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Abstract

In this paper, we propose a user equilibrium model considering the three most important factors

influencing route choice behaviour in a road network, namely, travel time, travel time reliability

and monetary cost. We further develop the time surplus maximisation bi-objective user equilib-

rium (TSmaxBUE) model and incorporate the concept of travel time budget to model how users

might react to uncertainty induced by day-to-day variability in travel time caused by traffic inci-

dents. This results in a three-objective user equilibrium model, which has a possibly infinite set

of equilibrium flows. To compute equilibrium flows, we introduce time budget surplus (TBS) de-

fined as the maximum travel time a user is willing to spend minus the actual time budget required

for a desired level of travel time reliability. At equilibrium, for each origin-destination (O-D)

pair, all individuals are travelling on the path with the highest TBS value among all the efficient

paths between this O-D pair. This becomes a time budget surplus maximisation three-objective

user equilibrium model (TBSmaxTUE). We show that the TBSmaxTUE model is a special case

of three-objective user equilibrium considering minimisation of expected travel time, travel time

variance and toll (monetary cost) as objectives. We illustrate the model and our results on a small

network.

Keywords: Traffic assignment; route choice; equilibrium problem; multi-objective optimisation;

travel time reliability.

1 Introduction

It is well known that the three most important criteria affecting route choice behaviour are travel time,

travel time reliability and monetary cost. This observation is drawn from numerous studies in the

∗Corresponding author. Tel.: +44 113 343 3259 ; Fax: +44 113 343 3265.

1



literature. From a route choice survey, Abdel-Aty et al. (1995) identified the three most important

factors to be: (1) shorter travel time (ranked as the first reason by 40% of respondents); (2) travel time

reliability (32%); and (3) shorter distance (31%). Note that although the effect of monetary cost was

not considered explicitly in this study, the third most important factor, i.e. distance, is directly related

to vehicle operating cost for the trip. From numerous road pricing studies in the US (e.g. Lam &

Small 2001, Liu et al. 2004, Brownstone & Small 2005) and in Australia (Li et al. 2010), it is also

clear that the value of reliability (VOR) estimates, when travel time is represented by its median and

unreliability of travel time as the difference between the 90th percentile and the median of travel time,

can be as high as the value of time (VOT). For some user groups, VOR was found to be even higher

than VOT, e.g. the VOR for women is 39.5% higher than the VOT in the best fitted model in Lam

& Small (2001). In order to model route choice behaviour realistically, there is no doubt we should

consider the influence of all these three factors.

Network equilibrium models have been studied for decades since the discovery of Wardrop’s

principles. Combinations of some of the three most important route choice factors mentioned above

have also been considered in many studies (e.g. Florian 2006, Lo et al. 2006, Watling 2006). Florian

(2006) summarised the two approaches employed in practice, when toll and travel time are considered:

(1) models based on generalised cost path choice; and (2) models based on explicit choice of tolled

facilities. These two approaches follow the principles of the two classical traffic assignment models

in the literature, namely, the user equilibrium (UE) model and the stochastic user equilibrium (SUE)

model.

Lo et al. (2006) formulated a multi-class equilibrium model by considering travel time and travel

time reliability, combined in a single objective as minimising travel time budget, which is defined as

the expected travel time plus a travel time margin (or buffer time), with the travel time margin being

dependent on the level of risk aversion of each user class. Watling (2006) proposed a late arrival

penalised UE (LAPUE) which assumes users minimise a composite path disutility, incorporating the

generalised cost plus a late arrival penalty. Watling (2006) assumes that travellers make their route

choice decision with a longest possible travel time in mind for their journey. If this is exceeded,

the inconvenience incurred will be modelled by the penalty component of the disutility function. In

principle, Watling’s and Lo et al.’s models can be applied in a manner to consider all three factors,

with toll/monetary cost and travel time considered as generalised travel time, and travel time reliability

in the penalty component or travel time and travel time reliability in the time budget plus the time

equivalent of monetary cost, respectively.

All existing network equilibrium models share one common feature, i.e. all the factors considered

are combined into a single objective. As discussed in Wang & Ehrgott (2013), the linear combination

of time and cost, for instance, implies that a certain class of efficient paths will have zero flow at

the equilibrium solution, and hence might not be able to model route choice behaviour realistically.

Similarly, Wang et al. (2014) show that Lo et al.’s and Watling’s models might miss out some rational

route choices in a similar manner.

To address this issue, Wang & Ehrgott (2013) propose a bi-objective approach to overcome the
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problem, without assuming the two objectives of travel time and travel time reliability being additive

as in Dial (1996). Wang & Ehrgott introduce the concept of time surplus maximisation to model

route choice behaviour in a tolled road network considering two objectives: (1) minimise travel time;

and (2) minimise toll cost. Time surplus is defined as the maximum time users are willing to spend

minus the actual travel time. All users would want to maximise time surplus based on the two objec-

tives. This becomes the time surplus maximisation (bi-objective) equilibrium model (TSmaxBUE).

At equilibrium, only the paths with the maximal time surplus will have positive flow. Differences in

preferences among travellers between each origin-destination (O-D) pair are modelled by indifference

curves, which represent the maximum time a user is willing to spend for a given toll. The TSmaxBUE

model also satisfies the condition for bi-objective user equilibrium as defined in Wang et al. (2010),

whereby no user can decrease travel time, or toll, or both without worsening the other and vice versa.

As demonstrated in Wang & Ehrgott (2013), the TSmaxBUE model is a proper generalisation of the

UE model with additive generalised cost functions.

