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Mixture of Probabilistic Principal Component
Analyzers for Shapes from Point Sets
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Abstract—Inferring a probability density function (pdf) for shape from a population of point sets is a challenging problem. The lack of

point-to-point correspondences and the non-linearity of the shape spaces undermine the linear models. Methods based on manifolds

model the shape variations naturally, however, statistics are often limited to a single geodesic mean and an arbitrary number of

variation modes. We relax the manifold assumption and consider a piece-wise linear form, implementing a mixture of distinctive shape

classes. The pdf for point sets is defined hierarchically, modeling a mixture of Probabilistic Principal Component Analyzers (PPCA) in

higher dimension. A Variational Bayesian approach is designed for unsupervised learning of the posteriors of point set labels, local

variation modes, and point correspondences. By maximizing the model evidence, the numbers of clusters, modes of variations, and

points on the mean models are automatically selected. Using the predictive distribution, we project a test shape to the spaces spanned

by the local PPCA’s. The method is applied to point sets from: i) synthetic data, ii) healthy versus pathological heart morphologies, and

iii) lumbar vertebrae. The proposed method selects models with expected numbers of clusters and variation modes, achieving lower

generalization-specificity errors compared to state-of-the-art.

Index Terms—Generative Modeling, Variational Bayes, Model Selection, Graphical Models, Statistical Shape Models

✦

1 INTRODUCTION

ANALYSIS of the natural morphological variability in
a given population of shapes has important appli-

cations in various fields of sciences, such as archeology
[1], [2], biometrics [3], [4], and medical image analysis [5].
Structured shape variability often exists within and across
shape classes. Statistical encoding of these features is highly
desirable, but depending on the complexity of the shapes,
it can be a challenging task. Given a population of training
samples, this problem often boils down to estimating the
probability density function (pdf) over a shape space, where
each sample is represented as a single point. Thus, shape
representation becomes a fundamentally important step for
their statistical analysis.

A plethora of shape representation methods and their
associated spaces exists in the literature [6]. For instance,
shapes can be presented as binary masks obtained by warp-
ing a “mean” shape. To analyze morphological variability,
principal component analysis (PCA) is applied to either the
deformation [7], or the velocity fields generating deforma-
tion fields [8]. A more compact and natural shape represen-
tation can be achieved by continuous or discrete descriptors
of the boundary. For example, continuous curves have been
used to define shape spaces as infinite dimensional Rie-
mannian manifolds [9], [10], [11], [12]. To study 3D objects,
continuous surfaces can be represented by medial atoms [13],
where PCA is applied in the tangent space spanned by the
Riemannian logarithmic mappings at the Karcher mean. In
a simpler setting, surfaces can be parametrized with Fourier
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[14] and spherical harmonics [15], [16], and PCA can be
applied to their corresponding vectors of coefficients. Also,
invariant shape comparison under re-parametrization has
been proposed in [17] as q-maps from S

2 to R
3. However,

these methods are largely limited to study shapes that are
homeomorphic to a sphere (or closed curves in 2D) and their
extensions to more complex structures requires significant
theoretical developments.

Boundary description using a discrete set of points
is another prominent shape expression approach. Due to
their ability to capture variabilities of complex shapes,
not necessarily homeomorphic to spheres, point sets have
been widely popular. The pioneering work of Kendall et
al. [18] showed that shapes having N corresponding D
dimensional points naturally live on Riemannian manifolds:
quotient spaces of pre-shape space of D(N − 1)− 1 dimen-
sional spheres modulo SO(D). The latter denotes the special
orthogonal group, which makes the quotient space invari-
ant under rigid transformations. Despite its mathematical
elegance, computing a shape pdf in this space becomes very
challenging [19]. The non-linearity of the manifold has been
approximated by PCA in the tangent spaces, for instance
in [20] for a tracking application. In a simpler setting linear
Statistical Shape Models (SSMs), proposed in the seminal
work of Coote’s et al. [21], assume that rigidly aligned
point sets lie within a Euclidean space. The hypothesized
linearity of the model allows for using causal PCA, and has
proven to be a pragmatic solution for many shape matching
tasks [6], [22]. However, in the presence of large shape
variations, the non linearity of the shape space demands
more sophisticated analyses (e.g. kernel PCA [23], and PCA
in the tangent space of Euclidean special group [24]).

Piece-wise linear models can offer sensible solutions for
analysis of non-linear data. For morphological variability
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analysis, a shape population can be clustered into subgroups
each having more localized principal modes of variability.
This approach can also be useful from an application point
of view for instance in medical imaging; rather than largely
deforming a single mean shape, each subgroup can be as-
sociated with a particular disorder, gender, age, etc, and the
estimated local means can represent more natural average
anatomies. To this end, Cootes et al. [25] first clustered the
point sets by fitting a Gaussian Mixture Model (GMM), and
then applied PCA locally. However, this approach requires
having point-to-point correspondences, as well as a prede-
termined number of clusters and modes.

Establishing point-to-point correspondences across
training sets is another major challenge of many point set
based shape modeling approaches. Landmarks can slide
on explicitly parametrized boundaries to minimize the
description length of the Gaussian pdf for shapes topo-
logically equivalent to a sphere [26], [27]. Cates et al.
in [28] optimized positions of dynamic particles on the
implicit surfaces to balance the negative entropy of their
distribution on each shape with the positive entropy of
the ensemble of shapes. This method can be applied to
construct statistically compact models from shapes with
arbitrary topologies. In [29], Datar et al. extended [28] to
a shape-age regression model, where the particle positions
and regression parameters are recursively optimized. Al-
ternatively, point correspondences can be resolved without
having an explicit or implicit boundary description. Chui
et al. [30] proposed an Expectation Maximization (EM)
framework to iteratively refine the correspondences, mean
model, and the deformation fields registering the mean to
each case in training sets. Hufnagel et al. [31] applied affine
transformations for registration, and performed a PCA on
the heuristically driven “virtually correspondent” points.
Similarly, in [32], the authors used rigid transformations to
estimate the emerging mean model and its point count by
enforcing sparsity, eliminating insignificant model points. A
pair-wise deformable point set registration framework, also
based on EM, was proposed by Myronenko et al. in [33].
Rasoulian et al. extended [33] to a group-wise registration
scenario in [34]. However, they rely on a post PCA of the
deformation fields to derive SSM, and manually select the
model parameters. Although the aforementioned methods
mitigate the point correspondences, the application of PCA
assumes Gaussian pdfs. In the seminal work [35], Vail-
lant et al. proposed shape representation using currents
defined as discrete set of barycenters of mesh cells and
their corresponding surface normal vectors. A Hilbertian
inner product directly defined the distance in the space of
the currents, avoiding point correspondences problem. In
[36], Durrleman et al. derived sparse mean and principal
variation modes for the currents. Although elegant, only
a single mean was considered disallowing decomposition
of the shape space into pathological subtypes. Moreover, a
proper Gaussian pdf for currents was not fully developed,
thus shape probabilities could not be quantified.

