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The multi-scale turnover Lagrangian map (MTLM) [C. Rosales and C. Meneveau, “Anomalous scaling

and intermittency in three-dimensional synthetic turbulence,” Phys. Rev. E 78, 016313 (2008)] uses

nested multi-scale Lagrangian advection of fluid particles to distort a Gaussian velocity field and, as a

result, generate non-Gaussian synthetic velocity fields. Passive scalar fields can be generated with the

procedure when the fluid particles carry a scalar property [C. Rosales, “Synthetic three-dimensional

turbulent passive scalar fields via the minimal Lagrangian map,” Phys. Fluids 23, 075106 (2011)].

The synthetic fields have been shown to possess highly realistic statistics characterizing small scale

intermittency, geometrical structures, and vortex dynamics. In this paper, we present a study of the

synthetic fields using the filtering approach. This approach, which has not been pursued so far, provides

insights on the potential applications of the synthetic fields in large eddy simulations and subgrid-

scale (SGS) modelling. The MTLM method is first generalized to model scalar fields produced by an

imposed linear mean profile. We then calculate the subgrid-scale stress, SGS scalar flux, SGS scalar

variance, as well as related quantities from the synthetic fields. Comparison with direct numerical

simulations (DNSs) shows that the synthetic fields reproduce the probability distributions of the SGS

energy and scalar dissipation rather well. Related geometrical statistics also display close agreement

with DNS results. The synthetic fields slightly under-estimate the mean SGS energy dissipation and

slightly over-predict the mean SGS scalar variance dissipation. In general, the synthetic fields tend

to slightly under-estimate the probability of large fluctuations for most quantities we have examined.

Small scale anisotropy in the scalar field originated from the imposed mean gradient is captured.

The sensitivity of the synthetic fields on the input spectra is assessed by using truncated spectra or

model spectra as the input. Analyses show that most of the SGS statistics agree well with those from

MTLM fields with DNS spectra as the input. For the mean SGS energy dissipation, some significant

deviation is observed. However, it is shown that the deviation can be parametrized by the input energy

spectrum, which demonstrates the robustness of the MTLM procedure. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4979719]

I. INTRODUCTION

The transport and mixing of passive scalars by turbu-

lent flows are phenomena of both practical and fundamen-

tal interests due to its wide applications.17,18,36 The sub-

ject has attracted continuous interests; to name a few, we

note recent efforts that have led to new insights into its

scaling properties,37 its role in cloud formation,38 and its

modelling.12 One approach to understand and model the mech-

anisms of turbulent mixing is to use synthetic turbulence

models.5,6,9,10,19,20,22–26 Synthetic turbulence refers to stochas-

tic fields that have characteristics of real hydrodynamic tur-

bulent flows. This methodology aims to construct the field

variables (such as velocity and scalar fields) by simpler pro-

cesses, while reproducing the remarkable characteristics of

turbulent fields. Synthetic fields can be generated with lit-

tle computational cost. Yet, various synthetic models, with

a)Author to whom correspondence should be addressed. Electronic mail:
yili@sheffield.ac.uk.

different levels of sophistication, have found a wide range of

applications.

Many models have been proposed with the applications

in large eddy simulations (LES) in mind. In LES, artificial

field data are usually needed to initialize the calculation and/or

provide the inflow boundary condition. Synthetic turbulence

is one of the main methods used to meet this need.7–11,47,48

These models have found wide applications in conjunction

with LES. Nevertheless, the main aim of these methods has

been matching the mean velocity profiles, the second order

moments, and the integral length scales. No significant effort

has been devoted to modelling the nonlinear interactions in

real turbulence in an efficient way, even though the latter

has been identified as an important factor to make further

improvement.48 In one of the most popular methods, the syn-

thetic eddy method (SEM), the synthetic field is composed of

localized velocity fluctuations (the eddies). Arguably, the non-

linear interaction could be captured to some extent, since the

eddies are allowed to evolve over a short time. Nevertheless, no

systematic research has been reported on this aspect of the

1070-6631/2017/29(4)/045103/15/$30.00 29, 045103-1 Published by AIP Publishing.
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method, and results shown in Ref. 7 suggest that key nonlinear

features of real turbulence are missing in SEM fields. Finally,

it is worth noting that, apart from the above applications, syn-

thetic models have also been used directly as a subgrid-scale

(SGS) model in some simulations (see, e.g., Refs. 39 and 40

and references therein).

Other synthetic models have been proposed as a vehicle

to study the fundamental mechanisms of real turbulence. For

instance, particle dispersion has been studied by means of kine-

matic simulations,6,41,42 and multi-fractal models5,19–21,49,50

have been proposed to understand some aspects of real tur-

bulence, in particular small scale intermittency. However,

going beyond Gaussian models, it has proven no easy task

to synthetic three-dimensional (3D) velocity fields with real-

istic statistical and structural characteristics of turbulence. A

new procedure based on the multi-scale turnover Lagrangian

map (MTLM) is proposed in Refs. 1 and 2. The MTLM

procedure builds a velocity field by distorting an initially ran-

dom field via a non-linear map over a hierarchy of spatial

scales. Results show that the procedure allows both the sta-

tistical and the structural properties of the velocity field as

well as the pressure field in real turbulence to be faithfully

reproduced.1,2,44

The MTLM procedure has been generalized to turbulent

mixing14 in the convective-inertial regime,4,18,43 in which the

fluid particles carry a passive scalar. The mapping thus also

distorts the scalar field recursively in a multi-scale fashion.

Results show that the MTLM procedure allows the synthetic

velocity field to establish the coherence among the particles

transporting the scalar, leading to correct level of decorrelation

over separation.14 Numerical results show that the synthetic

scalar fields have stronger intermittency in the dissipative and

inertial ranges than its advecting velocity field, as is observed

in real turbulent fields. Quantitative agreement was found for

high-order statistics, the scaling exponents for structure func-

tions, and the characteristics of the dissipation fields. Finally,

the spatial structures of the scalar field are also close to exper-

imental results. As a result, the statistical geometry at dis-

sipative scales that results from the conjunction of velocity

and scalar gradients behaves in agreement with a real scalar

turbulence.14

The MTLM method has been used to investigate the clo-

sure for the pressure Hessian in the Lagrangian models for

the velocity gradient,44 to synthesize magnetic fields,45 and

to study particle clustering.46 Applications to inhomogeneous

turbulence have also been explored.3,13 What is missing is the

perspective of subgrid-scale (SGS) modelling. Such a perspec-

tive is crucial given the potential applications of the MTLM

fields in LES, either as SGS models or as initial/boundary

conditions, in particular in the LES of particle dispersion in

atmospheric boundary layer, particulate flows, and combus-

tion. Thus, we present in this paper an a priori analysis of the

filtered synthetic MTLM velocity and scalar fields, and the

corresponding SGS stresses and SGS scalar fluxes. Specifi-

cally, we have three objectives. First, to model a more realistic

scalar field, we generalize the MTLM to the mixing of a pas-

sive scalar with a linear mean profile, following the suggestion

in Ref. 14. Second, we examine the statistics related to the

SGS stresses, the SGS scalar flux, and related quantities. We

aim to find out if the synthetic fields are able to capture the

SGS energy and scalar dissipation correctly and if they are able

to capture the geometrical statistics of the SGS motions. We

also examine if the synthetic scalar field captures the effects

of the mean scalar profile, as documented in direct numeri-

cal simulation (DNS) studies, e.g., Ref. 15. Third, we note

that the MTLM procedure requires the energy spectrum (and,

for MTLM with scalar advection, the scalar spectrum) as part

of the input. A question is how the synthetic fields depend

on the input spectra. We thus also perform the analysis of

MTLM fields obtained using modified spectra. The results of

the above three objectives provide useful insights to the ability

and robustness of the MTLM fields to model the SGS stress

and flux, and other SGS processes.

In Section II, we explain briefly the advection of a pas-

sive scalar by turbulent velocity fields. The proposed MTLM

procedure is described in detail in Section III. Section IV

reviews the key concepts in LES and SGS modelling. In

Section V, we consider the statistics of the filtered MTLM

scalar and velocity fields, and those of the SGS stresses and

fluxes, where the geometric alignment statistics of real and

modelled stress tensors are also examined. The effects of mod-

ified spectra are also presented in Section V. Conclusions are

summarized in Section VI.

II. THE ADVECTION OF A PASSIVE SCALAR

The mixing of a passive scalarΘ is governed by the linear

advection-diffusion equation,

∂tΘ + (u · ∇)Θ = κ∇2
Θ + S(x, t). (1)

In the above equation, the passive scalar Θ is mixed by a

turbulent velocity field u(x, t), in the presence of a constant

molecular diffusivity κ, and a source term S(x, t).Θ could rep-

resent, e.g., the temperature perturbation in a flow field where

the buoyancy force can be neglected.

The velocity field u is governed by the forced Navier-

Stokes (NS) equation,

∂tu + u · ∇u = −∇p + ν∇2u + f, (2)

and the continuity equation,

∇ · u = 0. (3)

In Eq. (2), p is the pressure field, ν is the kinematic viscosity,

and f is the external forcing term. ρ = 1 has been assumed.