On the other hand, Wang et al. (2014) consider travel time and travel time reliability with a bi-

objective approach. Wang et al. propose a general network equilibrium model, travel time reliabil-

ity bi-objective user equilibrium (TTR-BUE) model, considering two objectives: (1) minimise travel

time; and (2) minimise travel time variability. Wang et al. prove that existing travel time reliabil-

ity models, including Lo et al.’s and Watling’s models, as well as their bi-objective counterparts are

special cases of TTR-BUE. For example, the bi-objective version of Lo et al.’s model has the two

objectives (1) minimise expected travel time and (2) minimise travel time budget. This is a special

case of TTR-BUE.

In this paper, we propose the first multi-objective network equilibrium model considering all the

three most important objectives affecting route choice. We further develop the TSmaxBUE model

from Wang & Ehrgott (2013), incorporating findings from Wang et al. (2014), to include the consider-

ation of travel time reliability. We note that multi-objective user equilibrium models in general admit

an infinite number of equilibrium flows. Despite the drawback of losing uniqueness of equilibrium

solutions, this allows the verification that observed flows are consistent with assumptions on the user

objectives, independent of any parameters used to convert the multiple objectives into a single cost

function. In order to be able to compute the set of equilibrium flows, we must, however, first address

the question of computing single equilibrium flows. In this paper we propose a model that makes this

possible.

The rest of the paper is organised as follows. Section 2 introduces notation and presents the notion

of user equilibrium models of travel assignment. We review the concepts of generalised cost, travel

time reliability and travel time budget user equilibrium. We also state a small three-link example

that we use throughout the paper to illustrate results. In Section 3, we give a general definition of

multi-objective user equilibrium and prove some general results. Section 4 is dedicated to a summary

of the travel time surplus maximisation bi-objective user equilibrium model. In Section 5, the main

results of the paper on a generalisation of the TSmaxBUE model and the incorporation of travel time

reliability through the travel time budget equilibrium model are discussed and the relationships of this
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time budget surplus maximisation model to multi-objective user equilibrium models are investigated.

We also present an NCP formulation of the time budget surplus maximisation model. Section 6

explores the new model on the three-link example in detail and Section 7 concludes the paper with

some general comments and suggested avenues for future research.

2 User Equilibrium

In this section, we briefly review equilibrium models of traffic assignment and introduce notation, as

well as an example, that are used throughout the paper.

2.1 Traditional Traffic Assignment Models

Let G = (N,A) denote a network, where N is a finite set of |N | nodes and A ⊂ N × N is a set

of |A| arcs or links. Moreover, let Z ⊂ N × N be a set of origin-destination pairs (O-D pairs) and

for all p ∈ Z, let Dp denote the demand for travel between the origin and destination of O-D pair

p. Equilibrium models attempt to determine the amount of traffic fa on all links a ∈ A under some

assumptions on the behaviour of road users. One of these assumptions is that road users choose a path

k∗ between their origin and destination that minimises a non-negative cost function Ck:

k∗ ∈ argmin{Ck : k ∈ Kp},

where Kp is the set of all simple paths from the origin of O-D pair p to its destination.

Let δka be an indicator with δka = 1 if and only if link a is contained in path k and 0 otherwise.

Then fa =
∑

p∈Z

∑

k∈Kp
δkaFk, where Fk is the flow on path k ∈ Kp. The cost Ck(F) of path k may

depend on the entire vector F = (F1, . . . , F|K|) of flows on all paths k ∈ K := ∪p∈ZKp. The user

equilibrium condition of Wardrop’s first principle states that the costs of all used paths are equal and

not greater than the cost which would be experienced by a single user on any unused route.

Let Up := mink∈Kp
Ck(F) denote the minimum cost of any path for O-D pair p ∈ Z. Then,

following e.g. Florian & Hearn (1995), the user equilibrium condition can be written mathematically

as follows: Path flow vector F∗ is an equilibrium flow if F∗ satisfies conditions (1) – (5):

F ∗
k (Ck(F

∗)− Up) = 0 for all k ∈ Kp and all p ∈ Z, (1)

Ck(F
∗)− Up ≥ 0 for all k ∈ Kp and all p ∈ Z, (2)

∑

k∈Kp

F ∗
k −Dp = 0 for all p ∈ Z, (3)

F ∗
k ≥ 0 for all k ∈ K, (4)

Up ≥ 0 for all p ∈ Z. (5)

Equation (1) states that if flow on path k is positive then the cost Ck(F
∗) has to be minimal,

whereas if Ck(F
∗) > Up then the flow on path k must be 0. Equation (2) says that the costs of all

paths in Kp are greater than or equal to the minimum Up. Equation (3) guarantees that demand is
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satisfied, whereas equations (4) and (5) postulate non-negativity of flow and cost. Note that For future

use, let us introduce

Ω := {F : F satisfies (3)− (4)} (6)

to denote the set of all feasible path flow vectors F.

Existence of a solution of the network equilibrium model (1) – (5) is guaranteed if the path cost

functions Ck(F) are all positive and continuous. If, in addition, the vector of path cost functions

C : R|K| → R|K| is strictly monotone, then equilibrium link flows are unique, see e.g. Smith (1979)

for additive cost functions and Gabriel & Bernstein (1997) for non-additive cost functions.

In this paper, we will consider equilibrium problems with multiple user classes. We use an index

m ∈ M to indicate user class. Equilibrium models with multiple user classes split the demand

Dp for each OD pair p into separate demands Dpm for each user class, hence Dp =
∑

m∈M Dpm.