In summary, despite some significant contributions, a
rigorous development of normalized shape pdfs on non-
linear manifolds is still pending, and the existing solutions
are complex and computationally expensive. Statistics are
often limited to the variations around a single population

mean, not necessarily representing any of the shape sub-
populations, with an arbitrary number of variation modes.
Relaxing the manifold assumption, we propose a full prob-
abilistic framework that captures the non-linearity of the
morphological variations through a piecewise linear model
by clustering the population into smaller and more ho-
mogeneous groups. As a result, the estimated local means
are more typical to shape subgroups associated with par-
ticular disorders, gender, etc. Our method is based on a
fully Bayesian model, which allows a proper statistical
determination of all the discrete parameters (number of
clusters/modes) from the data.

In this paper, we present a generative model to infer
the pdf for unstructured, rigidly aligned point sets hav-
ing no point-to-point correspondences. The framework is
a piecewise linear model for joint clustering of point sets,
and estimating the local modes of variations in each cluster.
Points at each set are regarded as samples from a low
dimensional GMM, whose means are concatenated to form
higher dimensional vectors. These vectors are considered as
samples from a Mixture of Probabilistic Principal Compo-
nent Analyzers (PPCA) [37]. The latter is a high dimensional
GMM, where the covariance matrices of its clusters are
explicitly decomposed to subspaces of local principal as well
as random (isotropic) variations. An inference algorithm
based on Variational Bayes (VB) [38], [39] is proposed for
unsupervised learning of class labels and variations. In
summary, the following contributions are made:

• Using mixture of PPCA, a larger class of shape pdfs is
modeled, leading to more realistic group means and local
variation modes. Unlike [25], variation modes are explic-
itly modeled, eliminating the post PCA step. Moreover,
we handle point sets having no point-to-point correspon-
dences and derive a lemma for shape prediction and
projection to the space spanned by the local PPCA’s.

• We propose a full Bayesian model and provide an explicit
tight lower bound on the model evidence given data. By
maximizing the later, discrete parameters such as numbers
of clusters and variation modes are determined, enabling
automatic model selection.

• Ghahramani et al. [39] apply VB for inferring mixtures
of subspace analyzers from training vectors having equal
lengths. We extend it to a challenging case where these
vectors are latent and infer them given point sets with
variable point counts.

This paper is a comprehensive extension to our prelimi-
nary conference paper in [40]: i) We have revised the graph-
ical model, treating the precision of the variation modes
as random variables for a more consistent model selection
performance, ii) An explicit form for the lower bound on
the model evidence is derived, and extensive experiments
showing a good performance are demonstrated. We also
show that models having higher evidence often result in
concurrently small generalization and specificity errors, iii)
We study an additional large data set containing 100 ver-
tebra models. Being non-homeomorphic to a sphere, these
data sets pose special challenges to train SSMs by Davies et
al. [27] and Kelemen et al. [16]. Thus the results are compared
to a closely related state-of-the-art method proposed by
Rasoulian et al. [34], as well as a PCA based approach
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Figure 1. Conceptual representation of the proposed generative model
with J = 2 PPCA clusters with L = 1 principal modes each. Non-linear
shape variation (along the green line) is captured in a piece-wise form
linear around the local means (µ̄j ) using the principal modes (Wj ). The
projection of a point set Xk on each space, µjk, is a linear combination
of µ̄j (with M model points) and loaded Wj ’s (j = 1, 2, in this example).
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Figure 2. The graphical representation of the proposed model; shaded
and hollow circles represent observed and latent variables, respectively,
arrows imply the dependencies and plates indicate the number of in-
stances.

proposed by Hufnagel et al. [31], iv) A new lemma for shape
prediction along with extensive proofs are provided.

In Section 2 our generative model is presented. To derive
closed forms for the posteriors, the priors are defined as
conjugates to the presumed likelihood distributions. The
derivations and the model evidence are given in Appendix
A-E, available on-line through supplementary material. In
Section 3, we describe our synthetic and real data sets,
which are derived from normal and pathological hearts and
lumbar vertebra models. The results of model selection and
comparison to the state-of-the-art are then provided. Finally,
we conclude and discuss the paper in Section 4.

2 METHODS

2.1 Probabilistic Generative Model

Our observation consists of K point sets, denoted as Xk =
{xkn}

Nk

n=1, 1 ≤ k ≤ K , where xkn is aD dimensional feature
vector corresponding to the nth landmark in the kth point
set. The model can be explained as two interacting layers
of mixture models. In the first (lower-dimension) layer, Xk

is assumed to be a collection of D-dimensional samples
from a GMM with M Gaussian components. Meanwhile,
by concatenating the means of the GMM (with a consistent
order), a vector representation for Xk can be derived inM ·D
dimension. Clustering and linear component analysis for Xk

takes place in this space.
More specifically, we consider a mixture of J probabilis-

tic principal component analyzers (MPPCA). A PPCA is es-
sentially anM ·D-dimensional Gaussian specified by a mean
vector, µ̄j ∈ RMD , 1 ≤ j ≤ J , and a covariance matrix

having a subspace component in the form of WjW
T
j [37].

Here, Wj is a MD × L dimensional matrix, whose column

l, i.e. W
(l)
j , represents one mode of variation for the cluster

j. Let vk be an L dimensional vector of loading coefficients
corresponding to Xk and let us define: µjk = Wjvk + µ̄j .
These vectors can be thought of as variables that bridge the
two layers of our model: In the higher dimension, µjk is
a re-sampled representation of Xk in the space spanned by
principal components of the jth cluster; meanwhile, if we
partition µjk into a series of M subsequent vectors, and

denote each as µ
(m)
jk , we obtain the means of D-dimensional

Gaussians of the corresponding GMM. A conceptual rep-
resentation of the proposed generative model summariz-
ing the outlined descriptions is given in Figure 1. Note
that in principle the proposed shape space is only a piece-
wise linear model: local deformations within each shape
class are captured linearly using the corresponding class
specific PPCA model; whereas more global deformations
are associated with differences across various shape classes
(hence captured using multiple PPCA’s). In this regard, our
proposed model is overall non-linear.

Let Zk = {zkn}
Nk

n=1 be a set of Nk, 1-of-M coded
latent membership vectors for the points in Xk. Each
zkn ∈ {0, 1}M is a vector of zeros except for its arbitrary
mth component, where zknm = 1, indicating that xkn is a
sample from the D-dimensional Gaussian m. The precision
(inverse of the variance) of Gaussians is globally denoted
by βID . Similarly, let tk ∈ {0, 1}J be a latent, 1-of-J coded
vector whose component j being one (tkj = 1) indicates the
membership of the Xk to cluster j. The conditional pdf for
xkn is then given by:

p(xkn|zkn,tk,β,W,vk) =
∏

j,m

N (xkn|µ
(m)
jk , β

−1ID)
zknmtkj (1)

where W = {Wj}
J
j=1 is the set of principal component

matrices. To facilitate our derivations, we introduce the
following prior distributions over Wj , vk, and β, which are
conjugate to the normal distribution in Eqn. (1):

p(Wj |ωj) =
∏

l

p(W
(l)
j |ωjl) =

∏

l

N (W
(l)
j |0, ω−1

jl I) (2)

p(ωj) =
∏

l

p(ωjl) =
∏

l

Gam(ωjl|ε0, η0) (3)

p(vk) = N (vk|0, I) (4)

p(β) = Gam(β|a0, b0). (5)

Here, we have assumed the columns of Wj are statistically
independent variables having normal distributions. The
precision of the lth distribution is given by the correspond-
ing component of the vector ωj and denoted by ωjl. We
assume that the latter follows a Gamma distribution as we
look for a conjugate form to the Gaussian distribution in
Eqn. (2). Conjugacy (of the priors to the likelihood distribu-
tions) simplifies our close form derivations of the posteriors.
Next, we respectively denote the mixture weights of GMMs
and MPPCA by πz and πt vectors, each having a Dirichlet
distribution as priors:

p(πz) = Dir(πz|λz0), p(πt) = Dir(πt|λt0). (6)
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The hyper-parameters are set as η0 = a0 = b0 = 10−3,
λz0 = λt0 = 1.0 and ln ε0 = −0.5MD ln(0.5MD) (see Ap-
pendix Section E)1.