The scalar field is advected by the velocity field, which

squeezes and stretches the former. As a consequence, the

characteristic length scale of a parcel of the scalar decreases

and a scalar variance cascade is generated, accompanying the

turbulent kinetic energy cascade. In the inertial range of homo-

geneous turbulence, the energy spectrum E(k) is, according to

the Kolmogorov phenomenology,

E(k) = CK 〈ǫ〉
2/3k−5/3, (4)

where k ≡ |k| is the magnitude of the wavenumber k and CK

is the Kolmogorov constant. The scalar cascade at a particular

length scale is governed by the relevant straining time scale of

the velocity field. Depending on the Schmidt number Sc = ν/κ,

three regimes can be identified.4,43 We consider only the case
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where Sc ∼ 1. In this so-called inertial-convective regime, the

dominant straining time scale for the scalar field is the local

eddy turnover time scale, and the spectrum of scalar variance

Eθ (k) is given by

Eθ (k) = COC〈ǫ〉
−1/3〈ǫθ〉k

−5/3, (5)

where 〈ǫθ〉= κ〈|∇θ |
2〉 is the mean dissipation of scalar vari-

ance and COC is the Obukhov-Corrsin constant.

Scalar fluctuations have to be maintained by a source

S(x, t). In this paper, we consider fluctuations generated by

a linear mean variation with respect to space. Thus, we may

write

Θ(x, t) = G · x + θ(x, t), (6)

where θ(x, t) is the scalar fluctuation and G indicates the

imposed uniform mean scalar gradient. As a result, the

equation for θ is given by

∂tθ + (u · ∇)θ = κ∇2θ −G · u(x, t). (7)

III. THE MULTI-SCALE TURNOVER LAGRANGIAN
MAP FOR ADVECTED SCALAR WITH LINEAR
MEAN PROFILE

The multi-scale turnover Lagrangian map (MTLM) model

for synthetic turbulence is motivated by the fact that the non-

linear advection term in the NS equation is the key factor that

generates the non-Gaussian statistics in real turbulence. The

effects of this term is thus isolated and modelled as an advec-

tion map. The map is then applied to an initially Gaussian field

in a multi-scale fashion to model the multi-scale interactions

in real turbulence.

Keeping only the non-linear advection term, the NS

equation becomes the Riemann equation,

∂tu + (u · ∇)u = 0, (8)

which describes the evolution of non-interacting fluid par-

ticles. Equation (8) is an approximation for high Reynolds

number flows for rarefied gas.1 The solution of the equation is

u(X(t), t) = u(y), (9)

where X(t) is the position of a fluid particle initially at point y

and is given by

X(t) = y + tu(y), (10)

where u(y) is the initial velocity field.

The solution can be concisely written in terms of an inte-

gral operator. We will call it the advection operator and denote

it by Au,

ut(x) = Auu =

∫
W (x − y − tu(y))u(y)d3y, (11)

where we have used ut(x) to denote the velocity at loca-

tion x and time t. W (x) is a weighting function, and the

solution given by Eqs. (9) and (10) is obtained by choosing

W (x) as the Dirac-δ function δ(x). In the numerical imple-

mentation, however, a smooth W (x) is used to approximate

the Dirac-δ function. We will regard t as a parameter of the

operator.

As having been emphasized before,1,2,51 the advec-

tion operator is highly non-linear. The operator produces a

non-Gaussian field as the output when it is applied to a

Gaussian, structureless field.

For the scalar field, if we focus on the fluctuations over a

length scale which is much larger than the Kolmogorov length

scale (such as in high Reynolds number flows), the effects

of molecular diffusion are negligible. The advection-diffusion

equation thus becomes

∂tθ + (u · ∇)θ = −G · u(x, t). (12)

The equation can be formally integrated by using Lagrangian

coordinates, which gives

θ(X(t), t) = θ(x, 0) −G ·

∫ t

0

u(X(t ′), t ′)dt ′. (13)

With the approximation to the velocity field given by Eq. (9),

the solution for θ becomes

θ(X(t), t) = θ(y) − tG · u(y). (14)

In other words, u has been frozen at its value at t = 0. The

solution can be represented by an integral operator As as

follows:

θt(x) = Asθ =

∫
W (x − y − tu(y))

(θ(y) − tG · u(y))d3y, (15)

where we have used θt(x) to represent the scalar fluctuation

field at x and time t. The operator As is the advection operator

for the scalar field. Its expression is a new contribution of this

article.

In the MTLM method, the above advection operators are

applied to Gaussian random fields in a nested multi-scale fash-

ion to produce the non-Gaussian synthetic turbulence fields.

We now briefly explain the procedure and the related notations.

For more information, see Refs. 14 and 3.

To begin with, we note that the MTLM procedure includes

a rescaling operation that maintains the energy and scalar

spectra of the fields. These spectra have to be given as part

of the input, which will be denoted by Eu
p (k) and Es

p(k),

for energy and scalar variance spectra, respectively. We then

define a hierarchy of M decreasing length scales ℓn = 2−nℓ0
(n = 1, 2, . . . , M), where ℓ0 is a reference length at the order of

the turbulent integral length scale of the velocity field, which is

assumed to be the same as that of the scalar field. The number

M is selected in such a way that ℓM ∼ η where η is the Kol-

mogorov length scale. For Sc ∼ 1, ℓM is sufficient to describe

the dissipative scales for both the kinetic energy and the scalar

variance.

For each length scale ℓn, we use operator Gn,

Gnu(x) =

∫
G(x − y)u(y)d3y, (16)

to denote the cutoff filter with length scale ℓn. We use Gn to

extract the low wavenumber parts of the velocity and the scalar

fields, Gnu and Gnθ. The advection operators Au and As are

applied to Gnu and Gnθ, whereas the high wavenumber parts

are saved aside. As we have seen above, the operators contain

time t as a parameter. This parameter is chosen based on the

physics at the given length scale, as follows. At scale ℓn, the

local eddy turnover time is

τn = ℓ
2/3
n /〈ǫ〉

1/3. (17)
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On the other hand, the advection time scale is

tn = ℓn/u
′
n (18)

with

u′n =

(
2

3

∫ kc,n

0

Eu
p (k)dk

)1/2

, (19)

where kc,n ≡ π/ℓn is the cutoff wavenumber corresponding to

ℓn. In other words, u′n is the root-mean-square (RMS) velocity

of the filtered velocity field. tn is chosen as the time parameter

for the advection maps. As is argued in Refs. 1 and 2, tn is the

time scale needed for a fluid particle to travel over the local

length scale ℓn, and it is only over this time period that the

interactions of the particles can be reasonably neglected, as

implied in the advection maps.

On the other hand, energy cascade occurs over the eddy

turnover time scale τn. Therefore, in order to capture the effects

of energy cascade, it is necessary to iterate the advection

maps mn times, where mn = τn/tn, to ensure eddies are suf-

ficiently broken down. As a consequence, the effects of inter-

action between the fluid particles can no longer be completely

ignored. The MTLM model thus imposes incompressibility

between successive applications of the advection operators,

by projecting the Fourier modes of the velocity fields onto the

divergence-free subspace. This projection captures the first

and most important effect of the interaction between fluid

particles.

We introduce the projection operator

Pû(k) = [I − k̂ ⊗ k̂]û(k), (20)

where û(k) is a Fourier mode of u(x), k̂ = k/|k|, and I is the

identity matrix. Then, the operator applied to the filtered veloc-

ity field at scale ℓn is (PAu
n)mn and that to the filtered scalar

field is (As
n)mn , where we have used subscript n to emphasize

the fact that the operators are defined using time scale tn.

Finally, to maintain the prescribed spectra, the resulted

velocity and scalar fields are rescaled. We introduce the rescal-

ing operators Ru
n for the velocity field and Rs

n for the scalar

field, which are defined by

Ru
nû(k) =

(
Eu

p (k)

Eu(k)

)1/2

û(k) (21)

and

Rs
n θ̂(k) =

(
Es

p(k)

Es(k)

)1/2

θ̂(k). (22)

Eu(k) and Es(k) are the energy and scalar spectra of the syn-

thetic fields at k = |k|, respectively. Eu
p and Es

p are the prescribed

spectra, as we have mentioned above.

Note that the above operators have been applied to the

low-pass filtered fields Gnu and Gnθ. The resulted velocity and

scalar fields are then merged with the high wavenumber com-

ponents to form the full fields, which are then filtered withGn+1

at the next length scale ℓn+1 and subject to similar operations

again. The procedure starts from n = 1 and is iterated until

n = M. After M iterations, the final velocity field is given by

ue =Muu, (23)

where

Mu
=

M∏

n=1

[Ru
n(PAu

n)mnGn + Gc
n]P (24)

and Gc
n = 1 − Gn. The final scalar field is given by

θe =Msθ, (25)

with

Ms
=

M∏

n=1

[Rs
n(As

n)mnGn + Gc
n]. (26)

Mu and Ms are the MTLM maps for the velocity and scalar

fields, respectively.

