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Abstract:		12	

Collective	decision-making	is	the	subfield	of	collective	behaviour	concerned	with	13	

how	groups	reach	decisions.	Almost	all	aspects	of	behaviour	can	be	considered	in	14	

a	decision-making	context,	but	here	we	focus	primarily	on	how	groups	should	15	

optimally	reach	consensus,	what	criteria	decision-makers	should	optimise,	and	16	

how	individuals	and	groups	should	forage	to	optimise	their	nutrition.	We	argue	17	

for	deep	parallels	between	understanding	decisions	made	by	individuals	and	by	18	

groups,	such	as	the	decision-guiding	principle	of	value-sensitivity.	We	also	review	19	

relevant	theory	and	empirical	development	for	the	study	of	collective	decision	20	

making,	including	the	use	of	robots.	21	

	22	

	23	

Introduction	24	

We	consider	collective	decision-making	to	be	the	subfield	of	collective	25	

behaviour	concerned	with	how	groups	reach	decisions	without	centralised	26	

leadership.	Examples	include	nestsite	selection	by	honeybees	[1]	and	ants	[2],	27	

and	consensus	selection	of	food	sources	in	shoaling	fish	[3].	Individuals	in	a	28	

group	can	prefer	to	participate	in	a	consensus	decision,	in	which	all	individuals	29	

seek	to	agree	on	the	same	outcome,	either	because	the	group	is	tightly	30	

functionally	integrated,	as	is	the	case	with	a	social	insect	swarm	or	colony	31	

containing	a	single	queen	[1,2],	or	because	group	members	prefer	to	remain	32	

within	an	unrelated	group,	for	example	to	avoid	predation	risk	[3].	Within	high-33	



relatedness	groups	under	appropriate	conditions,	selection	on	the	group	can	34	

lead	to	group-level	adaptations	[4]	,	so	group	members’	behaviour	is	shaped	as	35	

part	of	a	group-level	decision-making	mechanism.	Within	unrelated	groups,	36	

individuals’	behaviour	should	maximise	their	own	expected	fitness,	within	the	37	

context	of	the	group	[5].	Indeed	inferring	‘group	cognition’	abilities	for	unrelated	38	

groups	may	be	harder	than	previously	appreciated;	alternative	explanations	for	39	

improved	decision	performance	in	fish	shoals	are	that	fish	in	larger	groups	have	40	

improved	individual-level	abilities,	and	that	larger	groups	are	more	likely	to	41	

contain	better	decision-makers	who	dominate	collective	decisions	[6].	42	

In	this	review	we	focus	primarily	on	functionally-integrated	decision-43	

making	systems	for	two	reasons;	first,	as	mentioned	above,	functional	group	44	

integration	makes	it	appropriate	to	apply	optimality	theory	at	the	level	of	the	45	

group	[7].	Second,	parallels	can	be	drawn	between	the	behavioural	rules	of	a	46	

‘superorganismal’	group,	and	the	behavioural	rules	of	unitary	individuals.	We	47	

consider	such	parallels	to	be	illuminating.	Our	review	can	thus	be	read	as	48	

primarily	presenting	an	‘economic’	view	of	the	behaviour	of	groups	making	49	

decisions,	where	decision	outcomes	result	in	gains	or	losses	of	quantities	that	co-50	

vary	with	reproductive	fitness.	We	place	particular	emphasis	on	the	links	51	

between	collective	decision-making,	perceptual	decision	making	and	value-52	

based	decision-making,	and	on	nutritional	decision-making.	We	review	53	

applicable	theory,	as	well	as	the	emerging	use	of	robotics,	for	understanding	54	

such	systems.	55	

	56	

Quorums	and	Confidence	57	

	 Groups	can	realise	superior	decision	performance	to	individuals	for	a	58	

variety	of	reasons.	The	simplest	argument	is	based	on	the	‘wisdom	of	the	59	

crowds’,	recognised	since	the	early	20th	Century;	for	example	a	group	decision	60	

realised	by	pooling	independent	individual	assessments	will	be	more	accurate	61	

than	an	individual	group	member,	under	certain	reasonable	assumptions	[8].	62	

Inevitably,	further	refinements	of	group	decision-making	are	possible;	here	we	63	