Consequently, flow vector F records flow Fkm for each path k and each user class m, Upm denotes

the minimum cost of a path between OD pair p and user class m and path cost functions Ckm will

differ by user class. The equilibrium conditions (1) – (5) need to be satisfied for each user class.

2.2 Travel Time, Generalised Cost and Generalised Time

The most important cost function is travel time. In this paper, we use the common Bureau of Public

Roads (1964) function to model the relation between travel time and traffic flow on any link a ∈ A,

i.e.

ta (fa) = t0a

[

1 + β

(

fa

Ca

)n]

, (7)

where t0a is the free-flow travel time on link a, Ca is the practical capacity of link a in vehicles per

time unit, and β, n are function parameters. If the cost function Ck considered in (1) – (5) is path

travel time, then

Ck(F) = Tk(F) :=
∑

a∈k

ta(fa) (8)

for all k ∈ K.

The best known algorithm used to solve conventional traffic assignment is the Frank-Wolfe al-

gorithm (Frank & Wolfe 1956) but many others such as path equilibration (Dafermos & Sparrow

1969), gradient projection (Jayakrishnan et al. 1994), projected gradient (Florian et al. 2009), and

other methods (e.g. Bar-Gera (2010)) have been proposed, see e.g. Perederieieva et al. (2015).

Many researchers have suggested more general cost functions than travel time, see e.g. Chen et al.

(2010), Larsson et al. (2002). Most often Ck(F) takes the form of a generalised cost function that

incorporates a linear combination of travel time and a monetary component (Dial 1996, Leurent 1993).

An additive generalised cost function is of the form

Ck(F) = Mk(F) + αTk(F), (9)

where Mk(F) is the monetary cost associated with path k. This may be composed of different factors

such as toll cost and vehicle operating costs. In addition, α is a value of time, i.e. it converts the
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travel time Tk(F) into a monetary value. To solve traffic assignment problems with generalised cost

function (9), one can apply the same algorithms as for conventional traffic assignment, depending on

the properties of function Mk(F). We note that some authors also consider (9) with a continuous

distribution of α, (Dial 1996, Leurent 1993).

Larsson et al. (2002) on the other hand considers a nonlinear “generalised time” function of the

form

Ck(F) = Tk(F) +Gk(Mk(F)), (10)

where Gk : R → R is a non-negative increasing function, the time-equivalent of money.

2.3 Travel Time Reliability and Travel Time Budget Equilibrium

To model the influence of travel time and travel time reliability on route choice behaviour, there are

two main theoretical frameworks, as categorised in Li et al. (2010) and Carrion & Levinson (2012),

namely, the mean-variance model (Jackson & Jucker 1982) and the scheduling model (Small 1982).

Reliability based UE models were further developed based on these two concepts by Lo et al. (2006)

and Watling (2006), respectively.

In this paper, we are interested in travel time variability due to variations in link capacity caused

by day-to-day incidents. We assume that link capacity distributions are independent. To model the

influence of such variability of travel time, Lo et al. (2006) formulated a multi-class equilibrium model

considering the minimisation of travel time budget, defined as the expected travel time plus a travel

time margin (or buffer time), with the travel time margin being dependent on the level of risk aversion

of each user class, as shown in Equation (11),

Bkm(F) = E (Tk(F)) + λmσTk(F) (11)

for all k ∈ Kp,m ∈ M, and p ∈ Z, where Bkm(F) is the travel time budget; Tk(F) is the random

variable of travel time on route k between origin and destination of OD pair p; E (Tk(F)) and σTk
(F),

respectively, are the mean and standard deviation of Tk(F). λm is a parameter associated with the level

of risk aversion of user class m. We adopt the concept of travel time budget as a mechanism to deal

with travel time variability in this paper, because we focus on modelling the travel behaviour of road

users in response to the day-to-day variations in travel time induced by disruptions on a minor scale,

caused by traffic incidents. We, therefore, adopt the results from Lo & Tung (2003), summarised as

follows for completeness.

Assuming that link capacity follows a uniform distribution, defined by an upper bound (the design

capacity) and a lower bound (the worst-degraded capacity), which is a fraction, φa, of the design

capacity, c̄a, i.e.

Ca ∼ U (φac̄a, c̄a) , (12)

Lo & Tung (2003) have derived that, due to the central limit theorem for paths with many links, the
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path travel time is normally distributed with mean and standard deviation that can be written as

E (Tk) =
∑

a

[

δka · E (ta)
]

, (13)

σTk
=

√

∑

a

[δka · var (ta)]. (14)

By applying the assumption of uniformly distributed arc capacity as expressed in Equation (12),

the mean and standard deviation of the route travel time distribution are

E (Tk) =
∑

a

{

δka ·
[

t0a + βt0af
n
a

1− φ1−n
a

c̄na (1− φa) (1− n)

]}

, (15)

σTk
=

√

√

√

√

∑

a

[

δka · β2 (t0a)
2
f2n
a

{

1− φ1−2n
a

c̄2na (1− φa) (1− 2n)
−
[

1− φ1−n
a

c̄na (1− φa) (1− n)

]2
}]

. (16)

The travel time budget model of Lo et al. (2006) is a multi-user class equilibrium model which

considers both the expected travel time E(Tk) and the variability of travel time, as measured by σTk

with users in class m minimising their travel time budget Bk = E(Tk)+λmσTk
. Mathematically, λm

can be related to the probability ρm that a trip arrives within the travel time budget,

P {Tk 6 Bk = E (Tk) + λmσTk
} = ρm. (17)

After rearranging (17), we have

P

(

STk
=

Tk − E (Tk)

σTk

6 λm

)

= ρm. (18)

Note that STk
on the left hand side of Equation (18) is the standard normal variate of Tk, STk

∼
N(0, 1).

