e expected runtime for covering the

whole Pareto front is bounded above by

n∑
µ=1

n

p
= O(n2/p).

Hence, the overall expected runtime for SEMO with local search

to achieve a population covering the whole Pareto front of Lotz is

upper bounded by O(n2/p). �

If the parent selected to generate o�spring is the onewithmaxx ∈P (c(x)),

the probability p of selecting a solution on the Pareto front with a

gap on either side equals to 1, since an individual with no gaps on

both sides has c(x) = 1 which is the smallest value that c(x) can

get. �en the expected runtime for SEMO to reach a population

covering the whole Pareto front of Lotz is bounded above byO(n2).

5.2 Global SEMO

For GSEMO, we consider the parent selection scheme that considers

the hypervolume indicator together with the value of L.

De�ne an indicator r of individual x ∈ P as

r (x) = (L(x), c(x)).

For two individuals x ,y ∈ P , we de�ne r (x) < r (y) if L(x) < L(y)

or L(x) = L(y) ∧ c(x) < c(y). �e parent to be selected is a random

individual from argmaxx ∈P (r (x)).

Lemma 5.4. �e expected runtime for GSEMO with this selection

scheme to reach the Pareto front is bounded above by O(n2).

Proof. According to the de�nition, before reaching the Pareto

front, the solution with maxx ∈P (L(x)) is selected to generate an

o�spring. Consider the event of only �ipping the �rst 0-bit or the

last 1-bit of the selected individual. Since the o�spring from this

event has higher value of one of the objectives than its parent which

is of the maximum L(x) in the population, the o�spring is non-

dominated by any individuals in the population and is accepted by

the algorithm. Hence, the probability of increasing maxx ∈P (L(x))

is at least

2 ·
1

n
·

(
1 −

1

n

)n−1
≥

2

en
.

�roughout the process, the value of maxx ∈P (L(x)) in the popula-

tion never goes down.

�erefore, the overall expected runtime for GSEMO with this

selection scheme to reach the Pareto front is at most

n−2∑
Lmax=0

en

2
= O(n2).

�

Lemma 5.5. A�er there is at least one solution on the Pareto front,

the parent to be selected is always on the Pareto front and has a gap

on either side.

Proof. According to the selection scheme, the parent to be

selected has the maximum L(x) value in the population. Since there

is at least one solution on the Pareto front, the parent is selected

from the individuals on the Pareto front which have the maximum

L(x) = n.

If an individual on the Pareto front does not have gaps on either

side, its contribution to the hypervolume indicator c(x) equals to

1 which is the minimum value. Before the whole Pareto front is

covered, there should exist at least a gap on the front. �e individu-

als next to the gap have greater contribution to the hypervolume

indicator than 1 from which a parent will be selected to generate

the o�spring. �

Lemma 5.6. �e expected runtime of GSEMO with this selection

scheme achieving a population covering the whole Pareto front of

Lotz is bounded above by O(n2).

Proof. Before the population covers the whole Pareto front, the

optimization process of GSEMO can be divided into two stages. �e

focuses of the two stages are obtaining one individual on the Pareto

front and covering the Pareto front.

As proved in Lemma 5.4, the expected runtime for GSEMO with

the certain selection scheme to reache the Pareto front is at most

O(n2).

In the second stage, the parent to be selected is on the Pareto

front and has a gap on either side. Consider the event of generating

an o�spring in the gap. Since the o�spring is on the Pareto front

and di�erent from the individuals existing in the population, it

is accepted by the algorithm. �e probability of such an event to

happen is at least

p ·
1

n

(
1 −

1

n

)n−1
≥

p

en
,

where p denotes the probablity of selecting the individual on the

Pareto front and with a gap on either of its two sides. According to

the selection scheme, the parent to be selected is in argmaxx ∈P (r (x)).

Since there is at least one individual on the Pareto front, the so-

lution with maxx ∈P (r (x)) should have L(x) = n and gap on either

side, which implies p = 1.

�ere are (n + 1) distinct points on the Pareto front of Lotz

problem. In order to cover the whole Pareto front, at least one

individual corresponding to each points on the Pareto front should

be included in the population. Since the individuals on the Pareto

front are not dominated by other individuals, they will not be

removed from the population, which indicates that the number of
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covered points on the Pareto front never decrease. �erefore, the

expected runtime of the second stage is at most

n∑
µ=1

en = O(n2).

To sum up, the overall runtime for GSEMO with the selection

scheme choosing parent solution from argmaxx ∈P (r (x)) on Lotz

to reach a population covering the whole Pareto front is bounded

above by O(n2). �

6 EXPERIMENTS

Aside of the theoretical results, we rely on experiments to test our

theoretical a�rmations. �e experimental approach is focused on

the analysis of the Algorithms 2 and 3 and its performance with

and without the diversity-based parent selection mechanisms. We

are interested in observing if we can speed up in the performance

from the classical approaches.