mention	two	recent	developments.	64	

Signal	detection	theory,	developed	to	understand	optimal	psychophysical	65	

decision-making	by	individuals,	shows	that	there	is	an	inherent	decision-making	66	



trade-off	between	true	positive	rate	and	false	positive	rate;	a	decision-maker	67	

cannot	improve	the	rate	at	which	they	detect	events	of	interest,	without	also	68	

increasing	the	rate	at	which	they	incorrectly	detect	those	events	when	they	have	69	

not	happened.	Yet	in	the	group	situation,	Max	Wolf	and	colleagues	show	how	70	

introducing	a	quorum	decision	rule,	typical	of	social	insect	colonies,	allows	the	71	

group	to	simultaneously	improve	both	rates	[9].	Understanding	how	to	correctly	72	

set	quorums,	which	may	be	sub-majority	or	super-majority	according	to	the	73	

accuracy	of	individuals,	also	shows	that	in	fact	group	decisions	are	always	more	74	

accurate	than	individual	decisions	[10].	75	

Still	further	improvement	is	possible	on	group	decision-making,	by	76	

accounting	for	the	unavoidable	variation	in	individual	decision	accuracy.	77	

Decision	theory	shows	how	to	optimally	weight	individuals’	contributions	to	78	

group	decisions	according	to	their	accuracy,	or	‘confidence’;	this	theory	has	been	79	

applied	successfully	to	human	groups	and	may	be	fruitfully	applied	to	other	80	

animal	groups	[11].	81	

	82	

Value-Based	Decisions	83	

In	the	preceding	section	group	decision	performance	was	considered	in	84	

terms	of	decision	accuracy,	or	probability	of	making	the	correct	response.	Yet	85	

consider	the	decision	problem	faced	by	a	honeybee	swarm	selecting	a	new	nest	86	

site	[12].	Obviously,	it	is	advantageous	for	the	collective	of	bees	to	choose	the	site	87	

of	highest	possible	quality.	Imagine,	for	example,	that	there	are	two	potential	88	

nestsites	available,	both	of	equal	but	low	quality.	In	this	case	it	is	best	to	wait	and	89	

postpone	the	decision	until	another	option	will	be	discovered.	In	contrast,	if	90	

there	are	two	alternatives	having	equal	but	high	qualities,	then	the	honeybees	91	

should	choose	as	quickly	as	possible,	as	a	long	decision	making	process	is	92	

accompanied	by	the	consumption	of	resources	and	a	prolonged	absence	of	93	

shelter,	and	does	not	lead	to	any	further	advantage.		94	

Precisely	such	an	adaptive	value-sensitive	decision	making	mechanism	95	

has	been	analysed	in	a	model	of	the	stop-signalling	behaviour	of	honeybees	[12],	96	

whose	decision	dynamics	change	adaptively	as	a	function	of	quality	of	available	97	

options	[13,14].	In	case	of	equal,	high	quality	options	a	lower	cross-inhibition	98	

strength	is	sufficient	to	break	decision	deadlock	compared	to	higher	cross-99	



inhibition	strengths	required	for	lower	quality	options	[13].	This	has	led	to	the	100	

proposal	of	a	speed-value	tradeoff	[15]	that	underlies	value-based	decisions,	101	

rather	than	a	speed-accuracy	tradeoff	as	discussed	in	the	preceding	section,	and	102	

considered	in	conventional	two-alternative	choice	perceptual	decisions	[16].		103	

Conceptualising	value-based	decisions	shows,	however,	that	there	are	104	

similarities	between	perceptual	and	value-based	decision	making	[17,18],	105	

although	the	usage	of	the	term	‘value’	may	vary	with	context	[19];	value	may	106	

refer	to	stimulus	intensity,	or	to	reward	magnitude.	In	fact,	recent	studies	107	

demonstrate	that	for	primates	value-sensitivity	represents	an	important	feature	108	

of	perceptual	decision	making,	underlining	the	significance	of	absolute	values	109	