To summarise, the path cost functions that we shall use in this paper are

Tk(F) :=
∑

a∈k

ta(fa); travel time on path k;

E(Tk(F)) defined by (15); expected path travel time on path k;

σTk(F) defined by (16); standard deviation of path travel time on path k;

Bkm(F) := E(Tk(F)) + λmσTk(F); path travel time budget of user class m on path k;

τk(F) :=
∑

a∈k

τa; toll on path k;

Mk(F) :=
∑

a∈k

ma; monetary cost on path k.

Notice that we assume that toll and monetary cost in general are independent of flows and that only

the time budget Bkm varies by user class through the risk aversion parameter λm.
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Figure 1: A three-link example network.

2.4 A Three-link Example

We will demonstrate the results of our research using a small three-link network, which is shown

in Figure 1, where the link parameters are specified in Table 1. The parameters of the travel time

function, Equation (7), are β = 0.15 and n = 4. The total demand is assumed to be fixed at 15,000

vehicles per hour. The free flow travel time t0a, capacity Ca, reliability parameter φa and two values

of tolls τ1a and τ2a that we use later are summarised in Table 1. We note that we shall use toll as the

only monetary cost. Further parameters will be specified as necessary in the context of the examples

illustrating specific results.

Table 1: Route characteristics of the three-link network.

Route Type Distance t0a Ca φa τ1a τ2a

a (km) (mins) (veh/hr)

1 Expressway 20 12 4000 0.5 40 20

2 Highway 50 30 5400 0.7 20 40

3 Arterial 40 40 4800 0.9 0 0

3 Multi-objective User Equilibrium

In Sections 2.2 and 2.3, we have seen that equilibrium models considering the minimisation of gen-

eralised cost such as Equation (9) or travel time budget such as in Equation (11) do in fact consider

the minimisation of the weighted sum of several objective functions, namely travel time Tk(F) and

monetary cost Mk(F) in generalised cost user equilibrium (9), and expected travel time E(Tk(F))

and standard deviation of travel time σTk(F) in travel time budget user equilibrium (11). As pointed

out in Section 1, in our previous work (Wang & Ehrgott 2013, Wang et al. 2014) we have shown

that this model assumption of a linear combination of objective functions raises the possibility that
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some routes that are rational choices must necessarily have zero flow in an equilibrium solution. To

overcome this limitation, we have studied bi-objective user equilibrium models regarding (toll) cost

and travel time in Wang & Ehrgott (2013) and expected value and standard deviation of travel time

in Wang et al. (2014), respectively. In this paper, we extend our analysis to multi-objective equilib-

rium models considering expected value and standard deviation of travel time as well as monetary

(toll) cost. In this section, we present general definitions and basic results on multi-objective network

equilibrium models. For ease of notation, we assume one user class. Generalisations to multiple user

classes are straightforward.

First, we repeat the definitions of efficient paths and (weak) multi-objective user equilibrium from

Wang & Ehrgott (2013). In the remainder of this section, let G = (N,A) be a network, Z ⊂ N ×N

be a set of O-D pairs and for all p ∈ Z, let Dp be the demand of O-D pair p. Let C
(i)
k (F), i = 1, . . . , r

be r cost functions of path k and let Ck(F) denote the cost vector of path k. We assume that all cost

functions C
(i)
k (F), i = 1, . . . , r are positive and continuous.

Definition 1 Let F ∈ Ω be a feasible path flow vector.

1. Path k is efficient, if there is no path k′ ∈ Kp such that C
(i)
k′ (F) ≤ C

(i)
k (F) for all i = 1, . . . , r

and C
(j)
k′ (F) < C

(j)
k (F) for at least one j ∈ {1, . . . , r}. If such a path k′ exists then path k′

dominates path k and path cost vector Ck′(F) dominates path cost vector Ck(F).

2. Path k is weakly efficient, if there is no path k′ ∈ Kp such that C
(i)
k′ (F) < C

(i)
k (F) for all

i = 1, . . . , r. If such a path k′ exists then path k′ strictly dominates path k and path cost vector

Ck′(F) strictly dominates path cost vector Ck(F).

Definition 2 Let F∗ ∈ Ω be a feasible path flow vector.

1. Flow vector F
∗ ∈ Ω is a multi-objective equilibrium flow, if whenever Ck(F

∗) dominates

Ck′(F
∗) for k, k′ ∈ Kp for any p ∈ Z then Fk′ = 0.

2. Flow vector F
∗ ∈ Ω is a weak multi-objective equilibrium flow, if whenever Ck(F

∗) strictly

dominates Ck′(F
∗) for k, k′ ∈ Kp for any p ∈ Z then Fk′ = 0.

We present some basic general results concerning multi-objective equilibrium flows.

Proposition 1 A multi-objective equilibrium flow exists.

