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We investigate synchronization in a population of mobile pulse-coupled agents with a view towards
implementations in swarm-robotics systems and mobile sensor networks. Previous theoretical approaches
dealt with range and nearest-neighbor interactions. In the latter case, a synchronization-hindering regime
for intermediate agent mobility is found. We investigate the robustness of this intermediate regime under
practical scenarios. We show that synchronization in the intermediate regime can be predicted by means of
a suitable metric of the phase response curve. Furthermore, we study more-realistic K-nearest-neighbor and
cone-of-vision interactions, showing that it is possible to control the extent of the synchronization-
hindering region by appropriately tuning the size of the neighborhood. To assess the effect of noise, we
analyze the propagation of perturbations over the network and draw an analogy between the response in the
hindering regime and stable chaos. Our findings reveal the conditions for the control of clock or activity
synchronization of agents with intermediate mobility. In addition, the emergence of the intermediate regime
is validated experimentally using a swarm of physical robots interacting with cone-of-vision interactions.
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I. INTRODUCTION

Synchronization refers to a process by which two or
more systems adjust one of their dynamical properties over
time to achieve a coherent behavior by means of their
interaction. As such, synchronization constitutes a perva-
sive concept in natural sciences, as well as in technological
applications. Crickets chirping in unison, pacemaker cells
firing rhythmically, the tide locking of astronomical bodies,
and the coherence of laser beams are but a few examples of
synchronization [1,2].
Since the seminal work of Winfree [3] in the 1960s, a

vast body of research has studied synchronization in
complex networks (see Ref. [4] and the references therein
for a comprehensive review). One approach to synchroni-
zation that has gathered much attention concerns models
where the coupling between units is mediated by pulses.
The work of Mirollo and Strogatz [5] pioneered the
theoretical study of such pulse-coupled oscillators by
determining various conditions under which a network
of globally connected oscillators will always synchronize.
Most of the subsequent work has focused on static

networks [4]. However, in recent years, synchronization
in temporal, or time-evolving, networks has received
increasing attention, more specifically, in networks whose
nodes represent physical agents that move in an environ-
ment and interact with local neighbors [6–17].
The study of such mobile pulse-coupled oscillators

(MPCOs) aims to shed light on the effect that motion-
induced topological changes have on synchronization.
Oscillator mobility leads to novel behavior if the interaction
is restricted to a local neighborhood, forming a time-evolving
network. In general, agent mobility is necessary to achieve
global synchronization. Most of the existent work deals with
random geometric graphs, where two nodes are connected if
the distance between each other is smaller than a certain
range. It is found that, for integrate-and-fire oscillators with
this kind of connectivity, synchronization occurs faster with
higher agent mobility [6,9,16]. This monotonic dependence
is what one would intuitively expect, given that, at high
speeds, all agents interactwith eachother frequently,whereas
at low speeds, the neighborhood of any particular agent does
not often change, leading to a rapid local synchrony but
requiring a longer time to achieve coherence at a global scale
[15]. Prignano et al. [7] reported the counterintuitive result
that, for nearest-neighbor connectivity, the dependence is no
longermonotonic.While the behavior at slow and fast speeds
remains the same, an intermediate regime appears where
synchronization is inhibited.
The MPCO framework, of locally interacting moving

agents, is of interest in a variety of contexts. For instance, in
vertebrate somitogenesis, it was found that collective cell
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motion boosts synchronization of coupled genetic oscil-
lators [18]. In technical domains, there has also been
growing interest in MPCOs. As they operate at the physical
layer by transmitting simple identical pulses, rather
than packet messages, MPCOs are especially suitable in
noisy or communication-limited environments [11,16,19].
Specifically, MPCOs have recently been studied in the
contexts of mobile sensor networks [11,16,19], mobile
ad hoc networks [11,20], and swarm-robotics systems
[15,21]. Timing synchronization can be a prerequisite for
the agents (robots, sensors, etc.) to achieve consensus and
coordinate their activities. Certain modes of cooperative
transport need synchronization to ensure that groups of
robots push an object simultaneously [22,23]. Temporal
synchronization has also been used in distributed sensing
and data gathering by teams of robots [24,25]. For example,
a swarm of robots is able to track a target that moves faster
than any individual robot by synchronizing the timings of
the robots’ observations. Synchronization has also been
proposed for power saving in sensor networks, by keeping
the sensors’ communication channels idle most of the time
and using them only at precise times [26].
Conversely, desynchronization (i.e., temporal incoher-