The conditional distributions of membership vectors of
zkn (for points) and tk (for point sets) given mixing weights
are specified by two multinomial distributions:

p(zkn|π
z) =

∏

m

(πz
m)

zknm , p(tk|π
t) =

∏

j

(πt
j)

tkj
(7)

where πz
m ≥ 0, πt

j ≥ 0 are the components m, j of
πz, πt, respectively. We now construct the joint pdf for
the sets of all random variables, by assuming (conditional)
independence and multiplying the pdfs where needed. Let
X = {Xk}

K
k=1, Z = {Zk}

K
k=1, V = {vk}

K
k=1, Ω = {ωj}

J
j=1,

and T = {tk}
K
k=1, then the distributions of these variables

can be written as:

p(W|Ω) =
∏

j

p(Wj |ωj), p(Ω) =
∏

j

p(ωj) (8a)

p(Z|πz) =
∏

k

p(Zk|π
z), p(Zk|π

z) =
∏

n

p(zkn|π
z)(8b)

p(T|πt) =
∏

k

p(tk|π
t), p(V) =

∏

k

p(vk) (8c)

p(X|Z,T,W,V, β) =
∏

k

p(Xk|Zk, tk, β,W,vk) (8d)

p(Xk|Zk, tk, β,W,vk) =
∏

n

p(xkn|zkn, tk, β,W,vk). (8e)

Lastly, denoting the set of latent variables as
θ = {Z,T,W,Ω,V,πt,πz, β}, the distribution of the
complete observation is modeled as

p(X,θ) = p(X|Z,T,W,V, β)p(Z|πz)p(πz)p(T|πt)p(πt)

× p(W|Ω)p(Ω)p(V)p(β). (9)

Figure 2 is a graphical representation for the generative
model considered in this paper, which shows the hypoth-
esized dependencies of the variables.

2.2 Approximate Inference

Our objective is to estimate the posterior probabilities of the
latent variables, given the observed ones, i.e. to infer p(θ|X).
However, this direct inference is analytically intractable thus
an approximated distribution, q(θ), is sought. Owing to
the dimensionality of the data, we prefer Variational Bayes
(VB) over sampling based methods. The VB principle for
obtaining q(θ) is explained briefly. The logarithm of the
model evidence, i.e. ln p(X) 2, can be decomposed as
ln p(X) = L+KL(q(θ)||p(θ|X)), where 0 ≤ KL(·||·) denotes
the Kullback-Leilber divergence, and

L =

∫

q(θ) ln
p(X,θ)

q(θ)
dθ ≤ ln p(X) (10)

is a lower bound on ln p(X). To obtain q(θ), the KL di-
vergence between the true and the approximated posterior
should be minimized. However, this is not feasible because
the true posterior is not accessible to us. On the other hand,

1. The model evidence is insensitive to these settings due to summa-
tion of the hyper-parameters with larger values.

2. More precisely, p(X) is conditioned on parameters with no prior
distribution. Hence, it is equivalently referred to as marginal likelihood.

minimizing KL is equivalent to maximizing L w.r.t. q(θ)
since p(X), as the left side of the relation above, is indepen-
dent of q(θ). Thus, q(θ) can be computed by maximizing L
as a tight lower bound on ln p(X).

We approximate the true posterior as a factorized form,
i.e. , q(θ) =

∏

i q(θi), where q(·) is the approximated
posterior, and θi refers to any of our latent variables. This
factorization leads to the following tractable result: let θi be
the variable of interest in θ, then the variational posterior of
θi can be derived using

ln q(θi) = 〈ln p(X,θ)〉θ−θi + o.t. (11)

where p(X,θ) is given in Eqn. (9), 〈·〉θ−θi denotes the
expectation w.r.t. to the product of q(·) of all variable in
θ − θi, and o.t. refers to terms not depending on θi. Notice
that these variational posteriors are coupled, thus starting
from an initialized status, we iteratively update them until a
convergence or a maximum number of iterations is arrived.

2.3 Update of Posteriors

In this section, we provide update equations for the varia-
tional posteriors. Due to conjugacy of priors to likelihoods,
these derivations are done by inspecting expectations of
logarithms and matching posteriors to the corresponding
likelihood template forms. To keep our notation uncluttered,
we use the following conventions: i) Unless mentioned by
an explicit sub-index, 〈·〉 denotes the expectation w.r.t. the
q(·) distributions of all random variables in the angles
except for the variable in the query, ii) Sub-indices (·)l
and (·)lr specify element numbers in a vector or matrix,
respectively, iii) Parenthetical super-indices (·)(m), (·)(m,n)

specify the D and D × D dimensional block numbers of
the MD and MD×MD vectors and matrices, respectively,
iv) A single numbered super-index such as (l) applied to a
matrix specifies the lth column in the matrix.

2.3.1 Update of q(Z)

Starting from Z variables, following Eqn. (11) and given
Eqn. (1) we have

ln q(Zk) =
∑

n

[

〈ln p(xkn|zkn,tk,β,W,vk)〉+ 〈ln p(zkn|π
z)〉

]

=
∑

n,m

zknm
[∑

j

〈tkj〉〈lnN (xkn|µ
(m)
jk , β

−1ID)〉

+ 〈lnπz
m〉

]

+ o.t.

=
∑

n,m

zknm ln ρknm + o.t. (12a)

ln ρknm = −
〈β〉

2

∑

j

〈tkj〉〈|xkn − µ
(m)
jk |2〉+〈lnπz

m〉. (12b)

This result implies that q(Zk) ∝
∏

m,n ρ
zknm

knm , and given the
fact that

∑

m q(zknm) = 1, we arrive at the following results

q(Zk) =
∏

m,n

(rknm)zknm , q(Z) =
∏

k

q(Zk) (13)

where rknm = ρknm/
∑

m′ ρknm′ , and 〈zknm〉 = rknm [38].

Furthermore, by noticing that 〈µ
(m)
jk 〉 = 〈µjk〉

(m) and
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Cov[µ
(m)
jk ] = Cov[µjk]

(m,m)
, the first term in Eqn. (12b) can

be directly computed using the expectations of W and V as

〈|xkn − µ
(m)
jk |2〉 = |xkn−〈µjk〉

(m)|2+Tr
[
Cov[µjk]

(m,m)
]
(14)

where

〈µjk〉 = 〈Wj〉〈vk〉+ µ̄j , (15a)

Cov[µjk]=〈Wj〉Cov[vk]〈Wj〉
T+
∑

l

〈vkv
T
k 〉llCov[W

(l)
j ] (15b)

A proof for (15b) is given in Appendix A (available on line).