IV. ANALYSIS OF SUBGRID-SCALE PROCESSES

In LES, the relevant field variables are decomposed into

large- and small-scale components. This decomposition is

achieved by applying spatial filtering to the field variables.

Then the large scales of the flow are explicitly computed from

the filtered NS equation, while the effect of the unresolved

or subgrid scales is modelled.4,35,52 Applying the filtering

procedure to the NS equation leads to the filtered NS equation,

∂t ũi + ũj∂jũi = −∂ip̃ + ν∇2ũi − ∂jτij + f̃i, (27)

with

∇ · ũ = 0. (28)

In the above equation, tilde denotes low-pass filtering, and ũi

is the ith component of the filtered velocity vector, defined as

ũi(x) =

∫
G∆(x − y)ui(y)dy, (29)

with G∆ being the filter with length scale ∆.

The effect of the subgrid scales on the resolved scales is

contained in the SGS stress tensor τij ≡ ũiuj − ũiũj. τij repre-

sents the effects of the small scales and has to be modelled.

Many models have been proposed, which have been reviewed

in Refs. 35, 52, and 4. Usually τij is calculated explicitly as

a function of certain resolved variables, such as the resolved

vorticity vector ω̃i = εijk∂jũk , the resolved strain-rate tensor

S̃ij = (∂iũj + ∂jũi)/2, or the test-filtered resolved velocity field

as in the so-called dynamical models. Some of the parame-

ters may have to be found from additional transport equations.

This methodology includes the eddy-viscosity-type models,

similarity models, among others, with or without using the

dynamic procedure. In another approach, the SGS velocity

field is reconstructed by explicit estimation or approximate

de-convolution (see, e.g., Ref. 54 and more recently Ref. 55).

From this reconstructed velocity field, one may calculate the

approximate τij, although its expression is not derived explic-

itly. The MTLM method potentially provides a new method to

reconstruct the SGS velocity and scalar fields. In either case,

it is important to examine the relations between the resolved

quantities and the SGS stress, in order to either develop or

validate the SGS models.

The SGS energy dissipation is defined as

Π ≡ −τijS̃ij. (30)

The SGS energy dissipation describes the rate of kinetic energy

being transferred from the resolved to the SGS motions and

is the most important parameter that characterizes the effects

of τij.
4,27,35,52 The behavior of Π is correlated with the rela-

tive alignment between the eigenframes of SGS stress tensor
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τij and filtered strain-rate tensor S̃ij. To see this more clearly,

we denote the eigenvalues of −τij, in decreasing order, as α−τ
≥ β−τ ≥ γ−τ , and the corresponding eigenvectors α−τ , β−τ ,

and γ−τ . The eigenvalues of S̃ij are denoted by αs ≥ βs ≥ γs,

which are referred to as the extensive, intermediate, and con-

tracting eigenvalues, respectively. The corresponding eigen-

vectors are denoted by αs, βs, and γs. With these definitions,

the SGS kinetic energy dissipation can be written as

Π = α−ταs(α−τ , αs)
2 + α−τ βs(α−τ , βs)

2

+ α−τγs(α−τ ,γs)
2 + β−ταs(β−τ , αs)

2

+ β−τ βs(β−τ , βs)
2 + β−τγs(β−τ ,γs)

2

+ γ−ταs(γ−τ , αs)
2 + γ−τ βs(γ−τ , βs)

2

+ γ−τγs(γ−τ ,γs)
2, (31)

where (α−τ , αs) is the cosine of the angle between the vectors

α−τ andαs, and similarly for others. The expression shows that

the relative alignment between the eigenvectors is an important

factor controlling the magnitude of Π.

For the passive scalar, we may also write down the filtered

scalar transport equation

∂t θ̃ + ũi∂i θ̃ = κ∇
2 θ̃ − ∂iτ

θ
i −G · ũ, (32)

where θ̃ is the filtered fluctuation of passive scalar θ defined

in a way similar to ũi. The SGS scalar flux, τθ
i

, is defined as

τθi = ũiθ − ũi θ̃. (33)

Π
θ will be used to denote the SGS scalar variance dissipation

that characterizes the effects of τθ
i

. The definition of Πθ is

Π
θ
= −τθi ∂i θ̃. (34)

Similar to the SGS energy dissipationΠ,Πθ plays a central role

in the SGS modelling of the SGS flux vector τθ
i

. Its definition

also shows the importance of the relative orientation between

τθ
i

and the gradient of the filtered scalar fluctuation.

In many applications, the SGS stresses τij and the SGS

fluxes τθ
i

are the only quantities needed to be modelled. How-

ever, in some other applications, notably the LES of turbulent

reactive flows,56,57 it is also necessary to model the SGS scalar

variance Z3 defined as

Z3 ≡ θ̃ θ − θ̃ θ̃, (35)

and the filtered (molecular) scalar dissipation

ǫ̃θ ≡ 2κ[J∂iθ∂iθ − ∂i θ̃∂i θ̃ ]. (36)

These two quantities are important because they are the key

parameters needed to model the chemical reaction rates of the

species in a turbulent reactive flow, and the latter are crucial

for the LES of such flows (for recent discussions, see, e.g.,

Refs. 58–61). We will examine the statistics of Z3 in what

follows. On the other hand, the statistics of ǫ̃θ can be inferred

from those of ∂iθ, thus will not be discussed in detail.

The quantities listed above (τij, τ
θ
i

, Π, Πθ , Z3 , and related

quantities) provide a comprehensive description of the SGS

processes and their interactions with the resolved ones. Once

an MTLM field has been constructed, these quantities can all

be calculated. We will calculate the statistics of these quan-

tities and examine the results against DNS data. In doing so,

we show that the synthetic MTLM fields capture the inter-

scale interactions with good accuracy, hence potentially can

be useful in SGS modelling.

V. RESULTS AND ANALYSIS

A. Parameters for the DNS and MTLM data sets

We will compare the statistics calculated from the MTLM

fields with those calculated from DNS. To obtain the DNS

dataset, the incompressible Navier-Stokes equation (Eq. (2))

along with the advection-diffusion equations (Eq. (7)) are

solved by a pseudo-spectral method. The computation box is

a [0, 2π]3 cubic box with periodic boundary conditions for the

velocity and for the fluctuating part of the scalar θ in three

directions. The spatial resolution is 2563. Full dealiasing is

achieved through truncation according to the 2/3 rule. Energy

is injected into the velocity field at a constant rate 〈ǫ〉 = 0.1

by the forcing term, which is non-zero only for Fourier modes

with wavenumber |k | ≤ 2. Statistical stationary of scalar fluc-

tuations is achieved by the mean gradient through the source

term −G · u where G = −ey has been chosen. In other words,

the mean scalar gradient is in the negative y-direction.

Our study has been limited to the inertial-convective

regime (Sc = 1). The viscosity is ν = 0.003, which is the same

as the diffusivity κ. Therefore, we have kmaxη ≈ 2.9 where η

is the Kolmogorov length scale. The simulation is thus very

well resolved. Computation shows that urms = 0.7 in the steady

state, hence the Taylor Reynolds number Reλ ≈ 109.

We use the MTLM method to generate samples of the

synthetic field on a periodic cubic domain [0, 2π]3 which, in

most cases, is discretized with 2563 grid points. The 3D energy

and scalar variance spectra, Eu
p (k) and Es

p(k), are taken from

DNS data and are used as the input parameters. The spectra

are shown in Fig. 1. Note that, due to the limit of resolution,

no clearly visible inertial range is observed. Fifty synthetic

fields are generated and in most cases the statistics presented

are averaged over these 50 fields; some are calculated with

a subset of the samples. The number of iteration levels M is

FIG. 1. Spectra for the DNS fields. Blue squares: the energy spectra Ep(k).

Red circles: the scalar variance spectra E
p

θ
(k). Green dashed line: the Kol-

mogorov �5/3 spectrum. The two vertical dashed-dotted lines indicate filter

scales ∆ = 8δx and ∆ = 16δx .
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chosen as 6. For more discussion of how to choose M see

Ref. 14.

In what follows, we will use the Gaussian filter.4 Unless

stated otherwise, the filter scale ∆ is always chosen as ∆= 8δx,

which gives approximately ∆≈ 9η. We have checked that the

results for ∆= 16δx ≈ 18η are qualitatively the same, although

occasionally we also plot the results for ∆= 16δx as a com-

parison. The two filter scales are indicated in Fig. 1 by the

vertical lines.

B. Anisotropic scalar statistics due to the mean
scalar gradient

We first present some basic scalar statistics with emphasis

on the anisotropic statistics due to the mean gradient. The co-

spectra between the scalar θ and the 3-velocity component are

presented in Fig. 2. The spectrum from MTLM fields under-

predicts the DNS result slightly at the low wavenumber end.

The agreement nevertheless is very good. We note that the co-

spectrum for the synthetic field is not part of the input to the

MTLM procedure; it is generated by the non-linear mapping

embedded in the procedure, although undoubtedly, it depends

crucially on the input energy and scalar spectra.