ence) has also been exploited in sensor networks in the
context of task scheduling. By performing tasks at different
times, monitoring activities or sleeping cycles can be
organized and distributed [27,28]. Desynchronization can
also benefit communication in this context, effectively
implementing time-division medium access, a well-known
medium-access-control protocol. By sending messages at
different times, agents do not have to compete for the
shared medium and can avoid message collisions [27–29].
In all of the preceding practical applications, one is

confronted with several challenges. Examples are restricted
communication range, latency, finite-amplitude perturba-
tions due to noise or jitter, etc. However, only the range
interaction has been studied in these practical contexts, and
the effect of perturbations has not been considered.
This paper presents an in-depth analysis of the con-

ditions and parameters that control the time required for a
system of MPCOs to synchronize. We study the factors that
affect the relationship between synchronization time and
agent speed—from the monotonic dependence observed
for range interactions to the nonmonotonic dependence in
the nearest-neighbor case. Understanding the emergence of
the aforementioned intermediate regime is of particular
importance because it allows us to enable or impede
synchronization depending on the application. In addition,
we study the response of the system to perturbations
such as the ones encountered in real systems. Further-
more, we validate experimentally the existence of the
synchronization-inhibiting intermediate regime on a real
system—a swarm of robots.
We start by analyzing the effect of the oscillator’s phase-

response curve on the nearest-neighbor scenario and find

that the inhibitory regime can be eliminated by adding an
appropriate refractory period—an interval of time after
emitting a pulse in which pulses from other agents are not
received or taken into account. This refractory period is
indeed a necessity in real-world applications. Contrary to
idealized systems, propagation of a signal through physical
media incurs latency. The subsequent processing of this
signal also involves delays. Moreover, wireless antennas
and other communication devices may not simultaneously
transmit and receive signals [16]. In a synchronized system,
an oscillator can be pushed out of synchrony if it reacts to a
slightly delayed signal from a neighbor. A refractory period
can overcome problems that arise from these limitations.
Second, we analyze the effect of the neighborhood model,

which determines the connectivity between agents. In
practical applications, a range connectivity may not always
be achievable. Furthermore, an agent may be incapable of
determining whether it is the closest to another agent,
rendering the nearest-neighbor interaction impractical. In
this work, we study a more-realistic kind of connectivity, in
which the oscillators are influenced by others only in their
cone of vision. In a preliminary study [15], we reported that
the dimensions of such a cone (namely, the angle and the
radius), influence the synchronization time. For narrow or
short cones of vision, the aforementioned nonmonotonic
behavior is found. However, as the cone gets bigger, the
intermediate regime disappears, and synchronization time
monotonically decreaseswith agent speed.Equivalent results
are presented for a system with K-nearest-neighbor con-
nectivity, observing that, as K increases, the intermediate
regime becomes increasingly less inhibitory until the mon-
otonic behavior is found.
Third, the effect of perturbations on a synchronized

system is investigated. We show that the propagation of this
perturbation in the intermediate regime displays character-
istics akin to stable chaos [30]. In addition, we study a
system with small clock differences (i.e., oscillators with
slightly different oscillation periods) in order to model jitter
or manufacturing variations.
Finally, we present experimental validation of some of

our findings with a swarm of physical robots. Specifically,
each robot possesses an internal oscillator and signals its
firing by flashing onboard lights. The flashings can, in turn,
be detected by other robots with their cameras. The field of
view of the cameras effectively implements a cone of
vision. The synchronization time of the robots displays a
nonmonotonic dependence with respect to robot speed,
which correlates with our simulation results.
This paper is organized as follows: In Sec. II, we

introduce the utilized models and metrics. Section III
describes the effect of the response curve. Section IV
examines the effect of two neighborhood models on the
synchronization curves. Section V investigates the effect of
perturbations on the system. Section VI presents the
experimental validation, and Sec. VII concludes the paper.
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II. METHODS

We consider a system of N identical mobile agents
moving in a two-dimensional (2D) bounded square envi-
ronment of side length L.
The adjacency matrix of the network, AðtÞ ¼ faijðtÞg,

defines the neighborhood of each agent based on geomet-
rical criteria. Owing to the mobility of the agents, the
neighborhood evolves over time; aijðtÞ ¼ 1 if unit j is in
the neighborhood of unit i at time t, and aijðtÞ ¼ 0

otherwise.