(magnitudes)	of	input	signals	[20].	Teodorescu	et	al.	showed	in	experiments	with	110	

human	participants	that	increasing	the	magnitudes	of	two	input	signals	while	111	

keeping	their	difference	or	ratio	constant	leads	to	faster	responses;	this	effect	is	112	

not	predicted	by	influential	decision	models	that	optimise	the	speed-accuracy	113	

trade-off.	Using	data	from	humans	and	monkeys,	similar	observations	are	114	

reported	by	Pirrone	et	al.	[21]	for	the	case	of	equal	alternatives	for	both	115	

perceptual	decisions	where	‘value’	represents	the	magnitude	of	an	input	signal,	116	

and	value-based	decisions	where	‘value’	denotes	a	reward.	These	results	provide	117	

evidence	for	a	speed-value	tradeoff	in	decision	making	and,	given	the	suggested	118	

similarities	between	decision	making	in	the	brain	and	collective	decision	making	119	

in	social	insects	(e.g.	see	[7,22])	may	provide	new	insights	into	the	underlying	120	

principles	of	collective	decision	making	in	social	groups.	Speed-value	trade-offs	121	

should	be	as	fundamental	for	groups	as	they	are	for	individuals.	122	

A	speed-value	tradeoff	should	play	a	key	role	in	decision	making	that	is	123	

not	about	‘correct’	or	‘false’	but	rather	requires	a	strategy	to	choose	the	best	124	

alternative	among	available	options.	Therefore,	it	would	be	interesting	to	125	

investigate	the	link	between	speed-value	tradeoffs	and	a	recently	published	126	

model	describing	the	optimal	decision	making	strategy	for	value-based	decisions	127	

[23],	which	may	reflect	the	ultimate	goal	of	maximising	fitness	and	reproductive	128	

success	in	realistic	natural	decision	making	scenarios,	including	collective	129	

decision	making	of	insect	societies.		130	

	131	

	132	



Nutrition	and	Decision	Making		133	

	 Individuals	on	their	own	or	within	social	groups	frequently	make	foraging	134	

decisions.	Those	decisions	often	aim	at	balancing	the	intake	of	different	nutrients	135	

rather	than	maximising	the	gain	in	energy	[24],	as	described	by	the	Geometric	136	

Framework	—	a	graphical	approach	pioneered	by	Stephen	Simpson	and	David	137	

Raubenheimer	[24,25].	In	this	framework,	the	performances	of	animals	or	insect	138	

colonies	are	evaluated	by	considering	their	actions	in	nutrient	space.	The	139	

geometric	framework	is	important	for	functionally-integrated	social	insects	140	

colonies	as	for	single	animals,	as	satisfying	nutritional	needs	is	crucial	for	both.	141	

Thus,	nutritional	deficits	may	bias	or	shape	decision	making	for	both	in	a	similar	142	

way.		The	nutrient	space	is	an	N-dimensional	space,	which	is	spanned	by	N	axes	143	

each	of	which	represents	one	nutrient	required	in	the	diet.	Imagine,	for	example,	144	

an	animal	or	social	insect	colony	that	needs	to	consume	proteins	and	145	

carbohydrates.	Then,	the	nutrient	space	is	two-dimensional.	The	performance	of	146	

the	animal	or	social	insects	can	then	be	evaluated	by	plotting	the	deficits	in	147	

proteins	and	in	carbohydrates	on	the	axes	of	a	two-dimensional	Cartesian	148	

coordinate	plane.	As	the	aim	of	the	(super)organism	is	to	reach	a	nutritional	149	

target	[25],	a	measure	of	distance	between	current	state	(a	point	in	the	diagram)	150	

and	target	(another	point)	quantifies	the	effectiveness	of	their	foraging	151	

behaviour.	When	nutrients	do	not	interact	this	required	distance	measure	is	152	

simply	Euclidean	distance	[25].	153	

	 Although	based	mostly	on	laboratory	experiments,	considering	two-154	

dimensional	problems	such	as	choosing	between	proteins	and	carbohydrates,	or	155	

food	and	water,	has	led	to	important	insights	into	how	animals	and	social	groups	156	

forage	and	is	empirically	well	motivated	[24,26–29].	Given	a	target	intake	the	157	

animal	or	the	insect	colony	has	to	fulfil	an	ongoing	decision	task	by	selecting	158	

repeatedly	among	two	alternatives,	to	bring	their	internal	state	as	close	as	159	

possible	to	their	target	intake.	Hence,	behaviour	that	is	guided	by	multiple	160	

decisions	can	be	tracked	in	nutrient	space.	Deficits	in	one	or	more	nutrients	161	

drive	the	motivations	for	deciding	for	or	against	an	action	that	reduces	a	deficit.	162	