The probability density function (PDF) distributions of

scalar gradients ∂iθ in the synthetic MTLM fields are shown

in Figs. 3 and 4. Due to statistical symmetry, the PDFs for

∂θ/∂x and ∂θ/∂z are expected to be the same. Fig. 3 shows

indeed that the two PDFs are close to each other. There are

some discrepancies at the ends of the tails, which may be

attributed to statistical fluctuations. For all PDFs in these

two figures, strong deviation from a Gaussian distribution

is observed, displaying the characteristic flaring tails seen in

scalar turbulence.28–31 The PDF for ∂θ/∂y (Fig. 4) has a strong

negative skewness, which means that it is skewed in the direc-

tion of the mean scalar gradient (the negative y-direction).

Overall, the MTLM fields underestimate the PDFs for large

fluctuations to some extent. However, all results are close to

those obtained from DNS fields, as is shown by these figures

(see also Ref. 15).

The skewness is an indication of small scale anisotropy

due to the negative mean gradient. It has been correlated to

FIG. 2. The co-spectra between θ and 3-velocity component. Blue squares:

MTLM fields. Red circles: DNS fields.

FIG. 3. PDFs for scalar gradients. Blue squares: ∂θ/∂x from MTLM fields.

Red circles: ∂θ/∂x from DNS fields. Green triangles: ∂θ/∂z from MTLM

fields. Cyan diamonds: ∂θ/∂z from DNS.

the observation that the cliffs in the scalar distribution sit on

the edges of the vortices in the velocity field.15,22 We may also

understand it qualitatively from the equation for gy ≡ ∂θ/∂y,

which is

∂tgy + u · ∇gy = −(∂yu) · ∇θ + κ∇2gy + ∂y3, (37)

where 3 is the y component of the velocity field, and we have

used the fact that the mean scalar gradient G = �ey. The last

term on the right hand side represents the direct contribution

from the mean scalar gradient. Note that ∂y3 is the longitudinal

gradient of 3. It is well-known that, in real turbulence, the

longitudinal gradient of the velocity has a negative skewness.

The same has been observed in MTLM velocity fields too.1 As

such, the last term on the right hand side of Eq. (37) is more

likely to be negative, which tends to reduce gy. This term thus

provides a driving mechanism for the negative skewness in

the PDF of gy that is absent from other components of the

gradient. Fig. 4 shows that the same mechanism is captured by

the MTLM procedure, although results for the MTLM fields

FIG. 4. PDFs for ∂θ/∂y. Blue squares: MTLM fields. Red circles: DNS

fields.
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FIG. 5. The PDFs of the normalized fluctuating flux rθ . Blue squares: MTLM

fields. Red circles: DNS fields.

appear to somewhat underestimate the probabilities for large

fluctuations.

The source term in the equation of θ is −G ·u = 3, accord-

ing to Eq. (7). By writing down the equation for 〈θ2〉 (not

shown), we can see that, to provide a positive source for the

scalar fluctuations, a positive correlation must exist between

3 and scalar θ. The PDFs of the normalized product rθ ≡ 3θ,

from both DNS and MTLM fields, are presented in Fig. 5. As

expected, both PDFs display a positive skewness. The positive

skewness is consistent with the co-spectrum shown in Fig. 2,

both indicating a positive correlation between 3 and θ. A phys-

ical explanation for the positive correlation is given in Ref. 53

using a Lagrangian closure. Intuitively, positive fluctuation of

θ at a point is generated when a parcel of fluid carrying a

larger value of the scalar moves to the point. Given that the

mean gradient of the scalar is in the negative y direction, this

parcel is more likely to come from the negative y direction.

Thus, on average, this parcel will have a positive 3 on its path

to this point. Given the positive spatial correlation of 3, it is

also more likely that 3 is positive at the given point. Thus we

observe positive 3 together with positive θ, hence positive cor-

relation between the two. Fig. 5 shows that the mechanism is

captured very well by the MTLM fields.

C. SGS energy dissipation, scalar variance dissipation,
and scalar variance

The mean SGS energy dissipation rate 〈Π〉 as a function

of the filter scale ∆ is shown in Fig. 6, while the mean SGS

scalar variance dissipation rate 〈Πθ〉 is shown in Fig. 7. For the

scalar dissipation, the agreement between MTLM results and

DNS results is rather good with some small over-prediction (at

about 3%). For the velocity fields, the MTLM results under-

estimate the DNS values by a small amount, which measures

at about 10% at the largest filter scales. The fact that the pre-

diction for SGS scalar dissipation is better may be explained

by the following observation. The synthesized velocity field

is missing both viscous diffusion and the nonlocal effect of

the pressure. The synthesized scalar field, on the other hand,

is missing only the diffusion effect. Though these effects

are partially compensated for by imposing the energy and

FIG. 6. Mean SGS energy dissipation rate 〈Π〉 as a function of filter scale

∆ (δx is the grid size of the simulation): Blue squares: MTLM fields. Red

circles: DNS fields.

scalar spectra, the approximation to the velocity fields is still

stronger.

The PDFs for both the SGS energy and SGS scalar

variance dissipations are shown in Fig. 8. We use Π+

= (Π − 〈Π〉)/σΠ to represent the normalized SGS energy dis-

sipation, where 〈Π〉 is the mean and σΠ is the r.m.s. of Π. A

similar notation Πθ
+ denotes the normalized SGS scalar dis-

sipation. The PDFs from MTLM fields are shown with blue

squares and cyan diamonds, whereas DNS fields are shown

with red circles and green triangles. The strong positive skew-

ness observed in the curves indicates the dominance of forward

energy and scalar variance cascade. A significant probability

for negative fluctuations is also observed (flaring up left tail),

which indicates a backscattering from small scales to large

ones. The PDF of Πθ
+ has a slightly wider positive tail than

that ofΠ+ from the same data set (either MTLM or DNS). The

MTLM fields capture all these behaviours. Quantitatively, the

positive tail for Π+ agrees rather well with DNS result, though

the negative tail is somewhat underestimated for both the scalar

variance and energy dissipations.

FIG. 7. Mean SGS scalar variance dissipation rate 〈Πθ 〉 as a function of filter

scale ∆ (δx is the grid size): Blue squares: MTLM fields. Red circles: DNS

fields.
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FIG. 8. The PDFs of the normalized SGS energy dissipation Π+ = (Π

− 〈Π〉)/σΠ and the normalized SGS scalar variance dissipation Πθ
+ = (Πθ

− 〈Πθ 〉)/σ
Πθ

. Blue squares: PDF of Π+ for MTLM fields. Red circles: PDF

of Π+ for DNS fields. Cyan diamonds: PDF of Πθ
+ for MTLM fields. Green

triangles: PDF of Πθ
+ for DNS fields.

To quantify the backscattering, we calculate separately the

mean of the negative SGS dissipation (denoted by Π<0) and

the mean of positive SGS dissipation (denoted by Π>0) and

look into their relative magnitudes, given by ratio

〈|Π<0 |〉

〈|Π<0 |〉 + 〈|Π>0 |〉
. (38)

We calculate the ratio for both velocity and scalar fields from

both MTLM and DNS data. Fig. 9 shows a plot of the ratio as

a function of ∆. One can observe from the figure that MTLM

fields indeed generate significant backscattering, as in DNS

fields. For the velocity fields, the ratio tends to 0.20 for both

MTLM and DNS fields when∆ increases, although for smaller

∆ MTLM results somewhat underestimate the value. For the

scalar fields, the ratio tends to be around 0.18 for MTLM

FIG. 9. The proportion of backscattering defined by 〈 |Π<0 |〉/〈 |Π<0 |〉

+ 〈 |Π>0 |〉 as a function of filter scale ∆ (δx is the grid size). Blue squares and

red circles: SGS energy dissipation for MTLM and DNS fields, respectively.

Cyan diamonds and medium-orchid squares: SGS scalar variance dissipation

for MTLM and DNS fields, respectively.

FIG. 10. Definitions of θα and φα for the two-dimensional joint PDF char-

acterizing the alignment of the vector α−τ with the eigenvectors of tensor

S̃ij .

fields and 0.17 for DNS fields, i.e., it is overestimated slightly

in the MTLM fields.

The above results regarding the SGS energy dissipation

rates can be complemented by the statistics of the alignment

between the eigenvectors of the tensors, as is indicated by

Eq. (31). We will present the results in terms of the orienta-

tions of the eigenvectors of the SGS stress tensor −τij in the

eigenframe of the filtered strain rate tensor S̃ij. To describe

the orientation of the eigenvector α−τ in the eigenframe of

S̃ij, we need two angles φα and θα,16,32,33 as can be seen in

Fig. 10. Note that three dimensional joint PDFs of the three

angles describing the relative orientation of the two eigen-

frames have also been used (see, e.g., Ref. 32). The 3D joint

PDFs have the advantage of providing a direct picture of the

relative orientation of the frames. Nevertheless, quantitative

details are sometimes obscured by the 2D projection of a 3D

distribution. We thus choose to use 2D joint PDFs in what

follows.