Proof:Because of the assumption of positive and continuous path cost functions, we know that the

generalised path cost functions

Gk(F) :=
r
∑

i=1

C
(i)
k (F)

are positive and continuous. Hence an equilibrium flow F
∗ with respect to Gk exists. We show that

this equilibrium flow F
∗ is a multi-objective equilibrium flow.
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Assume to the contrary that there is an O-D pair p and two paths k, k′ ∈ Kp with positive flow

such that Ck′(F
∗) dominates Ck(F

∗). Then Gk′(F
∗) < Gk(F

∗), contradicting the fact that F∗ is an

equilibrium flow with respect to Gk. 2

In user equilibrium models, the question of uniqueness of equilibrium flows is important. We shall

see in Example 1 that in multi-objective user equilibrium, even if all path cost functions are strictly

monotone, there are no uniqueness results. We, therefore, proceed to another general result on multi-

objective user equilibrium. It states that equilibrium flows remain (at least weak) equilibrium flows as

the number of objectives increases.

Theorem 1 Let ∅ 6= R ⊂ {1, . . . , r} and let F∗ ∈ Ω be a multi-objective equilibrium flow with

respect to the cost functions C
(i)
k for i ∈ R. Then F

∗ is a weak multi-objective equilibrium flow with

respect to cost functions C
(i)
k , i = 1, . . . r.

Proof:Assume to the contrary that F∗ is not a weak multi-objective equilibrium flow. Then there

exists some OD pair p and two paths k and k′ in Kp with positive flow such that C
(i)
k′ (F

∗) < C
(i)
k (F∗)

for all i = 1, . . . , r. In particular, this implies that C
(i)
k′ (F

∗) < C
(i)
k (F∗) for all i ∈ R. Hence, in

the equilibrium problem considering objectives C
(i)
k for i ∈ R, cost vector Ck(F) strictly dominates

cost vector Ck′(F) and both F ∗
k > 0 and F ∗

k′ > 0, contradicting the property of multi-objective

equilibrium flow for the equilibrium problem considering the objectives in R. 2

Because of the non-uniqueness of multi-objective user equilibrium flows special attention needs

to be paid to ways of computing these flows. Theorem 2 provides a general method of scalarisation to

compute multi-objective equilibrium flows.

Theorem 2 Let s : Rr → R be a strictly monotone and continuous function and let F∗ be an equilib-

rium flow with respect to the path cost function s(Ck(F
∗)). Then F

∗ is a multi-objective equilibrium

flow with respect to path cost functions C
(i)
k (F∗), i = 1, . . . , r.

Proof:Let F∗ be an equilibrium flow with respect to the path cost function s(Ck(F
∗)) and assume

that it is not multi-objective equilibrium flow with respect to path cost functions C
(i)
k (F∗), i =

1, . . . , r. Then there exists some OD pair p and two paths k and k′ in Kp with positive flow such that

Ck′(F
∗) dominates Ck(F

∗). Because s is a strictly decreasing function, this implies s(Ck′(F
∗)) <

s(Ck(F
∗)), contradicting the assumption. 2

In fact, the basic result of Theorem 2 shows that equilibrium models using generalised cost as

in Equation (9), but also the nonlinear model of Larsson et al. (2002) using path cost function (10)

compute bi-objective user equilibria with respect to the path cost functions Tk(F) and Mk(F).

Example 1 In the three-link example of Section 2.4, we will consider single- and multi-objective

equilibrium flows with respect to the three cost functions toll τk := τ1a , expected travel time E(Tk)

and standard deviation of travel time σtk as defined in (15) and (16). All equilibrium flows are

illustrated in Figure 2, which shows Ω represented in R
2 by values of f1 and f2.

10
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Figure 2: Equilibrium flows with one, two and three objectives for τ1 = 40, τ2 = 20, τ3 = 0.
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Figure 3: Equilibrium flows with one, two and three objectives for τ1 = 20, τ2 = 40, τ3 = 0.

The (unique) single-objective equilibrium flows are shown by the blue triangle (toll, UE.Toll),

green square (standard deviation of travel time, UE.SD), and red circle (expected travel time, UE.ET),

respectively. All three combinations of two objectives result in regions of bi-objective user equilibrium

flows, indicated by pale red (BUE.TollET), green (BUE.TollSD) and blue (BUE.ETSD) circles. Finally,

in this particular example, the region of three-objective user equilibrium flows coincides with the bi-

objective toll versus expected travel time user equilibrium flows. Because toll ranks the three routes

in the opposite way of expected travel time, addition of the third objective does not add any further

equilibrium flows. The inclusions stated in Theorem 1 are clearly verified. Notice that the inclusions

postulated may or may not be strict.

In a second example, we change the tolls to τ2a , so that τ1 = 20, τ2 = 40, τ3 = 0. Here, the toll for

the faster but less reliable expressway is lower than the toll for the slower but more reliable highway.

This affects the regions of bi-objective and three-objective user equilibrium flows. In Figure 3, the

three-objective user equilibrium flows form the convex hull of all the bi-objective user equilibrium

regions.
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4 The Time Surplus Maximisation Model

In previous work (Wang & Ehrgott 2013, Wang et al. 2014) we have investigated bi-objective user

equilibrium models considering the path cost functions Tk(F), τk(F), E(Tk(F), and σTk
(F). Specif-

ically, in Wang & Ehrgott (2013), we introduced the time surplus maximisation equilibrium model as

a new model for route choice behaviour in tolled road networks considering the two objective func-

tions travel time C
(1)
k (F) = Tk(f) =

∑

a∈k ta(fa), where ta(fa) is the travel time function (7) and

toll C
(2)
k (F) = Mk(f) = τk =

∑

a∈k τa, with exogenously defined link tolls τa.