2.3.2 Update of q(T)

Next, we compute the variational posterior of T variables.
Following Eqn. (11) we have

ln q(tk)=
∑

j

tkj
[∑

m,n

〈zknm〉〈lnN (xkn|µ
(m)
jk , β

−1ID)〉+〈lnπ
t
j〉
]

=
∑

j

tkj ln ρ
′
kj + o.t. (16a)

ln ρ′kj = −
〈β〉

2

∑

m,n

rknm〈|xkn − µ
(m)
jk |2〉+〈lnπt

j〉. (16b)

Ignoring all j-independent terms the above equation can be
written as

ln ρ′kj = −
〈β〉

2

∑

m

(∑

n

rknm
)

〈|µ
(m)
jk |2〉+ 〈lnπt

j〉

+〈β〉
∑

m

〈µ
(m)
jk 〉T

(∑

n

rknmxkn

)

+ o.t. (17)

To simplify the rest our notations, we introduce the follow-
ing auxiliary variables:

Rkm =
∑

n

rknm (18a)

Rk = Diag(Rk1 · · ·Rk1
︸ ︷︷ ︸

D copies

, · · · , RkM · · ·RkM
︸ ︷︷ ︸

D copies

) (18b)

x̄km =
∑

n

rknmxkn, x̄k = [x̄T
k1, · · · , x̄

T
kM ]T . (18c)

Plugging Eqn. (18b-18c) back into Eqn. (17), it is easy to see
that

ln ρ′kj=〈β〉Tr
[
−

1

2
Rk〈µjkµ

T
jk〉+ 〈µjk〉x̄

T
k

]
+ 〈lnπt

j〉. (19)

Now, comparing Eqn. (16) to Eqn. (12), and following the
results obtained in Eqn. (13), we can write

q(tk) =
∏

j

(r′kj)
tkj , q(T) =

∏

k

q(tk) (20)

where r′kj = ρ′kj/Σj′ρ
′
kj′ , and 〈tkj〉 = r′kj .

2.3.3 Update of q(W)

To obtain the posterior of the principal components, follow-
ing Eqn. (11), we have

ln q(W
(l)
j )=

∑

k,n,m

rknm〈tkj〉〈lnN (xkn|µ
(m)
jk , β

−1ID)〉W( 6=l)
j ,vk

+〈lnN (W
(l)
j |0, ω−1

jl I)〉ωjl
+ o.t.

= −
〈β〉

2

∑

k,m,n

〈tkj〉rknm〈|xkn − µ
(m)
jk |2〉

W
( 6=l)
j ,vk

−
〈ωjl〉

2
|W

(l)
j |2 + o.t. (21)

Using the auxiliary variables introduced through Eqn. (18b-
18c), and in an analogy to the result in Eqn. (19), Eqn. (21)
can be written as

ln q(W
(l)
j )=〈β〉

∑

k

〈tkj〉Tr
[−1

2
〈Rkµjkµ

T
jk+µjkx̄

T
k 〉W( 6=l)

j ,vk

]

−
〈ωjl〉

2
|W

(l)
j |2 + o.t. (22)

In Appendix B we have shown that with further elabora-

tion, the posterior of W
(l)
j is a normal distribution with the

following mean and covariance

Cov[W
(l)
j ] =

[
〈ωjl〉I+ 〈β〉

∑

k

〈tkj〉〈vkv
T
k 〉llRk

]−1
, (23a)

〈W
(l)
j 〉 = 〈β〉Cov[W

(l)
j ]

∑

k

〈tkj〉Qkj
(l), (23b)

q(W
(l)
j ) = N

(
W

(l)
j |〈W

(l)
j 〉,Cov[W

(l)
j ]

)
(23c)

with the auxiliary matrix Qkj defined as

Qkj = x̄k〈vk〉
T −Rkµ̄j〈vk〉

T

−Rk〈Wj〉
[

〈vkv
T
k 〉 − Diag(diag〈vkv

T
k 〉)

]

(24)

where the inner diag operator copies the main diagonal of
〈vkv

T
k 〉 into a vector, and the outer Diag transforms the

vector back into a diagonal matrix. Thus, the posteriors for

modes of variations are given as q(W) =
∏

j,l q(W
(l)
j ).

2.3.4 Update of q(V)

Next, we compute the a variational posterior form for the
loading vectors V. By referring to Eqn. (11), for vector vk

we have

ln q(vk)=
∑

j,n,m

〈tkj〉rknm〈lnN (xkn|µ
(m)
jk , β

−1ID)〉Wj ,β

+〈lnN (vk|0, I)〉+ o.t.

=−
〈β〉

2

∑

j,n,m

〈tkj〉rknm〈|xkn−µ
(m)
jk |2〉Wj

−
1

2
vT
k vk+o.t.

=−
〈β〉

2

∑

j

〈tkj〉Tr
[
Rk〈µjkµ

T
jk〉Wj

− 2〈µjk〉Wj
x̄T
k

]

−
1

2
vT
k vk + o.t. (25)

The last identity follows from Eqn. (17) and auxiliary vari-
ables introduced in Eqn. (18b-18c). As shown in Appendix
C, with further simplification of the right hand side of Eqn.
(25), we derive q(vk) as the following normal distribution

q(vk) = N (vk|〈vk〉,Cov[vk]), q(V)=
∏

k

q(vk) (26a)

Cov[vk] =
[

I+ 〈β〉
∑

j

〈tkj〉〈W
T
jRkWj〉

]−1

(26b)

〈vk〉 = 〈β〉Cov[vk]
∑

j

〈tkj〉〈Wj〉
T (x̄k −Rkµ̄j) (26c)
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2.3.5 Update of q(β)

Similarly, the posterior of the precision variable β can be
obtained as follows

ln q(β) =
∑

k,n,m,j

〈tkj〉rknm〈lnN (xkn|µ
(m)
jk , β

−1ID)〉

+ lnGam(β|a0, b0) + o.t.

=
ND

2
lnβ −

β

2

∑

k,n,m,j

〈zknm〉〈tkj〉〈|xkn − µ
(m)
jk |2〉

+(a0 − 1) lnβ − b0β + o.t. (27)

Factoring terms linear in β and lnβ, it is easy to see that the
posterior is a Gamma distribution specified by

q(β) = Gam(β|a, b), (28a)

b = b0 +
1

2

∑

k,n,m,j

〈zknm〉〈tkj〉〈|xkn − µ
(m)
jk |2〉 (28b)

a = a0 +ND/2. (28c)

Notice that to compute the expectation in the right hand side
of Eqn. (28b), we use the identity in Eqn. (14). Under these
definitions, we have 〈β〉 = a/b and 〈lnβ〉 = ψ(a) − ln(b),
where ψ is the Digamma function [38].

2.3.6 Update of q(πt), q(πz)

Taking the logarithm of Eqn. (9) and the expectation accord-
ing to Eqn. (11), we have

ln q(πt)=(λt0 − 1)
∑

j

lnπt
j+

∑

k,j

〈tkj〉 lnπ
t
j+o.t. (29a)

ln q(πz)=(λz0 − 1)
∑

m

lnπz
m+

∑

k,n,m

〈zknm〉 lnπz
m+o.t. (29b)

Factoring linear forms in lnπz
m and lnπt

j , it is easy to see
that the posteriors of the mixing coefficients are Dirichlet
distributions defined by the following identities

λtj = λt0 +
∑

k

〈tkj〉, q(πt) = Dir(πt|λt) (30a)

λzm = λz0 +
∑

k,n

〈zknm〉, q(πz) = Dir(πz|λz) (30b)

Using (30a) and (30b), the expectations related to the mix-
ing coefficients are computed as 〈πz

m〉 = λzm/
∑

m′ λzm′ , and
〈lnπt

j〉 = ψ(λtj)− ψ(
∑

j′ λ
t
j′) .