Houston	et	al.	analyse	the	optimal	strategy	for	reducing	expected	deficit	in	163	

simple	scenarios	where	food	types	contain	differing	ratios	of	required	nutrients	164	

[30];	the	optimal	strategy	requires	decision-makers	to	reach	a	switching	line	and	165	



then	move	along	this	by	ingesting	food	items	in	the	required	ratio.	This	is	hard	166	

for	animals	to	do	without	incurring	switching	costs,	which	change	the	optimal	167	

strategy	[29],	but	could	be	more	readily	achieved	by	a	social	insect	colony,	or	168	

similar,	regulating	nutrient	intake	via	a	population	of	foragers.	169	

The	geometric	framework	has	been	studied	in	decentralised	decision-170	

making	systems	such	as	ant	colonies	[27]	and	slime	molds	[26].	Nutrition	in	ants	171	

is	particularly	well	studied	and	emphasises	the	insect	group’s	cognitive	ability	to	172	

integrate	the	different	nutritional	needs	of	workers	and	larvae	[27],	and	the	173	

flexibility	to	make	decisions	in	dynamic	environments	[31],	whilst	also	174	

highlighting	the	vulnerability	to	extreme	nutritional	imbalances	[32].		175	

Considering	the	foraging	decisions	of	ant	colonies	illustrates	the	social	176	

dimension	of	nutrition	[33]	and	has	been	related	to	social	immunity	[34].	This	177	

link	between	nutrition	and	immunocompetence	has	also	been	observed	in	178	

honeybees	[35].		179	

	 Being	central	to	all	social	groups,	nutritional	interactions	may	have	180	

contributed	to	the	evolution	of	social	behaviour	[36].	In	this	light,	recent	181	

observations	in	wasps	[37]	showing	reductions	in	mushroom	body	investments	182	

from	solitary	to	social	species	indicate	the	intriguing	connection	between	183	

‘distributed	cognition’	[37],	sociality	and	nutritional	decision	making	by	social	184	

insect	colonies	in	evolutionary	contexts.	It	could	be	interesting	to	see	what	185	

effects	imbalanced	nutrition	has	on	non-foraging	decisions	of	social	insects,	such	186	

as	in	the	house	hunting	of	honeybees.	Here,	the	geometric	framework	could	be	187	

used	to	characterise	the	nutritional	state	of	the	colony,	providing	the	link	188	

between	nutrient	regulation	at	multiple	organisation	levels,	social	immunity,	189	

cognitive	abilities	in	general	and	collective	decision	making	in	particular.					190	

	191	

Robots	and	Collective	Behaviour	192	

	 For	several	decades,	solutions	from	nature	have	been	taken	as	a	source	of	193	

inspiration	for	the	design	of	robotic	systems.	This	is	particularly	true	for	the	field	194	

of	swarm	robotics,	where	a	large	number	of	autonomous	robots	coordinate	with	195	

each	other	to	perform	a	common	task.	In	these	decentralised	systems,	each	196	

individual	gathers	and	exchanges	information	with	the	environment	and	peers	in	197	

a	local	range;	the	large	number	of	individuals	and	nonlinear	interactions	lead	to	198	



a	coordinated	collective	response	of	the	swarm.	Given	the	difficulties	in	199	

identifying	the	rules	that	each	agent	should	follow	in	order	to	obtain	the	desired	200	

collective	behaviour,	a	widespread	approach	has	been	to	look	at	natural	201	

processes	that	display	the	desired	behaviour	and	adapt	such	processes	to	202	

implement	multirobot	systems.	203	

	 While	most	works	have	an	engineering	scope	a	few	robotics	studies,	204	

instead,	aim	at	replicating	the	actual	animal	behaviour	to	investigate	the	veracity	205	

of	different	assumptions,	or	validate	the	correctness	of	biological	models	(e.g.,	206	