A. Oscillator dynamics

Each unit, i, is a simple integrate-and-fire oscillator with
free-running dynamics,

dϕi

dt
¼ 1

τ
; ð1Þ

where the phase ϕi ∈ ½0; 1� grows linearly in time with
period τ (set here to 1 without loss of generality) until the
threshold, 1, is reached and a firing event occurs. Upon
firing, the oscillator resets its phase to 0 and sends an
instantaneous pulse to its neighbors. The phase of neigh-
boring oscillators is shifted by a certain amount, which
depends on the timing of the incident signal.
Equation (2) represents the dynamics of the system at the

moment of a firing of oscillator i at time t,

ϕiðt−Þ¼1⇒

�
ϕiðtþÞ¼0

ϕjðtþÞ¼ϕjðt−ÞþaijðtÞΨ(ϕjðt−Þ);
ð2Þ

where the map Ψ: ½0; 1� → R is called a phase-response
curve (PRC). The factor aijðtÞ guarantees that the phase
shift is applied only to the current neighbors of the firing
oscillator.
Several PRCs are considered: a multiplicative PRC,

which produces an increase in phase proportional to the
current phase [6,7,21], and two PRCs, belonging to a class
of response curves called delay-advance in the literature
[16,19,31], which cause a decrease (inhibition) of the phase
for ϕ ≤ 0.5 and an increase (excitation) for ϕ > 0.5.
Equation (3) describes the multiplicative (Ψmult) PRC,

whereas Eqs. (4) and (5) describe the delay-advance PRCs,
which we will call sawtooth (Ψsaw) and sine (Ψsine),
respectively:

ΨmultðϕÞ ¼ ϵϕ; for ϕ ∈ ðD; 1�; ð3Þ

ΨsawðϕÞ ¼
�−κϕ; for ϕ ∈ ðD; 0.5�
κð1 − ϕÞ; for ϕ ∈ ð0.5; 1� ; ð4Þ

ΨsineðϕÞ ¼ −κ sinð2πϕÞ; for ϕ ∈ ðD; 1�: ð5Þ

Constants ϵ ∈ R≥0 and κ ∈ ½0; 1� characterize the
strength of the interaction. The interval ½0; D�, with

0 ≤ D < 0.5, is the refractory period, during which no
phase update is produced (Ψ ¼ 0). As mentioned in the
Introduction, the refractory period is necessary in practical
applications to counter physical delays, as well as other
technical constraints. In all cases, the resulting phase after
the update, ϕðtþÞ, is capped at 1 in order to prevent
overshooting. In other words, for any PRC, Ψ, the effective
phase-response curve is ΨeffðϕÞ ¼ min (1 − ϕ;ΨðϕÞ).
Figure 1(a) shows examples of the three PRCs, where
the aforesaid restriction has been taken into account.
Given that some units may fire upon receiving a phase

update from a firing neighbor and, in turn, could elicit
further firings, the phase shift is performed at frozen time
until the phases of all oscillators have been updated. In
addition, if more than one firing is simultaneously received
by the same oscillator, a single phase update takes place.

B. Motion dynamics

The units are initially placed at randomly chosen
positions within the bounded environment. Their initial
orientations are chosen at random from ½0; 2πÞ. Each unit
moves in a straight line at constant speed V until it reaches
the environment boundary. At that point, the unit reorients
to a direction randomly chosen from ½−ðπ=2Þ; ðπ=2Þ� with
respect to the boundary’s normal and proceed with its

Δ

(a)

(b)

−

−

−

FIG. 1. (a) Multiplicative PRC with ϵ ¼ 0.1 and D ¼ 0,
sawtooth PRC with κ ¼ 0.5 and D ¼ 0.2, and sine PRC with
κ ¼ 0.08 and D ¼ 0. (b) Corresponding order-parameter change,
ΔrðϕÞ, after a firing of one oscillator in a two-unit fully-
connected system.
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straight-line motion in the new direction. All random
numbers are generated using uniform distributions.
The chosen motion of the agents is decoupled from the

dynamics of the associated oscillators. This is because
synchronization is not the main objective of a robotic
swarm or a sensor network but is instead a prerequisite
for the agents to be able to coordinate their actions.
Nevertheless, reorientation upon emitting or receiving a
firing is also explored yielding qualitatively similar results
(not presented here). In addition, whereas most previous
work uses environments with cyclic boundary conditions
[6,7,17], we opt for a bounded environment for practical
realism. Cyclic boundary conditions yield analogous
results (not presented).