To observe the preferential alignment configurations

between α−τ and the eigenframe of S̃ij, Fig. 11 shows the

FIG. 11. Joint PDF of (cos θα , φα) from DNS fields.
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FIG. 12. Joint PDF of (cos θα , φα) for MTLM fields.

two-dimensional joint PDF of cos θα and φα for DNS fields.

It displays a bi-modal distribution with two peaks at (θα, φα)

= (90◦, 0◦) and (50◦, 48◦), with approximate peak value 2.5

for both. As a comparison, the MTLM result, given in Fig. 12,

shows only one peak at approximately (50◦, 48◦), which is the

same as one of the peaks in the DNS result. The peak value for

the MTLM result is stronger than the one for DNS, reaching

about 3.5, as is illustrated in Fig. 12. This discrepancy is most

likely due to the fact that MTLM fields produce insufficient

vortex tubes.2

We now consider the orientation of the eigenvector β−τ in

the eigenframe of S̃ij, which is characterised by angles θβ and

φβ . The two angles are defined in the same way as those shown

in Fig. 10. Two peaks at (θβ , φβ) = (90◦, 0◦) and (45◦, 90◦) are

seen in Fig. 13 for the DNS fields, with peak values 1.6 and 2.0,

respectively. The joint PDF for the MTLM fields shows two

peaks at about the same locations (see Fig. 14). However, the

peak values are approximately 2.4 and 1.6, i.e., the strengths

of the two peaks are reversed.

FIG. 13. Joint PDF of (cos θβ , φβ ) for DNS fields.

FIG. 14. Joint PDF of (cos θβ , φβ ) for MTLM fields.

Finally, without showing the figure, we briefly summa-

rize the results about the joint PDFs of the orientation of the

eigenvector γ−τ . The main observation is that, for both DNS

and MTLM fields, the peaks of the joint PDFs are found at the

same location φγ ≈ 90◦ and θγ ≈ 42◦, with peak values 9.0

and 10.5, respectively. Angles θγ and φγ are defined again in

the same way as before.

Similar analysis can be conducted for the scalar SGS dis-

sipation. The PDFs of the cosine of the angle between the

SGS scalar flux vector τθ
i

and the gradient of the filtered

scalar ∂i θ̃ are shown in Fig. 15, where we have used Λθ to

denote the angle. The PDFs for both MTLM and DNS data

display the same preferred alignment at cosΛθ ≈ 0.3, cor-

responding roughly to Λθ
= 72◦. Thus the SGS scalar flux

vector does not align perfectly with the resolved scalar gra-

dient, in contradiction with what is implied in an eddy dif-

fusivity model. On the other hand, the peak value of the

PDF from MTLM fields is somewhat higher than the DNS

value.

FIG. 15. PDFs of the cosine of the angle between τθ
i

and ∂i θ̃, Λθ . Blue

squares: MTLM fields. Red circles: DNS fields.
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FIG. 16. PDFs of Z3/〈Z3〉 for ∆ = 8δx . Blue squares: MTLM fields. Red

circles: DNS fields. The inset is the two-point correlation coefficient for Z3 .

Blue squares: MTLM. Red circles: DNS. Filled and empty symbols are for

∆ = 8δx and 16δx , respectively.

To briefly summarize, the above results for the relative ori-

entation of the eigenvectors calculated from the MTLM fields

bear close resemblance to those from DNS fields. Some dis-

crepancies exist in terms of the alignment results, and they

are consistent with previously known features of the MTLM

fields. Nevertheless, the discrepancy has only small effects

on the SGS dissipation rates. These results reveal the abil-

ity of the MTLM procedure to reproduce SGS dissipations

and the geometrical structures of the SGS stress and scalar

flux.

We now present results related to the SGS scalar variance

Z3 . Note that the mean of Z3 , 〈Z3〉, is determined by the scalar

spectrum. Therefore, by design, it is the same for the MTLM

fields and the DNS fields. However, it is interesting to examine

statistics beyond the mean. Fig. 16 compares the PDFs for Z3
calculated from the MTLM fields (blue squares) and DNS data

(red circles). It shows that the MTLM fields underestimate the

probability of large values. This mild discrepancy is consistent

with some of the results shown previously, where MTLM fields

have also been found to under-estimate large fluctuations to

some degree. The MTLM fields also show a low probability for

Z3 very close to zero, whereas in DNS fields, the most probable

value is Z3 = 0. The inset shows the correlation coefficient for

Z3 , defined as

Rzz(r) =
〈[Z3(x) − 〈Z3〉][Z3(x + re) − 〈Z3〉]〉

〈[Z3(x) − 〈Z3〉]
2〉

, (39)

plotted against the displacement r normalized by δx, where

in the definition e is a given direction. Results for both

∆ = 8δx and 16δx are shown. As is expected, the correla-

tion is stronger for larger filter scales. The correlation of the

MTLM fields decays somewhat quicker than that of the DNS

fields, i.e., the MTLM fields somewhat underestimate the long

range correlations in the scalar fields.

The evolution of Z3 is dominantly controlled by the SGS

scalar dissipation Πθ and the filtered (molecular) scalar dis-

sipation ǫ̃θ , which provide the source and the sink terms for

Z3 , respectively. To predict the PDF of Z3 correctly, the con-

ditional averages 〈Πθ |Z3〉 and 〈ǫ̃θ |Z3〉 need to be correctly

FIG. 17. Conditional averages for ∆ = 8δx . Filled symbols: 〈Πθ |Z3〉. Empty

symbols: 〈ǫ̃θ |Z3〉. Blue squares: MTLM fields. Red circles: DNS fields. Green

diamonds: reference models (see text).

parametrized. Thus we have calculated the conditional aver-

ages, shown in Fig. 17. To put the results from the MTLM

fields in context, the results from two other models are also

presented for reference. For 〈Πθ |Z3〉, an eddy-diffusivity-type

model

τθi = cτ∆
2 |S̃|∂i θ̃ (40)

is used, where |S̃| ≡ (2S̃ijS̃ij)
1/2

is the modulus of S̃ij. The

result from this model is shown with filled green diamonds. In

SGS modelling, the coefficient cτ is usually calculated from

the dynamic procedure. Here, we choose cτ empirically, so

that the model result matches the DNS result (shown with

filled red circles) at Z3/〈Z3〉 = 1. This simple choice is suf-

ficient to show that the model does not provide consistent

prediction for 〈Πθ |Z3〉, because it underestimates the latter,

and the discrepancy increases with Z3 . Meanwhile, the result

from MTLM fields over-estimates 〈Πθ |Z3〉 by a rather signifi-

cant amount. Nevertheless, the discrepancy is smaller than that

of the reference model, especially at large Z3 .

For 〈ǫ̃θ |Z3〉, we choose

ǫ̃θ = cǫ
Z3

τǫ
(41)

as the reference model, where the time scale τǫ is taken as

|S̃|−1 (see, e.g., Refs. 57 and 59). cǫ is chosen in the same

way as cτ above. In this case, the MTLM result (empty blue

squares) follows quite closely with the DNS result (empty red

circles), whereas the result from the reference model (empty

green diamonds) is off by large amount.

D. Geometrical statistics of SGS stresses and fluxes

In this subsection, we report on how the geometrical statis-

tics related to the SGS stresses and fluxes are captured by

the MTLM fields. Overall, the MTLM fields reproduce many

alignment statistics accurately, including τθ
i
− ω̃i, τ

θ
i
− S̃ij,

τθ
i
− τij, ω̃i − τij, and ω̃i − S̃ij alignment. In what follows, we

present only the first three results as an illustration. The PDFs

of the cosine of the angle Λθ between SGS scalar flux vector

τθ
i

and the filtered vorticity vector ω̃i is given in Fig. 18. The
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FIG. 18. PDFs of the cosine of the angle between τθ
i

and ω̃i, Λ
θ . Blue

squares: MTLM fields. Red circles: DNS fields.

PDFs have a sharp peak at zero, which means that the SGS

scalar flux tends to be perpendicular to the filtered vorticity.

The MTLM result shows good quantitative agreement with the

DNS result.

Fig. 19 shows the PDFs of the cosines of the angles

between the SGS scalar flux τθ
i

and the three eigenvectors

αs, βs, and γs of the filtered strain-rate tensor S̃ij. The angles

are denoted byΛα,Λβ , andΛγ. Both DNS and MTLM results

are plotted. The comparison shows that the results of MTLM

fields are close to the DNS results. It is observed that τθ
i

tends

to make a 53◦ angle with αs and a 37◦ angle with γs, whereas

τθ
i

tends to be perpendicular to βs.

The preferential alignment between the SGS scalar flux

vector τθ
i

and the eigenvectors of the SGS stress tensor τij is

presented in Fig. 20. Note that, for simplicity, we have used

same notations for the angles as in previous figure. Here, the

PDFs from MTLM fields nearly overlap with those from DNS

fields, except that the peaks are slightly underestimated by

MTLM (the peaks have been truncated hence are not shown in

FIG. 19. PDFs of the cosine of the angles between τθ
i

and the eigenvectors

of S̃ij from DNS fields (empty symbols) and MTLM fields (filled symbols).