2.3.7 Update of q(Ω)

To compute the posteriors of the precision variables in Ω,
we first consider the posterior of ωjl. From Eqn. (9), and
following Eqn. (11) we have

ln q(ωjl) = 〈lnN (W
(l)
j |0, ω−1

jl I)〉
W

(l)
j

+ lnGam(ωjl|ε0, η0)

=
MD

2
lnωjl −

1

2
ωjl〈|W

(l)
j |2〉

+(ε0 − 1) lnωjl − η0ωjl + o.t. (31)

Therefore q(ωjl) can be written as the following Gamma
distribution

q(ωjl) = Gam(ωjl|εjl, ηjl), q(Ω) =
∏

j,l

q(ωjl) (32a)

ηjl = η0 +
1

2
〈|W

(l)
j |2〉, εjl = ε0 +MD/2. (32b)

Furthermore, based on the results obtained in (32a)-
(32b), we can compute expectations of 〈ωjl〉 = εjl/ηjl, and
〈lnωjl〉 = ψ(εjl)− ln(ηjl).

2.3.8 Update of µ̄j

Finally, by maximizing the lower bound in Eqn. (10) with
w.r.t. µ̄j , we obtain the following closed form expression

µ̄j =
[∑

k

〈tkj〉Rk

]−1[∑

k

〈tkj〉(x̄k −Rk〈Wj〉〈vk〉)
]

. (33)

2.4 The explicit form for the lower bound

In Appendix E, we have shown that the explicit form of the
lower bound on the model evidence can be derived as

L = − a ln b+
∑

j,l

[
− εjl ln ηjl +

1

2
ln |W

(l)
j |

]

+lnΓ(Mλz0)−M ln Γ(λz0)+
∑

m

ln Γ(λzm)−ln Γ(
∑

m

λzm)

+ lnΓ(Jλt0)− J ln Γ(λt0) +
∑

j

ln Γ(λtj)− ln Γ(
∑

j

λtj)

−
∑

k,n,m

rknm ln rknm −
∑

k,j

〈tjk〉 ln〈tjk〉

+
∑

k

[L

2
+

1

2

(
ln |Cov[vk]| − 〈|vk|

2〉
)]
. (34)

In Section 3.2, we maximize this to select the optimal
discrete parameters such as M , L, and J , given data.

2.5 Shape Projection Using Predictive Distribution

For a new test point set Xr = {xrn}
Nr

n=1, with K < r, we

can obtain a model projected point set as X̂r = {〈x̂rn〉}
Nr

n=1,
where

〈x̂rn〉 =

∫

x̂rnp(x̂rn|Xr,X)dx̂rn. (35)

Here, the predictive distribution should be computed by
marginalizing the corresponding latent and model variables
by

p(x̂rn|Xr,X)=
∑

zrn,tr

∫

p(x̂rn|zrn, tr, β,W,vr)

×p(zrn,tr,β,W,Ω,vr|Xr,X)dWdvrdΩdβ. (36)

Because this integral is analytically intractable, we use an
approximation for the posterior assuming the factorized
form

p(zrn,tr,β,W,Ω,vr|Xr,X)≈q(zrn)q(tr)q(vr)q(β)q(W)q(Ω)

Thus, having Xr we iterate over updating q(zrn), q(tr) and
q(vr), and replace q(β) and q(W) from the training step, ig-
noring the influence of Xr on W and β. This process isolates
the test and training phases. Thus, the generalization errors
are directly associated with the quality of the off-line trained
models. Under these approximations, we show that a closed
form expression for point projection can be obtained using
the following lemma
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(a) (b)

Figure 3. Clustering and mode estimation of synthetic point sets, color
coded by their types. (a) Left : overlay of K = 80 point sets generated
using M̂ = 50 model points, Ĵ = 2 clusters, and L̂ = 1 variation
mode, Right : overlay of K = 120 point sets sampled from M̂ = 50
model points, Ĵ = 3 clusters, and L̂ = 2 variation modes; (b) Overlay of
the estimated corresponding clustering and variation modes. The match
of the colors and major structures between (a) and (b), shows a good
clustering and estimation of principal variation modes.

Lemma 1. Given the definitions in (35) and (36), the projection
of point xrn can be computed as

〈x̂rn〉 =
∑

j,m

〈tjr〉〈zrnm〉〈µjr〉
(m). (37)

Furthermore, x̂rn is placed within the convex hull made by
〈µjr〉

(m) points.

We use (37) to obtain the model predicted point set X̂r

given Xr . A proof is given in Appendix D (available on line).

2.6 Initialization and Computational Burden

To initialize the clusters of point sets, we adopt ideas
from text clustering, where each document (point set) is
represented as a bag of features (BOF) vector [41], [42]. In
order to construct our set of frequent “geometric” words,
we consider identifyingM locations with dense populations
of D dimensional points. To that end, a GMM with M
Gaussians is fit to the set of all available points. Next, for
any point set such as Xk an M dimensional BOF vector is
constructed by: computing posterior probability of Gaussian
component m given a point in Xk, and then summing these
posteriors over all points in Xk. Next, the computed vectors
are clustered using a k-means algorithm [43], and the labels
are used to initialize cluster means and variation modes
using the following procedure. For the Gaussian component
m in the GMM, a corresponding point from Xk is identified
having the maximum posterior probability in Xk. Iterating
over M Gaussian components, all the corresponding points
from Xk are identified and concatenated to form an MD
dimensional vector. This procedure is then repeated over K
training point sets. Next, by applying PCA at each cluster,
we identify the mean µ̄j , Wj as the first L components,
and vk as the projections of the original vectors to these
components. Finally, β is initialized as the component wise
average L2 difference of the original and the PCA projected
vectors. We have observed that for 50 point sets, each
having 4000 landmarks, a convergence is achieved by 30
VB iterations in nearly an hour (see Figure 10).

3 RESULTS

We evaluate our method using synthetic and real data sets
obtained from cardiac MR and vertebra CT images. The
reliability of the lower bound in Eqn. (34) as a criterion to

(a) (b) (c)

Figure 4. Short axis MR images from normal (a), PH (b), and HCM
patients (c). Compared to normal hearts: the RV in the PH patients tend
to be larger, and LV in the HCM patients appears thicker.

(a) (b) (c) (d) (e)

Figure 5. Short axis CT images from lumbar for three sample patients.
Columns (a)-(e) correspond to L1-L5 vertebrae, respectively. Compared
to L1-L4 vertebrae, the body of the L5 vertebra in column (e) seem more
flattered around the pedicles, forming “bat” like structures.

select discrete parameters of the model (i.e. , the numbers
of: point set clusters J , modes of variations L, and model
points M ) is demonstrated for all data types.