For every O-D pair p ∈ Z, users of class m have an indifference function between toll and time,

a function Tmax
pm : R → R that is strictly decreasing, i.e. Tmax

pm (τ1k ) < Tmax
pm (τ2k ) if τ1k > τ2k , where

Tmax
pm (τ) is interpreted as the maximum time they would be willing to spend to travel from the origin

to the destination of O-D pair p if the toll is τ . The strict decreasing property of Tmax
pm takes into

account that users would expect to spend less time in traffic if they need to pay a higher toll.

Time surplus is defined as the time that the user would be willing to spend minus the actual travel

time, i.e. given the indifference curves Tmax
pm for all p ∈ Z and m ∈ M , time surplus for path k ∈ Kp

and user class m is

TSkm(F) := Tmax
pm (τk)− Tk(f) = Tmax

pm

(

∑

a∈k

τa

)

−
∑

a∈k

ta(fa). (19)

Assuming that users choose the path k∗ with maximum time surplus, i.e.

k∗(m) = argmax{TSkm(F) : k ∈ Kp}, (20)

we obtain the time surplus maximisation (bi-objective) user equilibrium (TSmaxBUE) condition by

using ∆pm − TSkm(F) for Ckm(F) in the user equilibrium definition of Equations (1) – (5), where

∆pm is a sufficiently large constant, e.g. ∆pm = maxk∈Kp
Tk(Dp), to ensure positivity of Tkm(F).

Notice that it is natural to assume that Tmax
pm is bounded by maxk∈Kp

Tk(Dp), the longest travel time

if all demand for O-D pair p is on a single path.

In Wang & Ehrgott (2013) we have shown that time surplus maximisation bi-objective user equi-

librium characterises all bi-objective user equilibrium flows with respect to the objectives travel time

and toll, which we state as Theorem 3. Moreover, in Wang & Ehrgott (2013) we show that gener-

alised cost user equilibrium with objective function (9) is a special case of time surplus maximisation

bi-objective user equilibrium. Note that this result also follows from Theorem 2 in Section 3.

Theorem 3 F
∗ is a bi-objective equilibrium flow, with respect to objectives C

(1)
k (F) = Tk(F) and

C
(2)
k (F) = τk if and only if there exist indifference functions Tmax

pm for all p ∈ Z and m ∈ M such

that F∗ is also a TSmaxBUE flow.

In this paper, we are interested in a single-objective user equilibrium model that allows to compute

three objective user equilibrium flows. In Section 5 we proceed to extend the TSmaxBUE concept to

the case of travel time uncertainty using the concept of travel time budget.

13



5 Time Surplus Maximisation under Travel Time Uncertainty

Let us consider how to apply the time surplus concept to model individual route choices with different

views towards travel time reliability.

We first need to introduce variability of travel time in the time surplus function defined in Wang

& Ehrgott (2013) as in (19). Here we apply the concept of travel time budget in Lo et al.’s model.

We define ρ as the desired level of reliability, or equivalently, 1 − ρ as the critical level of risk. ρ

equals the desired percentage of times that an individual can get to the destination within the allotted

travel time. A risk neutral user will have a ρ−value of 50% while a risk averse user might have a

ρ−value of 95%. As in Wang et al. (2014), we assume that users are all either risk neutral or risk

averse, i.e. ρ ∈ [0.5, 1).

Now we define travel time budget surplus as in Equation (21),

TBSkm(F) = Tmax
pm (τk)− T

ρ
km(F), (21)

where

P (Tk ≤ T
ρ
km) = ρ. (22)

For risk neutral users, T
ρ
km will be the median value of the travel time on path k, while for risk

averse users, T
ρ
km will be higher than the median, depending on the level of risk aversion ρ.

Now let us consider a risk neutral user with a convex indifference curve as shown in Figure 4.

The time budget surplus of this user can be determined by comparing the indifference curve with

the median travel time curve. In this case, Route 1 will be the optimal choice for this individual as

this route has the highest time budget surplus. On the other hand, a risk averse user with the same

indifference curve and ρ = 95%, as shown in Figure 5, will consider Route 2 an optimal choice, as

this route provides the least negative time budget surplus.

Similarly, we can consider users with a different attitude towards risk, but with a concave indif-

ference curve as shown in Figures 6 and 7. Again, their choices would be different even though they

have the same indifference curve. A risk neutral user will find Route 1, with the largest positive time

budget surplus, the most attractive, while a risk averse user will choose Route 2 instead as it has the

least negative time budget surplus value.

As discussed in Section 2.3, we know that we can guarantee the travel time reliability stated in

Equation (22), if we set T
ρ
km equal to the time budget E(Tk)+λmσTk

, as presented in Equations (17)

and (18). Therefore, to model user equilibrium considering toll, travel time, and travel time reliability

we propose a user equilibrium model considering the path benefit function

TBSkm(F) = Tmax
pm (τk)− E(Tk)− λmσTk

. (23)

Notice that Equation (23) is obtained from Equation (21) using the time budget formula of Equa-

tion (11). We consider multiple user classes m ∈ M , where each user class m has its specific indif-

ference curve Tmax
pm (τk) and attitude towards risk, quantified in parameter ρm and the corresponding

14
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value λm. Hence, our multi-user class equilibrium model incorporating users’ trade-offs between

travel time and toll as well as attitude towards risk (measured by standard deviation of travel time) is

based on the class-specific path benefit function (23), which is turned into a cost function by subtract-

ing it from a sufficiently large constant such as ∆pm as in Section 4, but considering the least capacity

ρaCa in its definition. We call this model the Time Budget Surplus Maximisation (Three-Objective)

User Equilibrium (TBSmaxTUE) model. We call a feasible flow vector F∗ ∈ Ω that satisfies the

(multi-user) class equilibrium conditions with path cost function ∆pm − TBSkm(F) a TBSmaxTUE

flow. The name is justified by Theorems 4 and 5 below, which show that a TSBmaxTUE equilibrium

flow is indeed a three-objective use equilibrium flow with respect to the three constituent objectives.