C. Neighborhood models

When an oscillator fires, it produces a phase shift on its
neighbors. We consider two neighborhood models based on
geometrical criteria: K-nearest-neighbor (Knn) connectiv-
ity, and cone-of-vision (cone) connectivity.
Given the positions of the oscillators at time t, fXiðtÞg,

the adjacency matrix of the network at that time, AðtÞ, is, in
general, nonsymmetric (i.e., the graph is directed). The
neighborhood of a given unit, i, at time t is a set NiðtÞ,
which determines the nonzero elements of the adjacency
matrix. Formally,

aijðtÞ ¼
�
1 if j ∈ NiðtÞ
0 otherwise

; ð6Þ

where i; j ∈ f1; 2;…; Ng and i ≠ j. A unit cannot be its
own neighbor; therefore, the adjacency matrix has all 0s
diagonal, Aii ¼ 0.
In systems with K-nearest-neighbor connectivity, unit i

influences the K other units that are spatially closest to
itself, K ∈ f1; 2;…; N − 1g. We have that the cardinality
of the neighborhood, jNKnn

i ðtÞj is K and that

j∈NKnn
i ðtÞ∶ ∥Xj−Xi∥≤∥Xl−Xi∥; ∀ l∈NKnn

i ðtÞ;
where ∥X∥ represents the Euclidean norm. Note that the
case where K ¼ N − 1 is the all-to-all connected network.
Figure 2(a) shows an example of Knn connectivity for
K ¼ 1 in a system of three oscillators.
In systems with cone-of-vision connectivity, unit j is

considered the neighbor of another unit, i, if and only if i
lies inside the circular sector centered in j, with radius R
and angle θ and oriented in the direction of motion of j.
That is,

j ∈ Ncone
i ðtÞ; if

8<
:
∥Xi −Xj∥ ≤ R
Xi−Xj

∥Xi−Xj∥
Vj

∥Vj∥
≤ cosðθ=2Þ ;

where Vj is the velocity vector of unit j, with ∥Vj∥ ¼ V.
Figure 2(b) shows an example of cone-of-vision connec-
tivity for a system of three oscillators.

Note that, in the limit where θ → 2π, the network
becomes a random geometric graph, and the limit where
R →

ffiffiffi
2

p
L and θ → 2π corresponds to an all-to-all con-

nected network.
It is important to remark on the directionality of the cone-

of-vision connectivity. Contrary to K-nearest-neighbor
connectivity and the much-used range interaction, here, a
firing oscillator, i, does not directly elicit a phase update
on other oscillators. Instead, the recipient unit must be
able to physically see i to react to that firing [see Fig. 2(b)].
This choice is made to emulate a practical scenario. For
instance, a robotmay have only a directional sensor to detect
the pulse [15]. The opposite directionality—that is, a cone of

(a)

-

(b)

(c)

R

R

V
θ

FIG. 2. Different neighborhood models and the corresponding
interactions (the solid arrows) for a system of three units (open
circle, open square, open triangle). The unit at the end of an arrow
denotes the neighbor of the unit at its origin. (a) Nearest-neighbor
connectivity. Each unit influences the spatially nearest unit. The
square and the triangle influence each other, and the circle
influences the square. (b) Cone-of-vision connectivity—if a unit
can see another unit (see the text for details), the latter will
influence the former. The square lies in the cone of vision of the
other two units; thus, it influences both. The circle and the
triangle do not influence other units because they do not lie in any
other unit’s cone of vision. (c) Range connectivity. Two units
influence each other if they lie within the range R. The square and
the triangle influence each other, while the circle does not
influence other units, as they are out of range.
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emission—is also investigated with similar results (not
presented here). Note that the 360° cone of emission is
the previously studied range interaction and it is equivalent
to the 360° cone of vision [cf. Figs. 2(b) and 2(c)]. That is, if i
is in the 360° cone of vision of j, j will also be in the 360°
cone of emission of i.

D. Synchronization metric

The collective dynamics of the system is measured by
the complex order parameter [4],

rðtÞei2πϕðtÞ ¼ 1

N

XN
j¼1

ei2πϕjðtÞ; ð7Þ

where ϕðtÞ is the mean phase. Modulus rðtÞ measures the
level of coherence, from rðtÞ ¼ 0 for a totally incoherent
system to rðtÞ ¼ 1 for complete synchronization.
Henceforth, we will refer to the real part rðtÞ as the order
parameter without ambiguity.
A certain oscillator, ϕ1, is selected as a reference, and the

order parameter is calculated upon its kth firing at time Tk,
rðTkÞ. The simulation is stopped once the system is
synchronized [i.e., rðTkÞ ¼ 1] and the number of firings,
k, emitted by the reference oscillator until synchronization
is counted. This value, which we will call the synchroniza-
tion time, Tsync, is a good measure of the time needed to
achieve coherence independently of the oscillation period.