We also measure generalization and specificity errors,
and compare them to the state-of-the-art. Generalization
quantifies the error between the actual and the model pro-
jected point sets. Specificity is related to the ability of the
model to instantiate correct samples resembling the training
data. We run cross validations by dividing the point sets
into the testing and training subsets. Next, we measure the
generalization by quantifying the average distance between
the test point sets and their model projected variants. To
measure specificity, random point sets are generated, and
the average of the minimum distances between each sample
and training point sets is computed [27]. Three distance
metrics are considered, namely

d(Xk, X̂k) =
1

Nk

∑

x

min
y∈X̂k

||x− y||2

where Nk is the number of points in Xk, and X̂k denote
the model projected point set obtained in (37). Since d
is asymmetric, we also compute d∗(Xk, X̂k) = d(X̂k,Xk).
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Figure 6. Model evidence versus M for different numbers of point sets
generated in Figure 3.(a): (a)K = 10, (b)K = 40, and (c)K = 80
samples from mixture of two clusters each having one mode of variation;
(d)K = 30, (e)K = 60, and (f)K = 120 samples from mixture of three
clusters with two modes of variations. As the number of training samples
(K) increases maximal evidences are attained at M=M̂ and correct
models are selected.
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Figure 7. Model evidence versus M for mixtures of: (a)55 Normal-PH,
(b)53 Normal-HCM, and (c)100 vertebra point sets.

These quantities measure how two point sets are similar on
the average basis but are not suitable to detect difference in

the details of Xk and X̂k. Therefore, we also measure the
Hausdorff distance

dH(Xk, X̂k)=max
(

max
x∈Xk

min
y∈X̂k

||x−y||2, max
y∈X̂k

min
x∈Xk

||x−y||2
)

.

We compare our model to the basic PCA approach proposed
in [31], and arguably closest work in the literature proposed
by Rasoulian et al. in [34]. In an analogy to our method,
these methods construct SSMs directly from point sets with
no correspondences.

3.1 Description of Point Sets

Synthetic point sets: Given the dependencies of the vari-
ables, ancestral sampling [38] was used to draw 2D point
sets from our generative model. Setting M = 50, we sam-
pled from mixtures of J = 2 clusters with L = 1 mode
of variation, J = 3 clusters having L = 2 modes, and

J = 3 clusters with L = 3 modes. The cluster means (µ̄j ’s)
form radially modulated rings with overlap to make the
clustering challenging (see Figure 3.a).

Cardiac point sets: Three groups of cardiac data sets
including: 33 normals, 22 subjects with Pulmonary Hy-
pertension (PH), and 20 subjects with Hypertrophic Car-
diomyopathy (HCM) were considered. These data sets were
acquired using 1.5 MR scanners, resulting in image matrices
of 256×256×12 in short axial direction and slice thicknesses
of 8-10 mm. To derive cardiac surfaces, the initial shapes
were obtained by labeling the MRI slices, then fitting surface
meshes to the binary images. Each surface mesh was made
using 4000 vertices and registered using [32] to remove
scaling, rotation and translation before our analysis.

These subjects differ in their cardiac morphologies. For
PH patients, which are associated with pulmonary vascular
proliferation [44], complex shape remodeling of both the left
and right ventricles occurs. As a result, the RV becomes
very dilated, pushing onto the LV, which deforms and
loses its roundness [45]. On the other hand, HCM [46] is
a condition in which the muscle of the heart shows an
excessive thickening, and the most characteristic feature is
a hypertrophied LV (asymmetric thickening involving the
ventricular septum, see Figure 4).

We ignore the patient labels and cluster two populations
made of Normal-PH and Normal-HCM patients, indepen-
dently. By evaluating the lower bound for each population
for different numbers of clusters and modes, and investigate
whether the proposed lower bound can correctly identify
the underlying number of morphological classes.

Vertebra point sets: The dataset was composed of 20
CT scans from patients suffering from low back pain. The
lumbar L1 to L5 vertebrae (shown in Figure 5) in each
patient were manually segmented. Then, the binary masks
were converted to surface meshes each having 4000 vertices.
We then registered these vertices, removing scaling, rotation
and translation and used them for the subsequent cluster-
ing and variation analysis. The morphologies of lumbar
vertebrae are perceived differently, in particular, when L1-
L4 vertebra samples in Figure 5.(a)-(d) are compared to L5
samples in (e) having ”bat” like patterns. In the next section,
we show that the model evidence is maximum when we
consider two clusters representing L1-L4 and L5 classes.

3.2 Model Selection

In this section, our objective is to evaluate the lower bound
for different settings of model parameters (J, L,M ), and
verify that the maximum L (model evidence) is attained
at the correct values of those parameters. To that end, we
use the synthetic point sets generated with known ground

truth parameters (Ĵ , L̂, and M̂ ). By varying the number
of training point sets (K), we show that for adequately

large K , the correct model (with maximum L at Ĵ , L̂, and

M̂ ) is selected. Furthermore, to remove the bias made by
initialization, we fit the model 5 times and report the means
values and standard deviations.

3.2.1 Model evidence versus variable M

Figure 6 shows the variation of the L versus M for the
synthetic point sets shown in Figure 3.a (generated from
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Figure 8. Model evidence versus L and J parameters, evaluated through ten fold cross-validations. At each fold, a model was fit to the training
data, thus obtaining 10 different L values for various mixtures of: (a) Synthetic samples obtained with ground truth parameters of L̂ = 3 and Ĵ = 3,
(b) Normal-PH, (c) Normal-HCM, and (d) vertebra point sets. The upper charts in (b)-(d) correspond to the lower counterparts in a finer scale.
Comparing the means (denoted by crosses), it can be noticed that maximal model evidences (L) happen in the correct underlying model in (a), and
clinically plausible models in (b)-(d), indicating presence of two clusters.

mixtures having ground truth parameters of M̂ = 50, Ĵ = 2,

L̂ = 1, and M̂ = 50, Ĵ = 3, L̂ = 2). For each setting, the
number of observed point sets K varied in an increasing
order through panels (a)-(c), and (d)-(f), respectively. In
both cases, when K is small (i.e. (a) and (d)), the model
evidence is maximal for overly simple models with M , J
and L values smaller than expected ground truth parame-
ters. However, as K increases, the maximals evidences are
correctly attained at the corresponding M̂ , L̂, and Ĵ (i.e.
(c) and (f)) used to generate the data; suggesting that the
maximum L can identify the correct model with sufficient
training samples. Note that due to marginalization over
latent variables (i.e. , p(X) =

∫
p(X,θ)dθ) in full Bayesian

models, the lower bound on p(X) is penalized for large mod-
els [38] having redundant number of parameters/model
points.

A similar set of experiments were conducted using
three mixtures of real data sets made of 55 Normal-PH, 53
Normal-HCM, and 100 vertebra point sets. Fixing L and J
values, we vary M and show the results in Figure 7. Notice
that in these cases the “correct” models are not known a
priori, therefore we only justify the selected models based on
clinical or physiological interpretations. Considering clus-
tering of Normal-PH cases in (a), we notice the maximum
L is achieved in M = 300, L = 3, and J = 1, suggesting
the presence of only one cluster. This clinically controversial
result, however, can be explained using our analysis of
synthetic point sets. In fact, referring to Figure 6, we already
observed that having a sufficient number of training point
sets is crucial to discover the correct underlying model.
Hence, we believe that having more cases of PH and normal
cases will lead into selection of models having more clusters
and larger M values.