Replicating the result of Theorem 3 we can immediately state the equivalence between time budget

surplus user equilibrium and bi-objective user equilibrium considering path cost functions τk (toll) and

Bkm (travel time budget).

Theorem 4 Path flow vector F
∗ ∈ Ω is a bi-objective equilibrium flow with respect to objectives

C
(1)
km(F) = Bkm(F) and C

(2)
km(F) = τk if and only if there exist indifference functions Tmax

pm such that

F
∗ is also a TBSmaxTUE flow.

We will further link travel time budget surplus equilibrium with the general framework of multi-

objective user equilibrium discussed in Section 3. That is, we consider in particular three-objective

user equilibrium with cost functions toll, expected travel time, and standard deviation of travel time.

Theorem 5 Let F∗ ∈ Ω be a bi-objective equilibrium flow with respect to path cost functions C
(1)
km(F)

= E(Tk(F)) + λmσTk(F) and C
(2)
km(F) = τk. Then F

∗ is also a three-objective user equilibrium flow

with respect to toll, expected travel time, and standard deviation of travel time.

Proof:Assuming the contrary, there would be an OD pair p, a user class m and two paths k, k′ ∈ Kp

with positive flow such that

E(Tk) ≤ E(Tk′),

σTk
≤ σT ′

k
.

τk ≤ τk′

with at least one of the inequalities being strict. If the strict inequality occurs in the expected travel

time or standard deviation component, then we have E(Tk) + λσTk
< E(Tk′) + λσTk′

(notice that

λ > 0). Together with τk ≤ τk′ , the cost vector of path k dominates the cost vector of path k′ when

considering toll and time budget, contradicting the property of multi-objective equilibrium flow of F∗

with respect to time budget and toll.

The case of strict inequality with toll is completely analogous. 2

Example 2 Once again, we illustrate the results of Theorems 4 and 5 using the three-link example

of Section 2.4. Here we consider only a single user class and ρ = 0.9. Figures 8 and 9 show the
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Figure 8: Equilibrium flows for toll versus travel time budget and three objectives, τ1 = 40, τ2 =

20, τ3 = 0.

region of three-objective user equilibrium (grey, TUE) and bi-objective user equilibrium for toll versus

travel time budget (pale red, BUE.TollTTB) for the cases of toll as in Table 1 (Figure 8) and for

τ1 = 20, τ2 = 40, τ3 = 0 (Figure 9), see also Example 1.

Figures 8 and 9 clearly show that for fixed ρ and indifference curve, the bi-objective equilibrium

flows are (proper) subsets of three-objective equilibrium flows. The reverse, whether for any three-

objective user equilibrium flow F
∗ there exists an indifference curve and ρ such that F∗ is a bi-

objective user equilibrium with cost functions toll and travel time budget, remains an open question

for now.

5.1 An NCP Formulation of the Time Budget Surplus Maximisation Model

Recall that the time budget surplus function TBSkm(F) defined in Equation (23) is strictly increasing,

continuous and positive. Therefore, an equilibrium flow with respect to TBSkm(F) can be computed

by minimising a gap function related to the nonlinear complementarity formulation associated with

the equilibrium problem. We use the function Φ(a, b) =
√
a2 + b2− (a+ b) that was also used by Lo

& Chen (2000). Let
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Figure 9: Equilibrium flows for toll versus travel time budget and three objectives, τ1 = 20, τ2 =

40, τ3 = 0.
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• user class m be defined by a specific indifference curve Tmax
pm and risk attitude ρm;

• Dpm be the demand for OD pair p and user class m;

• fkpm be the flow of user class m on path k for OD pair p;

• πpm be a variable for the minimal path cost of user class m for OD pair p; and

• ηkpm := ∆km − TBSkm be the “cost” of path k ∈ Kp for user class m, where ∆km is a

sufficiently large number.

Then the gap function G(F) defined by Φ is

G(F) :=
∑

m∈M

∑

p∈Z

∑

k∈Kp

1

2
Φ2 (fkpm, ηkpm − πpm) +

∑

m∈M

∑

p∈Z

1

2
Φ2



πpm,
∑

k∈Kp

−Dpm



 (24)

and it holds that F is an equilibrium flow if and only if G(F) = 0. The variables in the NCP model

are the path flows for each OD pair, path, and user class as well as the minimum path costs for each

OD pair and user class.

To summarise our results, we have suggested a three-objective user equilibrium model as a gen-

eral framework to model the influence of the three most important factors influencing route choice

behaviour in tolled road networks, namely expected travel time, travel time reliability, and monetary

cost. Because such a multi-objective equilibrium model has in general infinitely many equilibrium

flows, we have proposed a time surplus maximisation model under uncertainty to operationalise the

concept, i.e. to compute three objective user equilibrium solutions. This model combines the time-

surplus maximisation equilibrium for route choice modelling in tolled road networks (Wang & Ehrgott

2013) with the time budget concept to model travel time reliability (Lo et al. 2006).