Red circles: P(cosΛα). Blue squares: P(cosΛβ ). Green squares: P(cosΛγ ).

FIG. 20. PDFs of the cosine of the angles between τθ
i

and the eigenvectors

of −τij for DNS fields (empty symbols) and MTLM fields (filled symbols).

Red circles: P(cosΛα). Blue squares: P(cosΛβ ). Green squares: P(cosΛγ ).

the figures). τθ
i

tends to align with γ−τ with very high proba-

bility. On the other hand, τθ
i

tends to be perpendicular to both

α−τ and β−τ but with a higher probability for the former. The

high peak probabilities suggest a near deterministic alignment.

This trend has been observed previously and has motivated a

strategy to model τθ
i

in terms of τij.
34

E. Effects of input energy and scalar spectra

In Subsections V A–V D, we have used the energy and

scalar spectra from the 2563 DNS data set as the input for the

MTLM procedure. When MTLM is applied in a more practical

setting, the input spectra may have to be estimated, hence con-

tain errors. It is thus important to understand the effects of the

input spectra. To achieve this, we now examine the MTLM

fields with input spectra modified in two different ways. In

one case, we consider MTLM fields generated from only parts

of the DNS spectra shown in Fig. 1. Specifically, we gener-

ate MTLM fields with 643 grid points using the spectra in

Fig. 1 in the range k ∈ [1, 32] as the input. Also, we generate

MTLM fields with 1283 grid points using the spectra in the

range k ∈ [1, 64] as the input. These fields are missing most of

the dissipation range due to the truncations. In another case,

we use an analytical spectrum with a model for the dissipation

range as the input. For the velocity field, we use the Kovasznay

spectrum,62 whose expression can be written as63

E(k) = Ck〈ǫ〉
2/3k−5/3








(
1 −

Ck

2
(kη)4/3

)2






. (42)

In other words, the spectrum is the Kolmogorov spectrum

corrected for viscous dissipation by the factor in the square

brackets. For scalar, we assume that the spectrum is given by

Eq. (5) multiplied by the same correction factor. To ensure that

this case can be compared with previous results, an empirical

modification is applied. Namely, we use Eq. (42) (and its scalar

equivalence) for k ≥ 8 only; the spectrum for k ≤ 8 is still

taken from DNS data. The dissipation rates in the Kovasznay

spectra are chosen in such a way that the two segments join
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FIG. 21. The Kovasznay energy (blue squares) and scalar variance (red cir-

cles) spectra. The lines are the DNS spectra. Solid line: energy spectrum.

Dashed line: scalar variance spectrum.

TABLE I. Datasets and descriptions.

Dataset Description

M64 643 MTLM fields with truncated DNS spectra as input

M128 1283 MTLM fields with truncated DNS spectra as input

M256 2563 MTLM fields with full DNS spectra as input

MKov 2563 MTLM fields with Kovasznay spectra as input

DNS 2563 DNS fields

together smoothly. The spectra constructed this way are plotted

in Fig. 21.

We use the model spectra to generate 2563 MTLM fields.

The Kovasznay spectrum is reasonably realistic but still devi-

ates significantly from the observed turbulent energy spectrum.

Therefore it is a relevant yet stringent test. To help with expo-

sition, we summarize all the data sets used in this subsection

in Table I, along with their names.

FIG. 22. The co-spectra between θ and y-velocity component. Black solid

line: 2563 MTLM fields. Black dashed line: 2563 DNS. Red circles: 644

MTLM fields. Blue squares: 1283 MTLM fields. Green diamonds: from

Kovasznay spectra.

FIG. 23. The averaged SGS energy dissipation as a function of filter scale ∆.

Symbols and colors are the same as in Fig. 22. The inset shows 〈Π〉 normalized

by ∆2〈 |S̃ |〉
3
.

We show in Fig. 22 the co-spectra between the scalar θ

and the y-velocity component. It can be seen that the agree-

ment between the three resolutions is very good, all following

closely with the DNS result. One may discern that the spec-

tra of M64 and M128 are slightly lower than that of M256,

but the effect is really very small. Since the M64 and M128

fields, with 643 and 1283 grid points, are obtained with few

iterations than the M256 fields, this shows that number of

iterations is not essential for the development of the proper

correlation between the scalar field and the advecting velocity.

Such correlation must come basically from the strong coupling

between the scalar and velocity mappings, rather than from the

mimicked cascade process. This is corroborated by the result

from MKov data. Here the co-spectrum at the high wavenum-

ber end displays similar features as the Kovasznay energy and

scalar spectra, where it bulges upward before dropping off

sharply.

The mean SGS energy dissipation as a function of the fil-

ter scales is shown in Fig. 23. The truncation has little effect

on 〈Π〉, since the results for M64, M128, and M256 all col-

lapse on the same curve. On the other hand, the result from

MKov fields deviates significantly from the one from M256,

and the difference is observed over all ∆ values. To under-

stand the deviation, we plots in the inset 〈Π〉 from MKov,

M256, and DNS, normalized by ∆2〈|S̃|〉
3
. Interestingly, now

the results for MKov and M256 show much better agreement.

Since the factor∆2〈|S̃|〉
3

is determined by the energy spectrum,

the observation implies that the deviation in 〈Π〉 comes mainly

from the difference between the Kovasznay spectrum and the

DNS spectrum, and it can be parametrized by the spectrum in

a simple way. Of course, how to find a good approximation for

the spectrum remains a question. Though it is in no way easy,

this question is a standard one with much previous research to

be drawn upon. Therefore, the observation from this figure is

encouraging.

Fig. 24 shows that truncation has slightly stronger

effects on the scalar SGS dissipation 〈Πθ〉. In particular, the

M64 fields produce slightly but visibly smaller values. The

result from MKov fields is close to the M256 results, with
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FIG. 24. Same as Fig. 23 but for the SGS scalar variance dissipation.

slight over-estimation for approximately 10 ≤ ∆/δx ≤ 30. This

observation is not surprising, since the scalar Kovasznay

spectrum is not too different from the DNS scalar spectrum

(cf. Fig. 21).

The PDFs of the normalized SGS energy dissipation Π+

are given in Fig. 25. These results show that the strong pos-

itive skewness remains mostly unchanged by the change in

the input energy spectrum. Some differences can be discerned

for the probabilities of large negative fluctuations. Apart from

the result from KKov, the probabilities for large negative fluc-

tuations seem to decrease with increasing resolutions. Note

that the difference between M256 data and M64 (or M128) is

that, in the latter, the small scales in the dissipation range are

decimated or absent. Thus the above observation is consistent

with the notion that the scales much smaller than the filter scale

can be modelled by an eddy-viscosity-type model, since their

overall effects are dissipative and reducing backscattering.

Nevertheless, we caution against drawing definite conclusions

because statistical fluctuations are relatively large at the tails

FIG. 25. The PDFs of the normalized SGS energy dissipation: Π+ = (Π

− 〈Π〉)/σΠ . Blue squares: 2563 MTLM fields. Cyan diamonds: 1283 MTLM

fields. Medium-orchid squares: 643 MTLM fields. Green triangles: from the

Kovasznay spectra.

FIG. 26. Conditional average 〈ǫ̃θ |Z3〉 with ∆ = 8δx (main figure) and 16δx

(inset). Red circles: 643 MTLM fields. Blue squares: 1283 MTLM fields.

Green diamonds: from Kovasznay spectra. Solid line: 2563 MTLM fields

with DNS spectra. Dashed line: DNS result. Dashed-dotted line: reference

model (Eq. (41)) calculated from DNS data.

of the PDFs. In any case, the effects are rather small. The PDFs

for the normalized SGS scalar variance dissipation, Πθ
+ , show

again little difference for the different data sets; therefore, the

figure has been omitted.

The conditional average 〈ǫ̃θ |Z3〉 is shown in Fig. 26. This

result is particularly interesting because the dominant contri-

bution to ǫ̃θ comes from the dissipation range, and as such

one expects that the changes in the input spectra would have

stronger effects. Indeed, the result from M64 shows signif-

icant deviation from the M256 and DNS results. The result

from M128 stays closer to that of M256, arguably because

the truncation is less severe and part of the dissipation range

is retained. The result from MKov is not much changed from

that of M256 either. The inset shows the same results with

∆ = 16δx. Same trends are observed, but results from MTLM

fields agree better with the DNS results. The results shown in

FIG. 27. PDFs of the cosine of the angles between τθ
i

and the eigenvector of

α−τ . Blue squares: 2563 MTLM fields. Cyan diamonds: 1283 MTLM fields.

Medium-orchid squares: 643 MTLM fields.
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this figure suggest that a reasonably accurate model spectrum

can provide a good approximation to 〈ǫ̃θ |Z3〉.