The evaluation of L for Normal-HCM mixture in Fig-
ure 7.(b) shows that the model specified byM = 200, L = 2,
and J = 2 has the largest evidence, which is the expected
number of clusters due to presence of two types of heart
models in the mixture. For vertebra data sets, Figure 7.(c)
reveals that the model having M = 1250, L = 1 and J = 2
clusters is optimal. The two clusters correspond to L5 and

L1-L4 vertebrae, which is expected due to large morpholog-
ical discrepancy between these groups (see Figure 5).

Notice that M is significantly larger for optimal models
trained using vertebrae samples compared to cardiac data
sets, which can be due to the larger number of available
training samples in the former case. Indeed, for synthetic
data, we saw that with increasing number of training sam-
ples, models with larger M values show higher evidence.
In the rest of our analysis with cardiac point sets, however,
we use models having M = 800 points, J = 2 classes and
L = 1 mode of variation. This allows us to represent the
general structure of the heart using an adequate numbers of
model points.

3.2.2 Model evidence versus variable L and J

Next, we investigate the suitability of L to select the cor-
rect number of clusters and modes, under fixed M values
(obtained from previous section). Because our objective is
also to link the model evidence to specificity and general-
ization errors in the next section, we perform 10 folds cross-
validations, obtaining 10 L values for each L and J settings.
Also, for the rest of experiments using synthetic samples,
we generate a new set of 150 point sets from a model having

Ĵ = 3 clusters and L̂ = 3 modes of variations. As shown
in Figure 8.(a), the maximal evidence is correctly found for
this setting. Also, evaluations using mixtures of Normal-
PH, Normal-HCM, and Vertebrae cases in Figure 8.(b)-(d)
reveals the maximum of L for L = 1 mode and J = 2
clusters, which seem to be plausible models.

3.2.3 Sensitivity to hyper-parameters

As stated before, due to conjugacy the variational posteriors
have the same form as the prior distributions. However,
more importantly, their parameters are updated to sec-
ondary values different from the hyper-parameters used in
the priors. For instance, through (30a) and (30b), λt and
λz (controlling sparsity of the Dirichlet distributions) are
effectively determined by data related terms as long as
λt0 ≪

∑

k〈tkj〉 and λz0 ≪
∑

k,n〈zknm〉. Under these con-
ditions, exact setting of the hyper-parameters is not critical.
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Figure 9. Generalization and Specificity errors (in [mm]) of models trained through 10-fold cross-validations using point sets from mixtures of:
(a)Synthetic samples from a model having the ground truth parameters of L̂, Ĵ = 3, (b)Normal-PH, (c)Normal-HCM, and (d)vertebrae. In each
panel, d, d∗, and dH distances are quantified from left to right. For each model, markers and dotted lines indicate the corresponding average and
rough variability of the errors, respectively. The models having maximal evidences (in Figure 8) are placed competitively close to the lower-left
corner in each graph, indicating concurrent small generalization and specificity errors.
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Figure 10. Model evidence versus VB iterations showing conver-
gence and maximizing the lower bound for mixtures of: (a) Normal-PH,
(b)Noraml-HCM, and (c)vertebra point sets.

A similar update mechanism for other parameters can be
seen in (28b)-(28c), and (32b). Consequently, the behavior of
the model evidence in (34), as a function of these secondary
parameters, remains relatively invariant to initial settings
of the hyper-parameters. This is shown in Figure 11, where
the model evidence for the synthetic point sets in Figure 3
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Figure 11. Model evidence for synthetic point sets with L=1,J=2 (a),
and L = 2, J = 3 (b), showing robust maximums at M = M̂ = 50 for
different λz

0
values.

is plotted by varying the number of Gaussian components
(M ) and λz0. As seen, reducing the latter penalizes models
with large M ’s more heavily (favoring more sparse models).
However, across this range of λz0, the maximal evidences are
correctly found in M = 50 used to generate data sets.
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(a) (b) (c) (d) (e)

Figure 12. Sample clustered point sets as: L1-L4(a) and L5(b) verte-
brae, Normal(c), PH(d), and HCM(e) hearts.

3.2.4 Generalization/specificity versus model evidence

We noticed that, given enough training data, the lower
bound in Eqn. (34) can select a correct or clinically plausible
model. A natural question that arises here is: how does the
model evidence relate to more tangible quality measures
such as specificity and generalization errors? To answer the
question, we quantify these errors for the range of models
trained through our cross-validations in Figure 8. For every
model and mixture type considered, we measure the errors
in terms of d/d∗, and dH distances introduced earlier.

Figure 9 shows how model evidence relates to specificity
and generalization errors for the mixtures of: Synthetic

(L̂, Ĵ = 3), Normal-PH, Normal-HCM, and Vertebrae in
panels (a)-(d), respectively. It is interesting to notice that
models with largest evidence values (in Figure 8) corre-
spond to those placed generally close to the lower-left
corners of generalization-specificity planes in Figure 9, indi-
cating concurrently small errors of both types. For instance,
the models specified by J = 2 and L = 1, showing largest
evidence in Figure 8.(d), is the closest to the lower left
corners in the left (d) and middle (d∗) panels in Figure 9.(d).
These observation suggest that models with higher evidence
generally avoid large errors in both benchmarks.

3.2.5 Validation of maximization and clustering errors

Figure 10.(a)-(c) show how the proposed lower bound on
the model evidence is maximized by iterating through the
update equations of the posteriors for the Normal-PH,
Normal-HCM and Vertebra data sets, respectively. As seen,
a good convergence is usually achieved within 30 VB itera-
tions, experimentally validating our derivations. Finally, we
noticed that in clustering mixture of cardiac point sets, 2 out
of 22 PH cases, and 2 out of 20 HCM cases were clustered as
normal data sets. Moreover, none of the L5 vertebrae were
clustered in L1-L4 group and vice versa. Sample clustered
point sets are shown in Figure 12.

3.2.6 Comparison to State-of-The-Art

Having our models selected, we now compare them to state-
of-the-art in terms of generalization and specificity errors.
We consider the method proposed by Rasoulian et al. [34]

(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e) (j)

Figure 13. Means and variation modes for L1-L4(a), L5(b), Normal(c),
PH(d), and HCM(e) point sets with mean models in the middle and
variations in opposite directions at two sides, (f-j) axial and coronal cross
sections of the mean models for each population.

because the hypotheses taken by this method resemble our
assumptions: it constructs SSMs directly from a group of
point sets, and handles complex topologies and lack of
point-to-point correspondences. We additionally compare
our model to the PCA based approach proposed by Huf-
nagel et al. [31] at equal number of model points (M ).

For real point sets, we see that the models with highest
evidence have L = 1 mode and J = 2 clusters (see
Figure 8), therefore, we chose these models for further com-
parison. Furthermore, we set M = 800 for the mixtures of
cardiac point sets, and M = 1250 for the vertebrae when
constructing PCA models using the reference methods. To
determine the number of required PCA modes, we select the
minimum number of modes covering 95% of the trace of the
covariance matrix. The results summarized in Table 1 show
that in the majority of the average distances, our approach
outperforms the methods proposed in [34] and [31]. This
can be due to the model averaging mechanism that exists
in (37), i.e. weighting the prediction according to clustering
(〈tkj〉), and soft-correspondence variables (〈zknm〉).

3.3 Visualization, and qualitative results

To visualize the means and variation modes for the real
point sets, we use our implementation of the proposed
method in [47] to reconstruct surfaces from the computed
mean point sets. We first construct an unsigned distance
map from the points by fitting 2D planes to local point
subsets, then computing distances from these planes. Next,
a geodesic active contour is driven towards the point set
using advection on the distance map.