6 Numerical Example

In this section, we apply the travel time budget surplus maximisation model to the three-link example

of Section 2.4. Since there is only one OD pair, we omit the index p hereafter. We consider six

user classes altogether. They are characterised by three indifference curves Tmax
1 , Tmax

2 and Tmax
3

as shown in Table 2. For each indifference curve, we have two user classes, one representing risk

neutral users with ρm = 0.50, and another representing risk averse users with ρm = 0.95. The tolls

are as specified for τ1a in Table 1 and routes are identified by their toll in figures below. The problem

has been solved in MATLAB using the NCP formulation described in Section 5.1. The tolls are as

specified for τ1a in Table 1 and routes are identified by their toll in figures.

6.1 Equilibrium Flows

The equilibrium flows for the six different user classes are shown in Figure 10. All risk neutral users

will travel on the toll-free route. For risk averse users, those with lower maximum time willing to
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Table 2: Maximum time willing to spend.

Route Indifference curve

k Tmax
1 Tmax

2 Tmax
3

1 12.5 17.5 22.5

2 32.5 37.5 42.5

3 65.0 75.0 85.0

spend (indifference curves Tmax
1 and Tmax

2 ) will choose to pay, while all risk averse users with the

highest maximum time willing to spend (indifference curve Tmax
3 ) will travel on the toll-free route.

This is consistent with our expectations that it would be those who are risk averse and more willing to

pay who would travel on the tolled (and more reliable) routes.

6.2 TBSmaxTUE Conditions

To check that the TBSmaxBUE conditions are satisfied, the time budget surplus values for all six user

classes are compared at equilibrium flows. For risk neutral users, Figure 11 shows that the toll-free

route has the highest time budget surplus for users with all three indifference curves and thus is the

only route with positive flow. For risk averse users, on the other hand, Figure 12 shows that the tolled

routes for users with indifference curves Tmax
1 and Tmax

2 have the least negative time budget surplus

and thus have positive flows. The toll-free route has the highest positive time budget surplus for users

with indifference curve Tmax
3 and thus is the only route with positive flow. Note that as expected the

time budgets for risk averse users are higher than those for the risk neutral ones.

7 Conclusion and Outlook

In this paper, we propose a novel approach to incorporate the consideration of the three most important

factors influencing route choice behaviour in a road network, namely, travel time, travel time reliability

and monetary cost. Our proposed model is based on the concept of three-objective user equilibrium,

assuming that all users aim to (1) minimise expected travel time; (2) minimise travel time variability;

and (3) minimise toll (monetary cost).

We further develop the TSmaxBUE model introduced in Wang & Ehrgott (2013), where we in-

troduced the concept of time surplus maximisation to model user preferences in a general form rather

than using a VOT value. We assume that for any given OD pair and a specific toll value, there is a

limit on the time that an individual would be willing to spend (forming an indifference curve between

toll and time for the individual). Each individual can have his/her own preference represented by this

indifference curve between toll and time. Time surplus is defined as the time that an individual is

willing to spend minus the actual travel time. Given a set of routes, the one with the highest (or least
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Figure 10: Equilibrium flows.
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Figure 11: Time budget surplus of risk neutral users.
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negative) time surplus will be the preferred route for the individual.

We then incorporate the concept of travel time budget (Lo et al. 2006) into the time surplus max-

imisation concept. For a given toll, a user will have two limits, one on the maximum travel time a

user is willing to spend, and one on the minimum level of travel time reliability. Here, travel time

reliability is defined as the probability of arriving at the destination within the allocated travel time

budget. Based on the desired level of reliability, one can determine the travel time budget required

on a particular route that will satisfy this level of reliability. Whether this route is attractive or not to

an individual would depend on how much this required travel time budget differs from the maximum

time the user is willing to spend given a particular toll. We define time budget surplus as the maximum

time a user is willing to spend minus the travel time budget required for a desired level of travel time

reliability, which is effectively a measure of the level of attractiveness. The route with the highest (or

least negative) time budget surplus would be the most attractive option. We assume that each indi-

vidual can be characterised by (1) an indifference curve between toll and maximum time willing to

spend; and (2) the desired minimum level of reliability. In this way, we can determine the choice of

each individual based on his/her own preference, modelled by the two characteristics. This becomes

our proposed TBSmaxTUE model.

This concept can also be applied in a toll-free road network. As mentioned earlier, Abdel-Aty

et al. (1995) identified that the third important factor affecting route choice is distance, which can be

considered as a proxy variable of vehicle operating cost. One would expect that users will not choose

a longer route unless the travel time on this route is expected to be shorter or the travel time reliability

is higher. By replacing toll with distance, we can characterise each individual with (1) an indifference

curve between distance and maximum time willing to spend for the desired travel time reliability; and

(2) the desired minimum level of reliability.

We can further represent user groups by identifying a set of toll-time or distance-time indifference

curves and their desired minimum level of reliability within each group represented by each curve.

Each user class is identified by the combination of the two characteristics. We can then deduce the

time budget surplus maximisation user equilibrium condition, whereby all individuals are travelling

on the route with the highest time budget surplus value among all the efficient routes (based on the

trade off between toll and time or distance and time) between each O-D pair.

Further research topics include consideration of elastic demand and other factors that might have

strong influence on route choice behaviour. For example, users might not see the use of credits in

emission trading schemes as a monetary cost. It is worthwhile to look into the possibility of modelling

the effect of credits not as part of a multi-objective path cost function.
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