E. Simulations

Unless otherwise stated, all averages presented in the
following sections are performed over 100 random initi-
alizations of positions, orientations, and phases for a
population for N ¼ 20 units moving in an environment
of size L ¼ 100. In order to study the dependence of the
synchronization time on agent speed, 30 exponentially
spaced speeds in the range ½10−2; 102� are considered.

III. EFFECT OF THE RESPONSE CURVE

We start by extending Prignano et al.’s work [7] on
oscillators interacting with their nearest neighbor to differ-
ent PRCs. In their work, they observe a nonmonotonic
dependence of the synchronization time Tsync on the speed
of agents V for the multiplicative PRC, with no refractory
period (D ¼ 0). We observe that both delay-advance
response curves, sawtooth and sine, display a monotoni-
cally decreasing dependence (see Fig. 3).
We attribute the observed difference of behavior to the

sign of ΨðϕÞ. As can be seen in Fig. 1(a), both delay-
advance response curves have a negative sign for ϕ < 0.5
and a positive sign otherwise. Consequently, the phase of
an oscillator receiving a pulse will always get closer to the
emitting pulse (note that the two phase limits, ϕ ¼ 0 and
ϕ ¼ 1, are equivalent). However, for the multiplicative

PRC, the receiving oscillator will distance its phase from
the pulse emitter for any 0 < ϕ < ½1=ð2þ ϵÞ�.
We can measure the effect on synchronization of a PRC

by considering a system of only two units, one emitting a
pulse (i.e., phase equal to 1) and the other, with phase ϕ,
receiving it, and calculating the difference of the system’s
order parameter before and after the firing,

ΔrðϕÞ ¼ r(ϕðtþÞ) − r(ϕðt−Þ): ð8Þ

Figure 1(b) shows that ΔrðϕÞ is always positive for the
delay-advance PRCs, but it is negative when 0 < ϕ <
½1=ð2þ ϵÞ� for the multiplicative PRC. Adding a refractory
period as in Eq. (3) confirms that this negative interval
hinders synchronization (see Fig. 4). When suppressing the
effects of this interval, the nonmonotonicity disappears as
D increases. Moreover, sufficiently large refractory periods

− −

FIG. 3. Average time Tsync (in number of cycles) required to
synchronize 20 units with nearest-neighbor connectivity and
moving with speed V in a 2D square environment of side 100
for the multiplicative (ϵ ¼ 0.1), sawtooth (κ ¼ 0.1), and sine
(κ ¼ 0.1) PRCs with no refractory period (D ¼ 0).

sy
nc

− −

FIG. 4. Average time Tsync (in number of cycles) required to
synchronize 20 units with nearest-neighbor connectivity and
moving with speed V in a 2D square environment of side 100
using the multiplicative PRC for different refractory periods D.
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(D ≥ 0.4) display a faster synchronization for slow speeds
than any of the delay-advance PRCs in Fig. 3.

IV. EFFECT OF THE NEIGHBORHOOD MODEL

In the previous section, we concluded that the multipli-
cative PRC with no refractory period displays the strongest
nonmonotonic behavior in a system with nearest-neighbor
connectivity. In this section, we study the effect of two
other neighborhood models for the same phase-response
curve. Henceforth, we fix the multiplicative factor in
Eq. (3) to ϵ ¼ 0.1.

A. K nearest neighbors

First, we extend the nearest-neighbor interaction to K
nearest neighbors. We observe that the intermediate,

synchronization-inhibiting, regime becomes weaker as
K increases, until it finally disappears (see Fig. 5). A
large enough K (K > 5) yields a monotonically decrea-
sing dependence of Tsync with respect to V, similar to the
one observed in previous work for a 360° range interac-
tion [6].
It is worth noting that, in general, mobility is necessary

for the system to synchronize. For a static population of
oscillators, it is necessary (although typically not sufficient)
for the undirected graph to form a single connected
component for global synchronization to be achieved.
Otherwise, two or more clusters could remain isolated
from each other, reaching only local synchrony. The
smallest cluster size with Knn connectivity is the complete
(fully connected) (K þ 1)-directed graph. We have that, for
K þ 1 ≤ N=2, there could exist two or more noninteracting
clusters and, therefore, synchronization is not guaranteed if
the units are static. The case where K ¼ 19 in Fig. 5
corresponds to the trivial all-to-all connected network.