Finally, we note that we have also looked into the geo-

metrical statistics for these new datasets as in Subsection

V D. The general observation is that all data sets reproduce the

preferred alignment configurations in DNS, although the prob-

abilities for the preferred configurations become weaker when

the resolution is decreased (from 2563 to 643). We present

only Fig. 27 to illustrate the above observation. Fig. 27 shows

the PDFs of cosΛα = (α−τ , τθ
i

) from M256, M128, and M64

fields. All three PDFs show the same preferred alignment at

cosΛα = 0, the two vectors being perpendicular to each other.

However, the peak probability decreases with the resolution,

as we mention above.

VI. CONCLUSIONS

In this paper, the multi-scale turnover Lagrangian map is

generalized to synthesize passive scalar fields driven by a uni-

form mean scalar gradient. The synthetic velocity and scalar

fields are then investigated from the perspective of SGS mod-

elling. We calculate the statistics related to the SGS stress, the

SGS scalar flux, and the SGS scalar variance obtained by fil-

tering the synthetic MTLM fields. We also look into how the

synthetic fields are affected by the input spectra.

Comparisons with DNS data show that the resultant non-

Gaussian MTLM fields display many properties commonly

observed in DNS data, including the skewed and intermit-

tent probability density distributions for the SGS dissipation

rates, the preferential alignment between different objects, the

scalar-velocity correlations, and the skewness of the scalar gra-

dient in the direction of mean gradient. The results obtained

from fields with different spectra as the input demonstrate

the robustness of the MTLM procedure. Some statistics, such

as the mean SGS energy dissipation, depend rather strongly

on the energy spectrum. However, the dependence may be

parametrized in a relatively simple way by the energy spec-

trum. The implication is that, in order to apply MTLM in a

different flow, the main task is to estimate the energy and

the scalar spectra. While it is by no mean easy, the task is

a standard one, and many modelling strategies make implicit

assumption about the spectra in some way (examples include

the scale dependent SGS model64). Therefore we believe it

is totally feasible. More importantly, we also find that most

of the statistics are unchanged by the input spectra, includ-

ing the PDFs of the SGS energy and scalar dissipations. This

observation is another incentive to further pursue the MTLM

method.

Our investigation also shows that the linear mean scalar

profile can be modelled by the MTLM procedure easily with

little additional computation cost. It demonstrates that the

MTLM can be generalized to include other linear effects with-

out difficulties. This study complements previous discussions

(see Refs. 1, 2, and 14 for discussions on other properties)

on this technique and provides solid basis for its applications

in LES and SGS modelling. Future research will focus on

technical challenges such as, among others, the modelling of

inhomogeneous flows, where no complete information regard-

ing the spectra is available. In such cases, one may have to

estimate the spectra from the resolved the scales and make use

of the physics of the flows. How to implement such a scheme

and assess the performance of MTLM in these flows are topics

of our on-going research.

ACKNOWLEDGMENTS

The first author acknowledges the financial support from

the Iraqi government via the Ministry of High Education and

Scientific Research Scholarship.

1C. Rosales and C. Meneveau, “A minimal multiscale Lagrangian map

approach to synthesize non-Gaussian turbulent vector fields,” Phys. Fluids

18, 075104 (2006).
2C. Rosales and C. Meneveau, “Anomalous scaling and intermittency in

three-dimensional synthetic turbulence,” Phys. Rev. E 78, 016313 (2008).
3Y. Li and C. Rosales, “Constrained multi-scale turnover Lagrangian map for

anisotropic synthetic turbulence: A priori tests,” Phys. Fluids 26, 075102

(2014).
4S. B. Pope, Turbulent Flows (Cambridge University Press, Cambridge,

2000).
5A. Juneja, D. P. Lathrop, K. R. Sreenivasan, and G. Stolovitzky, “Synthetic

turbulence,” Phys. Rev. E 49, 5179–5194 (1994).
6J. C. H. Fung, J. C. R. Hunt, N. A. Malik, and R. J. Perkins, “Kinematic

simulation of homogeneous turbulence by unsteady random Fourier modes,”

J. Fluid Mech. 236, 281–318 (1992).
7N. Jarrin, S. Benhamadouche, D. Laurence, and R. Prosser, “A synthetic-

eddy-method for generating inflow conditions for large-eddy simulations,”

Int. J. Heat Fluid Flow 27, 585–593 (2006).
8N. Jarrin, R. Prosser, J. C. Uribe, S. Benhamadouche, and D. Laurence,

“Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations

using a synthetic-eddy Method,” Int. J. Heat Fluid Flow 30, 435442 (2009).
9Y. Kim, I. P. Castro, and Z. T. Xie, Divergence-free turbulence inflow condi-

tions for large-eddy simulations with incompressible flow solvers,” Comput.

Fluids 84, 56–68 (2013).
10Z. T. Xie and I. P. Castro, “Efficient generation of inflow conditions for

large eddy simulation of street-scale flows,” Flow, Turbul. Combust. 81(3),

449–470 (2008).
11B. de Laage de Meux, B. Audebert, R. Manceau, and R. Perrin, “Anisotropic

linear forcing for synthetic turbulence generation in large eddy simulation

and hybrid RANS/LES modelling,” Phys. Fluids 27, 035115 (2015).
12A. Rasam, G. Brethouwer, and A. Johansson, “An explicit algebraic model

for the sub grid-scale passive scalar flux,” J. Fluid Mech. 721, 541 (2013).
13Y. Li, “The evolution towards the rod-like axisymmetric structure for

turbulent stress tensor,” Phys. Fluids 27, 085104 (2015).
14C. Rosales, “Synthetic three-dimensional turbulent passive scalar fields via

the minimal Lagrangian map,” Phys. Fluids 23, 075106 (2011).
15A. Pumir, “A numerical study of the mixing of a passive scalar in three

dimensions in the presence of a mean gradient,” Phys. Fluids 6, 2118 (1994).
16B. Tao, J. Katz, and C. Meneveau, “Statistical geometry of sub grid-

scale stresses determined from holographic particle image velocimetry

measurements,” J. Fluid Mech. 457, 35 (2002).
17B. I. Shraiman and E. D. Siggia, “Scalar turbulence,” Nature 405, 639

(2000).
18Z. Warhaft, “Passive scalars in turbulent flows,” Annu. Rev. Fluid Mech.

32, 203 (2000).
19T. Vicsek and A. Barabasi, “Multi-affine model for the velocity distribution

in fully turbulent flows,” J. Phys. A 24, L845 (1991).
20J. Eggers and S. Grossmanns, “Effect of dissipation fluctuations on

anomalous velocity scaling in turbulence,” Phys. Rev. A 45, 2360 (1992).
21R. Benzi, L. Biferale, A. Crisanti, G. Paladin, M. Vergassola, and A. Vulpi-

ani, “A random process for the construction of multiaffine fields,” Physica

D 65, 352 (1993).
22M. Holzer and D. Siggia, “Turbulent mixing of a passive scalar,” Phys.

Fluids 6, 1820 (1994).
23R. H. Kraichnan, “Anomalous scaling of a randomly advected passive

scalar,” Phys. Rev. Lett. 72, 1016 (1994).
24M. Chertov, G. Falkovich, I. Kolokolov, and V. Lebedev, “Normal and

anomalous scaling of the fourth-order correlation function of a randomly

advected passive scalar,” Phys. Rev. E 52, 4924 (1995).
25K. Gawedzki and A. Kupiainen, “Anomalous scaling of the passive scalar,”

Phys. Rev. Lett. 75, 3834 (1995).

http://dx.doi.org/10.1063/1.2227003
http://dx.doi.org/10.1103/physreve.78.016313
http://dx.doi.org/10.1063/1.4890322
http://dx.doi.org/10.1103/physreve.49.5179
http://dx.doi.org/10.1017/s0022112092001423
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.02.006
http://dx.doi.org/10.1016/j.ijheatfluidflow.2009.02.016
http://dx.doi.org/10.1016/j.compfluid.2013.06.001
http://dx.doi.org/10.1016/j.compfluid.2013.06.001
http://dx.doi.org/10.1007/s10494-008-9151-5
http://dx.doi.org/10.1063/1.4916019
http://dx.doi.org/10.1017/jfm.2013.81
http://dx.doi.org/10.1063/1.4928245
http://dx.doi.org/10.1063/1.3609280
http://dx.doi.org/10.1063/1.868216
http://dx.doi.org/10.1017/s0022112001007443
http://dx.doi.org/10.1038/35015000
http://dx.doi.org/10.1146/annurev.fluid.32.1.203
http://dx.doi.org/10.1088/0305-4470/24/15/010
http://dx.doi.org/10.1103/physreva.45.2360
http://dx.doi.org/10.1016/0167-2789(93)90060-e
http://dx.doi.org/10.1016/0167-2789(93)90060-e
http://dx.doi.org/10.1063/1.868243
http://dx.doi.org/10.1063/1.868243
http://dx.doi.org/10.1103/physrevlett.72.1016
http://dx.doi.org/10.1103/physreve.52.4924
http://dx.doi.org/10.1103/physrevlett.75.3834


045103-15 AL-Bairmani et al. Phys. Fluids 29, 045103 (2017)