[38,39]).	Usually,	to	understand	collective	processes	biologists	use	analytical	and	207	

computational	models	such	as	multiagent	simulations,	in	order	to	identify	208	

individual	rules	that	lead	to	the	observed	group	response.	Through	models,	the	209	

individual	behaviour	can	be	varied	systematically	to	identify	which	are	the	210	

relevant	components	or	model	parameters.	In	collective	behaviour,	the	process	211	

dynamics	are	principally	determined	by	how	information	is	acquired,	processed	212	

and	transferred	between	individuals.	In	some	cases,	all	relevant	components	and	213	

realistic	assumptions	can	be	included	in	the	mathematical	model.	However,	214	

when	space,	situatedness1	and	the	physical	environment	are	determining	factors	215	

in	the	process,	implementing	collective	behaviour	models	on	robots	presents	216	

advantages	which	should	not	be	overlooked	[38,40,41].	Working	with	a	physical	217	

device	imposes	constraints	that	force	the	designer	to	consider	the	limited	218	

capabilities	of	each	individual	(in	terms	of	sensors	and	actuators),	the	effect	of	219	

noise,	and	the	mechanistic	process	of	information	transfer.	As	a	result,	a	robot	220	

implementation	reduces	the	possibility	of	oversimplifying	the	model	and	can	221	

provide	insights	into	biological	mechanisms.	In	particular,	the	embodiment	and	222	

situatedness	of	a	physical	device	influence	group	motion	and	alter	the	223	

environmental	perceptions	of	groupmates.	As	a	consequence	the	dynamics	of	the	224	

communication	topology	are	affected,	and	this	can	have	a	bearing	on	the	225	

collective	dynamics	(e.g.	[42]).	226	

	 Finally,	a	research	area	that	is	receiving	growing	attention	is	227	

experimentation	in	mixed	societies,	composed	of	animals	and	robots	that	interact	228	

																																																								
1	In robotics, situatedness refers to the extent to which a robot is embedded in the 

environment that can be sensed and modified through the robot’s sensors and 

actuators [41]. 



with	each	other	[41,43–45].	The	first	challenge	of	this	research	field	concerns	the	229	

design	of	robots	that	are	considered	as	groupmates	by	the	animals.	These	studies	230	

allow	identification	of	the	relevant	perceptual	components	used	by	the	animals	231	

(e.g.,	robot-fish	[46–48],	robot-bee	[49],	robot-rat	[50]).		Once	a	robot	is	accepted	232	

as	a	groupmate,	controlling	the	robot’s	behaviour	allows	investigation	of	social	233	

interactions	and	how	animals	respond	to	specific	behaviours.	These	studies	help	234	

to	identify	individuals’	cognitive	abilities	[45,51–53]	as	well	as	how	(and	what)	235	

information	is	transferred	within	groups	[54,55].	236	

	237	

Conclusions	238	

	 As	motivated	in	the	Introduction,	our	review	has	focussed	primarily	on	an	239	

economic	view	on	collective	decision-making.	The	economic	view	is	a	staple	of	240	

behavioural	ecology,	and	motivates	the	tools	of	optimal	decision	theory	for	the	241	

study	of	animal	behaviour.	Here	we	argue	that	for	decisions	in	functionally-242	

integrated	groups,	such	as	social	insect	colonies,	optimality	theory	should	also	be	243	

applied	to	collective	behaviour.	The	economic,	optimality	theory,	view	is	also	244	

applied	extensively	to	understanding	animal	behaviour	in	the	various	fields	of	245	

neuroscience	and	psychology.	There,	the	additional	focus	on	mechanisms	246	

underlying	behaviour	opens	up	a	new	dimension	of	study.	In	studying	individual	247	

animal	behaviour,	behavioural	ecology	has	traditionally	ignored	mechanism,	248	

however	there	is	a	movement	to	integrate	the	study	of	mechanism	with	function	249	