B. Cone of vision

In the preceding subsection, we observed how the
synchronization time of the system can be tuned, not only
by changing the speed of agents but also by changing the
number of neighbors with which each unit interacts. This
tuning is also applicable to a cone-of-vision neighborhood.
The cone of vision, being a circular sector, can be
considered an extension of the widely studied range
interaction. However, in contrast to the latter, where
Tsync always exhibits a monotonic dependence on V, the
dimensions of the cone of vision can alter the synchroni-
zation behavior.

sy
nc

− −

FIG. 5. Average time Tsync (in number of cycles) required to
synchronize 20 units with K-nearest-neighbor connectivity and
moving with speed V in a 2D square environment of side 100.

R
R

sync

− − − − − −

FIG. 6. Average time Tsync (in number of cycles) required to synchronize 20 units with cone-of-vision connectivity (with radius R and
angle θ) and moving with speed V in a 2D square environment of side 100 using the multiplicative PRC. Eight equispaced radii are
considered in the displayed interval.
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Figure 6 shows the resulting synchronization behavior
for various cone angles and radii. Large (R →

ffiffiffi
2

p
L) and

wide (θ → 2π) cones lead to a decreasing dependence of
Tsync on V. Nevertheless, as the size of the cone decreases
(either θ or R decreases), the monotonicity is broken, and
synchronization is slowed for an intermediate range of
speeds. In fact, in the top-left panel in Fig. 6, three clearly
distinct sectors, corresponding to three dynamical regimes,
can be observed.
Note that the interplay between the radius and the angle

of the cone is not trivial. For a given speed, a wider angle
and larger radius produce, typically, faster synchronization.
However, a greater radius can slow synchronization for
particular speeds and angles (see Fig. 6 for θ ¼ 10°, 45°,
90°, and 120°), or a wider angle can slow synchronization
for particular speeds and radii (cf. Fig. 6 for θ ¼ 10° and
120° at V ¼ 100, with R < 20).
As in the previous section, in the general case, mobility is

necessary for the system to synchronize. For a cone of
vision, only R ≥

ffiffiffi
2

p
L and θ ¼ 360° (i.e., the all-to-all

connected network) would guarantee that static units form a
single connected cluster.

V. EFFECT OF PERTURBATIONS

Real-world systems are subject to a number of imper-
fections, such as noise and variations within manufacturing
tolerances. In this section, we study the effect of perturba-
tions in two ways: First, we measure the propagation of
finite-amplitude perturbations through the system. Second,
we study a system with slightly misaligned clocks to model
possible physical faults or jitter.

A. Finite-amplitude perturbations

Departing from a fully synchronized state, one of the
oscillators is initially displaced by a small but finite amount
[ϕ1ð0Þ ¼ 0.001, ϕj≠1ð0Þ ¼ 0]. Figure 7 provides a typical
example of the effect of this perturbation over the system
for a relatively small cone of vision (R ¼ 40 and θ ¼ 20°).
The figure shows the phase difference jΔϕj between the
perturbed and unperturbed [ϕ1ð0Þ ¼ 0] systems over time.
In the slow regime (top panel), the perturbation spreads

among the connected units, but the system settles before the
topology changes. In the fast regime (bottom panel), the
perturbation is quickly transferred to all other units. However
its magnitude remains small until it completely vanishes due
to the rapid changes in connectivity. The connection between
two given oscillators is too short lived for long-lasting
changes to be produced. In addition, because of the high
speeds, the oscillators effectively experience a mean field of
the interactions,which causes the displaced system to rapidly
return to coherence. Naturally, the resulting synchronous
state for both slow and fast regimes could be displaced by a
constant amount with respect to the unperturbed scenario
(see Fig. 7, bottom panel).

In the intermediate regime (center panel), characteristics
from both the slow and fast regimes are present. On the one
hand, the movement is sufficiently fast for the perturbation
to spread over all units. On the other hand, the changes of
connectivity occur at a rate that still permits the magnitude
of this perturbation to be amplified.
The obtained results are equivalent to those found for

oscillators interacting with their nearest neighbor, as can be
seen in Fig. 8. The plot shows that jΔϕj (the order
parameter, r) increases (decreases) with time for inter-
mediate speeds, whereas the perturbation vanishes after
some time in the slow regime, and the system is barely
affected in the fast regime.