�is also allows a more detailed comparison of the hypevolume

contribution (HVC), the crowding distance contribution (CDC), and

the parent selection methods. In the case of the HVC, we have

de�ned two reference points, HVC(−1,−1) and HVC(−n,−n). For

the �rst reference point, we have provide a slightly preference

to the extreme points while with the second reference point, the

in�uence of the extreme points become very strong. �is particular

characteristic became an interesting feature to observe in the case

of the ranking-based selection schemes, and expose a potential �aw

for the case of HVC with low (or high in the case of minimisation)

reference point or CDC (since it assign in�nity value to the current

extreme points) and the parent selection mechanisms that focus

very aggressively toward the extreme points, as we shall see below.

Since we are interested in the time requires to found the Pareto

front, we have de�ned that outcome as a stopping criterion, and

we repeat the experimental framework for 100 runs with n = 100

for all algorithmic approaches and report the mean as our metric

of interest.

In Table 1 we have summarized and divided the results of our

experimental framework into 2 sections. �e �rst section (upper

part), refers to the mean of generations required to found the Pareto

front for the classic SEMO and GSEMO that use uniform random

selection for both test functions. �e second section (lower part),

refers to the mean of generations required to found the Pareto front

for SEMO and GSEMO with the di�erent diversity-based parent

selection schemes.

As we mentioned before, a parent selection mechanisms that

is extremely focused on the extreme point can be potentially dan-

gerous, and to exemplify this, we have introduced a deterministic

selection mechanism which we have named High Diversity Con-

tribution (HDC), select the individual with the highest diversity

contribution.

As can be seen in Table 1, HDC fails to found the Pareto front for

OneMinMax and Lotz in the case of GSEMO. Due to the mutation

mechanism, once we start expanding the Pareto front, the algorithm

may create an o�spring far from the parent, leaving unexplored

areas (or gaps) between them, and since the parent selection is

only focused on the current extreme individuals, it will expand the

Pareto front until it reaches the most extreme individuals, and it

will continue selecting those individuals ignoring the intermediate

individuals, leaving the population in a stagnation state.

Finally, for any other parent selection de�ned in this paper, we

have achieved an speeding up in the performance of SEMO and

GSEMO. As can be observed in Table 1, SEMO and GSEMO with

diversity-based parent selection mechanisms are able to �nd the

Pareto front faster than its classical versions, i.e., signi�cantly less

generations are required for both test functions.

7 CONCLUSIONS

Future work: analyse Minimum Spanning Trees, SetCover,

VertexCover
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Table 1: First section. Mean of generations required to found the Pareto front for the classic SEMOandGSEMOonOneMinMax

and Lotz with n = 100. Second section. Mean of generations required to found the Pareto front for SEMO (�rst rows) and

GSEMO (second rows) with the diversity-based parent selection methods on OneMinMax and Lotz with n = 100.

OneMinMax Lotz

SEMO 4.16E+04 3.17E+05

GSEMO 1.06E+05 6.58E+05

Selection Mechanism HVC(−1,−1) HVC(−n,−n) CDC HVC(−1,−1) HVC(−n,−n) CDC

HDC
9.14E+02 8.90E+02 1.05E+03 1.24E+04 1.25E+04 1.41E+04

2.12E+03 0 0 3.06E+04 0 0

NMUAR
8.92E+02 1.05E+03 1.03E+03 1.25E+04 1.38E+04 1.41E+04

2.14E+03 2.54E+03 2.58E+03 3.17E+04 3.50E+04 3.58E+04

Exponential
1.28E+03 1.27E+03 1.36E+03 1.57E+04 1.58E+04 1.78E+04

3.21E+03 3.18E+03 3.24E+03 3.45E+04 4.00E+04 5.87E+04

Harmonic
3.05E+03 3.24E+03 3.28E+03 3.14E+04 3.08E+04 3.53E+04

7.89E+03 7.26E+03 8.03E+03 6.69E+04 6.33E+04 6.73E+04

Inverse�adratic
1.15E+03 1.24E+03 1.34E+03 1.54E+04 1.51E+04 1.69E+04

2.87E+03 2.85E+03 3.32E+03 3.40E+04 5.03E+04 5.73E+04

Tournament Selection (µ)
1.05E+03 1.08E+03 1.21E+03 1.38E+04 1.41E+04 1.55E+04

2.58E+03 2.60E+03 2.81E+03 3.16E+04 6.53E+04 7.87E+04
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