[56].	Collective	behaviour	is,	of	course,	particularly	amenable	to	observation	of	250	

mechanisms.	Furthermore,	through	adopting	modern	robotics	technology,	251	

behavioural	mechanisms	can	be	elucidated	through	manipulation;	this	might	be	252	

of	particular	interest	in	functionally-integrated	decision-making	groups	such	as	253	

social	insect	colonies.		We	argue	that	when	drawing	parallels	between	254	

mechanisms	for	collective	behaviour	and	mechanisms	for	individual	behaviour	is	255	

justified,	doing	so	provides	a	particularly	powerful	research	programme.	256	
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Reference	Annotations	415	

• Wolf,	Kurvers,	Krause,	Marshall	(2016)	-	**	In	this	paper	the	authors	416	

demonstrate	how	group	decisions	are	always	more	accurate	than	417	

individual	decisions,	yet	achieving	this	improvement	requires	that	418	

quorum	thresholds	for	decisions	be	set	according	to	the	accuracy	of	group	419	

members,	and	optimal	thresholds	need	not	be	simple	majority	rules.	420	

• Marshall,	Brown,	Radford	(2016)	-	**	In	this	review	the	authors	note	that	421	

when	group	members	vary	in	individual	decision	accuracy,	decision	422	

theory	shows	how	contributions	to	group	decisions	should	be	weighted	423	

by	the	accuracies,	or	confidences,	of	group	members.	The	authors	review	424	

the	application	of	such	theory	to	human	collective	decision-making	and	425	

note	the	potential	for	application	of	the	theory	to	non-human	animal	426	

groups.	427	

• Teodorescu,	Moran,	Usher	(2016)	-	**	This	paper	demonstrates	the	428	

presence	of	magnitude	sensitivity	in	decision	making	by	individuals.	The	429	

authors	show	that	the	absolute	value	of	a	stimulus	does	matter	in	decision	430	

making,	as	an	increase	of	the	absolute	value	reduces	decision	times,	in	431	

agreement	with	theoretical	arguments	[13,15]	.	The	authors	emphasise	432	

that	theoretical	frameworks	explaining	decisions	only	based	on	the	433	

accumulation	of	relative	evidence	cannot	explain	experimental	findings	434	

and	they	propose	two	alternatives	to	resolve	this	issue,	one	being	based	435	

on	a	drift	diffusion	model	with	value-dependent	multiplicative	noise	and	436	

the	other	one	being	related	to	a	leaky	competing	accumulator	model	with	437	

lateral	inhibition.		438	

• Tajima,	Drugowitsch,	Pouget	(2016)	-	**	This	paper	derives	the	optimal	439	

strategy	for	decisions	in	which	the	decision-maker	is	rewarded	by	the	440	

value	of	the	option	chosen.	Interestingly,	the	optimal	strategy	is	441	

equivalent	to	a	process	of	integrating	differences	in	evidence	streams,	but	442	



with	decision	boundaries	that	collapse	over	time.	Relating	this	optimal	443	

strategy	to	behavioural	observations	and	to	models	of	collective	decision-444	

making	(e.g.	[13])	should	prove	valuable.	445	

• O’Donnell,	Bulova,	DeLeon,	Khodak,	Miller,	Sulger	(2015)	-	**	In	this	paper	446	

the	authors	study	a	distributed	cognition	hypothesis,	building	on	social	447	

communication	instead	of	individual	cognition.	One	prediction	of	this	448	

model	is	that	brain	investment	in	social	species	is	reduced.	The	authors	449	

present	data	from	observations	in	wasps,	which	support	the	distributed	450	

cognition	hypothesis.	They	conclude	that	evolution	of	eusociality	in	wasps	451	

was	accompanied	by	the	reduction	of	central	processing	brain	areas,	452	

which	might	be	a	significant	feature	of	other	types	of	social	insects,	too.	453	

• Frohnweiser,	Murray,	Pike	and	Wilkinson	(2016)	-	*	In	this	review	the	454	

authors	survey	the	use	of	robots	for	understanding	animal	cognition,	455	

including	examples	mentioned	above.	The	authors	argue	that	robotics	456	

could	have	an	important	impact	on	understanding	of	perception,	spatial	457	

cognition,	social	cognition,	and	early	cognitive	development.	Their	458	

highlighting	of	social	interactions,	such	as	between	fish	and	honeybees,	is	459	

particularly	relevant	to	the	study	of	collective	decision-making.	460	