Time

Δ

−

−

−

FIG. 7. Propagation of small perturbation over time in a system
of 20 units with cone-of-vision connectivity (R ¼ 40 and
θ ¼ 20°) using the multiplicative PRC. The color represents
the magnitude, in logarithmic scale, of the phase difference, jΔϕj,
with respect to the unperturbed system. (Top panel) Slow regime.
(Center panel) Intermediate regime. (Bottom panel) Fast regime.
(Inset) Oscillators that play a role in the propagation of the
perturbation in the slow regime. The initially perturbed unit 1
displaces unit 19. In parallel, undisturbed unit 17 brings 1 (and
therefore 19) back to synchrony with the rest of the system.

Δ

Time

FIG. 8. Average evolution of the order parameter, r (top
curves), and jΔϕj (bottom curves) after applying a perturbation
once to a single oscillator in an initially synchronized system of
20 units with nearest-neighbor connectivity.
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In the intermediate regime, all memory of the initially
synchronized state is lost in the span of a few firing events,
which is typical of chaotic and stochastic regimes.
Synchrony will eventually be reached, however, after a
long number of cycles, as if it were a randomly initialized
system.
The sensitivity to small but finite-amplitude perturba-

tions in the intermediate regime resembles the behavior of
stable chaos, which has been observed in networks of
integrate-and-fire neurons [30,32]. In contrast to standard
chaos, stable chaos is a transient phenomenon restricted to
finite time scales. However, the transient duration diverges
exponentially with system size. Indeed, as shown in Fig. 9
for a system with nearest-neighbor interaction, the time to
achieve synchronization after applying a perturbation
grows exponentially with population size for intermediate
speeds. In contrast, Tsync barely depends on N in the slow
and fast regimes. Reference [7] found that the speed at
which the system enters the fast regime for a nearest-
neighbor interaction is Vf ∝ L=

ffiffiffiffi
N

p
. Therefore, in Fig. 9,

the density of the system, N=L2, is kept constant, while the
number of units is increased in order to ensure that the fast-
regime limit remains fixed.

B. Clock jitter

In order to model jitter, we consider a system where the
oscillation period is different for each oscillator. Therefore,
Eq. (1) transforms into

dϕi

dt
¼ 1

τi
; ð9Þ

where τi is the oscillator period of unit i. In the following, τi
is randomly selected from the Gaussian distribution cen-
tered in τ ¼ 1 and with standard deviation σ ¼ 5 × 10−5.
The choice of σ is made to better illustrate the effect of
clock misalignment on synchronization.

Departing from a fully synchronized state, the evolution
of the system is recorded. Figure 10 shows the order
parameter over time for speeds in the three dynamical
regimes in a system with nearest-neighbor connectivity.
Similarly to the results reported in Sec. VA, the fast regime
is negligibly affected by the perturbations. However, for
both low and intermediate speeds, the oscillators are
permanently displaced from synchrony. In the intermediate
regime, the system gets totally desynchronized, almost
approaching a random system (r ¼ 0). By contrast, for
slow speeds, connected oscillators can achieve local syn-
chronization. Therefore, the effect on global synchroniza-
tion is not as severe as in the intermediate regime.

VI. EXPERIMENTAL VALIDATION

Implementation in a real-world system entails further
challenges, such as the finite size of the agents, signal
delays or failures, etc. Experiments with a swarm of
physical robots are performed to validate our findings
regarding the cone of vision neighborhood (Sec. IV B).
(This section provides a summary of the experiments.
Further details may be found in Ref. [33].)

A. Setup

The chosen robotic platform is the e-puck [34], a two-
wheeled cylindrical robot of 7.4 cm in diameter [Fig. 11(a)].
The e-puck is equipped with a ring of red light-emitting-
diode (LED) lights, eight proximity infrared sensors, and a
camera located at its front, offering a field of view (cone of
vision) of 56°.
Ten e-pucks are placed in a square arena having sides

measuring L ¼ 10 cm, with randomly initialized positions
uniformly selected from a grid of equispaced positions with
four possible starting orientations. The robots move in
straight lines and reorient at the boundaries, as in the
simulations. However, they also actively avoid collisions
with other robots by using the proximity sensors.
Each robot has an internal oscillator with period τ ¼ 5 s,

also initialized at random. The robot signals the completion

N

sy
nc

FIG. 9. The average transient time until synchronization, Tsync,
as a function of the system size after a small perturbation is
applied once to a single oscillator in an initially synchronized
system with nearest-neighbor connectivity. An average is per-
formed over 20 random initializations (positions and orientations)
with a fixed initial perturbation [ϕ1ð0Þ ¼ 0.001, ϕj≠1ð0Þ ¼ 0].