The 3D representations, cross sections of the means,
and principal variation modes are visualized in Figure 13.
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Table 1
Generalization and Specificity errors (in mm) for the methods proposed in [34], [31], and the selected models with L = 1, J = 2 (significant

differences are in bold (p-value < 0.001)).

Generalization Specificity

Norm-PH Norm-HCM Vertebrae Norm-PH Norm-HCM Vertebrae

Method proposed in [34]
d 3.89±0.23 5.96±0.25 1.60±0.17 3.68±0.02 4.96±0.04 1.47±0.03
d∗ 3.17±0.47 4.48±0.49 1.72±0.27 2.82±0.06 3.95±0.10 1.50±0.07
dH 20.75±3.11 27.60±4.70 12.17±1.92 13.75±0.93 18.56±1.21 7.82±0.45

Method proposed in [31]
d 6.95±1.03 6.01±0.22 1.82±0.26 5.18±0.10 5.21±0.07 1.73±0.05
d∗ 8.72±0.95 3.58±0.23 1.1±0.21 4.21±0.14 3.22±0.11 1.10±0.06
dH 26.2±2.25 18.60±3.09 7.44±1.72 15.57±1.12 14.31±0.79 6.29±0.27

Our method (J = 2, L = 1)
d 4.52±0.18 6.11±0.11 1.85±0.07 2.36±0.35 3.17±0.42 1.09±0.15

d∗ 2.32±0.28 3.13±0.28 1.03±0.11 1.76±0.17 2.38±0.22 0.95±0.09

dH 12.39±1.80 16.32±2.02 6.82±0.80 10.83±2.75 14.08±3.35 5.13±1.55

As seen in panels (a) and (b), the mean of L5 cluster is
significantly wider in centrum and shorter in the transverse
process, compared to the mean of L1-L4 cluster. Moreover,
the variation around the latter generally involves an ex-
pansion of the vertebra body in the lateral direction and
changes over length and rotation of the transverse processes.
Considering the fact that we have normalized the scaling
during the registration, this mode of variation matches the
second principal mode extracted by Rasoulian et al. [34].

Furthermore, in the normal heart, shown in Figure 13.(c)
and (h), LV is significantly larger than RV, and when com-
pared to PH ((d) and (f)) and HCM ((e) and (j)), it is
more spherical. On the other hand, in the PH heart, the
RV is evidently dilated and the LV loses its roundness.
Finally, significant thickening of the septum and shrinkage
of LV are noticeable in the HCM heart. These morphological
variations have been reported for both pathologies [45], [46].

4 CONCLUSION

In this paper, we proposed a generative model to compute a
pdf for point sets with no point-to-point correspondences.
The pdf is formulated in a hierarchical fashion; in D-
dimension, the points in each point set are assumed to
be samples from a mixture of Gaussians. Similar to [30],
we establish soft point-to-point correspondences across the
Gaussian centroids, rather than the observed points. This
enables us to effectively transform the point sets to con-
sistent high dimensional vector representations, made by
concatenating the spatial coordinates of the corresponding
Gaussian centroids of each point set. The key aspect of the
framework, however, is that these high-dimensional vectors
are assumed to be samples from mixtures of principal com-
ponent analyzers [37], extending it to handle point sets.

It is important to notice that information flows in both
directions in the hierarchy. In fact, estimating the means
and modes of variations of clusters in higher dimension
constraints the Gaussian centroids in the lower dimension.
We designed a variational Bayesian (VB) method to infer the
approximate posteriors of unknown variables given data.

Using VB, we were able to compute a tight lower bound
on the model evidence. We showed that by maximizing
the lower bound, we could select models having correct
numbers of model points M , modes of variations L, and
clusters J , provided that a sufficient number of training data

exists. To this end, we relied on mixtures of synthetic point
sets sampled from a ground truth model (e.g. see Figure 8).
We also observed that with inadequate data, simple models
(with smaller M , L, or J values) have larger evidence
(e.g. see Figure 6). This is because when computing model
evidence in a full Bayesian setting, the model complexity
is penalized due to marginalization over hidden variables.
In the presence of inadequate samples, this penalization
dominates the model evidence, undermining the fitness
(likelihood) term, and favoring simpler models. We also
investigated the model selection problem using real point
sets representing mixtures of healthy and diseased hearts
and lumbar vertebrae. Although, in this cases the true
models were not available, the selected models having two
clusters were reasonable due to either clinical interpretation
or our perception of the morphologies of the structures.

We project a given point set to the space of the proposed
mixture of PPCAs using the trained predictive distribution,
by providing (37). Using this relationship, we measured
the specificity and generalization of various models and
established a link between these errors and the model ev-
idence (Figure 9). It is interesting to see that models with
maximum evidence are located competitively close to lower
left corners in generalization-specificity planes for each of
the considered distance types. This observation suggests
that the models selected by our VB approach generally show
small errors of both types. We also compared our framework
to the arguably closest statistical shape modeling approach
proposed by Rasoulian et al. [34]. The results in Table 1
indicate that the proposed model outperforms Rasoulian et
al. and achieves better generalization and specificity errors.
In addition, our method clusters the point sets into various
groups indicating their pathological conditions or intrinsic
morphological properties.

For an improved shape analysis several research direc-
tions can be considered: i) In the current implementation,
the points were simply defined using their three dimen-
sional coordinate values. Consequently, the point-to-point
correspondences between shapes are only established based
on the spatial co-ordinate values. A more accurate corre-
spondence can be established if shape context proposed by
Belongie et al. [48], or shortest path description proposed
by Ling et al. [49] is utilized to make the points more
distinctive. ii) Modeling shapes as GMMs with isotropic
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covariances (parametrized by β−1), the density of mesh
vertices is assumed to be uniform across the shape, sug-
gesting that the proposed model is best suitable for point
sets with homogeneous point distribution. A locally variable
form of the covariance matrices can be implemented in
the cost of increased model complexity, demanding more
data. iii) Designed to process unstructured point clouds,
the current framework ignores the connectivity of vertices
from surface meshes. Connectivities can be encoded using
an enriched/higher dimensional point description based
on heat kernel signatures [50], [51], which are invariant to
isometric transformations. However, this evidently comes at
the expense of increased demand for computational power.

In summary, the proposed model provides a significant
versatility for statistical shape analysis, eliminating the need
for specifying the point-to-point correspondences, number
of model points, clusters, or modes of variation. Being fully
Bayesian, the method favors statistically compact models
[38], where only one or two variation modes are suggested
per each subspace. This is in line with [28], where likewise
our framework, the model complexity is penalized and
statistically “thin” models with minimal number of modes
are obtained. Furthermore, although the method infers
point set labels in an unsupervised fashion, it can easily
handle supervised and semi-supervised training scenarios
simply by not updating the observed labels.

Although, we did not consider a natural shape mod-
eling on manifolds, overall, the model is non-linear and
captures the shape variations using a mixture of smaller
linear (PPCA) subspaces. In this regard, the framework
presents a good compromise between accuracy and prag-
matic usability. Being a general model to analyze multi-
dimensional point sets, we are currently investigating to
further the applications of the proposed framework. The
code has been efficiently implemented in Matlab, and is
available for download (see http://www.cistib.org).
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