26U. Frisch, A. Mazzino, and M. Vergassola, “Intermittency in passive scalar

advection,” Phys. Rev. Lett. 80, 5532 (1998).
27U. Piomelli, W. Cabot, P. Moin, and S. Lee, “Sub-grid-scale backscatter in

turbulent and transitional flows,” Phys. Fluids A 3, 1766 (1991).
28T. Watanabe and T. Gotoh, “Statistics of a passive scalar in homogeneous

turbulence,” New J. Phys. 6, 40 (2004).
29C. Tong and Z. Warhaft, “On passive scalar derivative statistics in grid

turbulence,” Phys. Fluids 6, 2165 (1994).
30L. Mydlarski and Z. Warhaft, “Passive scalar statistics in high-Peclet-

number grid turbulence,” J. Fluid Mech. 358, 135 (1998).
31K. R. Sreenivasan and R. A. Antonia, “The phenomenology of small-scale

turbulence,” Annu. Rev. Fluid Mech. 29, 435 (1997).
32B. Tao, J. Katz, and C. Meneveau, “Geometry and scale relationships

in high Reynolds number turbulence determined from three-dimensional

holographic velocimetry,” Phys. Fluids 12, 941 (2000).
33K. Horiuti, “Roles of non-aligned eigenvectors of strain-rate and subgrid-

scale stress tensors in turbulence generation,” J. Fluid Mech. 491, 65 (2003).
34S. G. Chumakov, “A priori study of subgrid-scale flux of a passive scalar in

isotropic homogeneous turbulence,” Phys. Rev. E 78, 036313 (2008).
35C. Meneveau and J. Katz, “Scale-invariance and turbulence models for large-

eddy simulation,” Annu. Rev. Fluid Mech. 32, 1 (2000).
36P. E. Dimotakis, “Turbulent mixing,” Annu. Rev. Fluid Mech. 37, 329–356

(2005).
37T. Gotoh and T. Watanabe, “Power and nonpower laws of passive scalar

moments convected by isotropic turbulence,” Phys. Rev. Lett. 115, 114502

(2015).
38M. J. Beals, J. P. Fugal, R. A. Shaw, J. Lu, S. M. Spuler, and J. L. Stith, “Holo-

graphic measurements of inhomogeneous cloud mixing at the centimeter

scale,” Science 350, 6256 (2015).
39P. Flohr and J. C. Vassilicos, “A scalar subgrid model with flow structure for

large-eddy simulations of scalar variances,” J. Fluid Mech. 407, 315–349

(2000).
40A. Scotti and C. Meneveau, “A fractal model for large eddy simulation of

turbulent flow,” Physica D 127, 198–232 (1999).
41D. R. Osborne, J. C. Vassilicos, and J. D. Haigh, “One-particle two-time

diffusion in three-dimensional homogeneous isotropic turbulence,” Phys.

Fluids 17, 035104 (2005).
42F. Nicolleau and A. ElMaihy, “Effect of the Reynolds number on three

and four-particle diffusion in three-dimensional turbulence using kinematic

simulation,” Phys. Rev. E 74, 046302 (2006).
43H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT Press,

1972).
44L. Chevillard, E. Leveque, F. Taddia, C. Meneveau, H. Yu, and C. Rosales,

“Local and nonlocal pressure Hessian effects in real and synthetic fluid

turbulence,” Phys. Fluids 23, 095108 (2011).
45P. Subedi, R. Chhiber, J. A. Tessein, M. Wan, and W. H. Matthaeus, “Gen-

erating synthetic magnetic field intermittency using a minimal multiscale

Lagrangian mapping approach,” Astrophys. J. 796, 97 (2014).

46C. Nilsen and H. I. Andersson, “Mechanisms of particle clustering in Gaus-

sian and non-Gaussian synthetic turbulence,” Phys. Rev. E 90, 043005

(2014).
47G. R. Tabor and M. H. Baba-Ahmadi, “Inlet conditions for large eddy

simulation: A review,” Comput. Fluids 39, 553–567 (2010).
48A. Keating, U. Piomelli, E. Balaras, and H. J. Kaltenbach, “A priori and a

posteriori tests of inflow conditions for large-eddy simulation,” Phys. Fluids

16, 4696 (2004).
49L. Chevillard, R. Robert, and V. Vargas, “A stochastic representation of the

local structure of turbulence,” Europhys. Lett. 89, 54002 (2010).
50R. M. Pereira, C. Garban, and L. Chevillard, “A dissipative random velocity

field for fully developed fluid turbulence,” J. Fluid Mech. 794, 369 (2016).
51U. Frisch and J. Bec, “Burgulence,” in New Trends in Turbulence. Turbu-

lence: Nouveaux Aspects, edited by M. Lesieur, A. Yaglom, and F. David

(Springer, 2001), pp. 341–383.
52P. Sagaut, Large Eddy Simulation for Incompressible Flows, An Introduction

(Springer, Berlin Heidelberg, 1998).
53T. Gotoh and T. Watanabe, “Scalar flux in a uniform mean scalar gradi-

ent in homogeneous isotropic steady turbulence,” Physica D 241, 141–148

(2012).
54J. A. Domaradzki and E. M. Saiki, “A subgrid-scale model based on the

estimation of unresolved scales of turbulence,” Phys. Fluids 9, 2148 (1997).
55J. Bull and A. Jameson, “Explicit filtering and exact reconstruction of the

sub-filter stresses in large eddy simulation,” J. Comput. Phys. 306, 117–136

(2016).
56N. Peters, Turbulent Combustion (Cambridge University Press, 2000).
57H. Pitsch, “Large-eddy simulation of turbulent combustion,” Annu. Rev.

Fluid Mech. 38, 453–82 (2006).
58G. Balarac, H. Pitsch, and V. Raman, “Development of a dynamic model

for the subfilter scalar variance using the concept of optimal estimators,”

Phys. Fluids 20, 035114 (2008).
59G. Balarac, H. Pitsch, and V. Raman, “Modelling of the subfilter scalar

dissipation rate using the concept of optimal estimators,” Phys. Fluids 20,

091701 (2008).
60E. Knudsen, E. S. Richardson, E. M. Doran, H. Pitsch, and J. H. Chen,

“Modelling scalar dissipation and scalar variance in large eddy simulation:

Algebraic and transport equation closures,” Phys. Fluids 24, 055103 (2012).
61Y. Gao, N. Chabraborty, and N. Swaminathan, “Dynamic closure of scalar

dissipation rate for large eddy simulations of turbulent premixed combus-

tion: A direct numerical simulations analysis,” Flow, Turbul. Combust. 95,

775–802 (2015).
62L. S. G. Kovasznay, “Spectrum of locally isotropic turbulence,” J. Aeronaut.

Sci. 15, 745–753 (1948).
63S. Panchev, “Kovasznay’s spectral theory of turbulence,” Phys. Fluids 12,

935 (1969).
64F. Porte-Agel, C. Meneveau, and M. B. Parlange, “A scale-dependent

dynamic model for large-eddy simulation: Application to a neutral atmo-

spheric boundary layer,” J. Fluid Mech. 415, 261–284 (2000).

http://dx.doi.org/10.1103/physrevlett.80.5532
http://dx.doi.org/10.1063/1.857956
http://dx.doi.org/10.1088/1367-2630/6/1/040
http://dx.doi.org/10.1063/1.868219
http://dx.doi.org/10.1017/s0022112097008161
http://dx.doi.org/10.1146/annurev.fluid.29.1.435
http://dx.doi.org/10.1063/1.870348
http://dx.doi.org/10.1017/s0022112003005299
http://dx.doi.org/10.1103/physreve.78.036313
http://dx.doi.org/10.1146/annurev.fluid.32.1.1
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122015
http://dx.doi.org/10.1103/physrevlett.115.114502
http://dx.doi.org/10.1126/science.aab0751
http://dx.doi.org/10.1017/s0022112099007533
http://dx.doi.org/10.1016/s0167-2789(98)00266-8
http://dx.doi.org/10.1063/1.1852578
http://dx.doi.org/10.1063/1.1852578
http://dx.doi.org/10.1103/physreve.74.046302
http://dx.doi.org/10.1063/1.3638618
http://dx.doi.org/10.1088/0004-637x/796/2/97
http://dx.doi.org/10.1103/physreve.90.043005
http://dx.doi.org/10.1016/j.compfluid.2009.10.007
http://dx.doi.org/10.1063/1.1811672
http://dx.doi.org/10.1209/0295-5075/89/54002
http://dx.doi.org/10.1017/jfm.2016.166
http://dx.doi.org/10.1016/j.physd.2010.12.009
http://dx.doi.org/10.1063/1.869334
http://dx.doi.org/10.1016/j.jcp.2015.11.037
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092133
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092133
http://dx.doi.org/10.1063/1.2896287
http://dx.doi.org/10.1063/1.2976818
http://dx.doi.org/10.1063/1.4711369
http://dx.doi.org/10.1007/s10494-015-9631-3
http://dx.doi.org/10.2514/8.11707
http://dx.doi.org/10.2514/8.11707
http://dx.doi.org/10.1063/1.1692577
http://dx.doi.org/10.1017/s0022112000008776