Time

FIG. 10. Average evolution of the order parameter r, in a system
with clock jitter, in which the oscillators are initially synchron-
ized. Average over 100 populations of 20 units, with Gaussian
distributed oscillator periods, τi (see the text for details).
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of a cycle of its oscillator by activating its red LED ring for
a short duration (375 ms). This flashing can, in turn, be
detected by other robots with their cameras. A discrete
version of Eq. (1) is implemented, using the multiplicative
PRC of Eq. (3) with a refractory periodD ¼ 0.15 (750 ms).

B. Results

Figure 11(b) shows snapshots taken from a typical
experiment with the e-puck robots. Tracking software
detects the number of flashing robots at a given time
(the green circles). Thus, a histogram of the number of
firings per captured frame can be traced [see the lower strip
in each frame of Fig. 11(b)]. Synchrony is measured as a
function of the variance of the distribution within a period
τ. The smaller the variance, the greater the synchrony.
Figure 12 displays the synchronization time Tsync of the

system as a function of robot speed over a total of 50 trials.
Despite the differences with the ideal simulated scenario,

we observe the emergence of the intermediate synchroni-
zation inhibiting regime.

VII. DISCUSSION

In this paper, we analyzed the dependence of synchro-
nization time on the speed of agents in a population of
mobile pulse-coupled oscillators. Previous research showed
that synchronization is facilitated by oscillator mobility
when the agents interact with others within a certain range.
By contrast, if the agents interact with their nearest
neighbors, a regime of intermediate speeds is observed
where synchronization is hindered. Taking these previous
results as a point of departure, we studied various factors
that lead to this pernicious effect with a view towards
controlling synchronization in real-world applications.
First, the conditions for the previously reported non-

monotonic behavior with nearest-neighbor interaction were
studied. We found that the synchronization-hindering
regime emerges only with a multiplicative phase-response
curve, whereas it is not present in the other studied phase-
response curves. We devised a metric for the phase-
response curve, ΔrðϕÞ, that correlates with the emergence
of the pernicious interval. Indeed, a partial or total blocking
of this interval, by means of a refractory period, recovers
the monotonic dependence.
We extended the previously studied work by studyingK-

nearest-neighbor and cone-of-vision connectivities with the
multiplicative phase-response curve. We linked the pre-
viously found monotonic and nonmonotonic synchroniza-
tion curves by tuning the average size of the agents’
neighborhood. For K-nearest-neighbor connectivity, as K
increases, the effect of the intermediate regime is decreased
until a monotonically decreasing dependence is observed.
Similarly, for the cone-of-vision connectivity, a synchro-
nization impeding regime appears for small or narrow
cones. This nonmonotonic dependence of the synchroni-
zation time with agents’ speed can be gradually trans-
formed into a monotonic one by widening or extending the
range of the cone of vision. The interplay between the cone

(a) (b) FIG. 11. (a) The e-puck robot.
(b) Snapshots of the experimental set-
up with 10 e-puck robots in a square
arena of side lengthL¼60 cm.Robot
flashings (active LED rings) are de-
tected and superimposed as green
circles (N.B., some flashings might
occasionally be misclassified, as in
the bottom-left frame). The lower
strip shows an evolving histogram
of the number of flashings detected
over time. The system is considered
to be synchronized if the distribution
of the histogram around the current
peak has a standard deviation smaller
than two frames.

101100

102

sy
nc

FIG. 12. The time Tsync (in number of cycles) needed to
synchronize ten physical robots moving at a speed V in a
60 × 60 cm2 arena. Markers indicate the average values over
five trials. Error bars show the minimum and maximum values
over the trials.

CONTROL OF SYNCHRONIZATION REGIMES IN … PHYS. REV. APPLIED 7, 054002 (2017)

054002-9



parameters, θ and R, is not trivial; increasing the angle or
range of the cone can result in an increased synchronization
time. This aspect deserves further analysis in future work.
We analyzed the effect and propagation of small per-

turbations on initially synchronized systems. It was found
that the perturbations are contained within the locally
connected cluster and did not spread over the system for
the slow regime. In the fast regime, the perturbation
propagates to all agents but its magnitude remains small
due to the brevity of each interaction. For both slow and fast
speeds, a coherent state is achieved in relatively short time.
Interestingly, in the intermediate regime, perturbations
get amplified as they propagate through the system.
Nevertheless, the system will eventually return to syn-
chrony after a certain transient period. We found that the
length of this transient increases exponentially with system
size. Given the characteristics of this irregular behavior, we
draw an analogy with stable chaos. The latter was found in
models characterized by discontinuities in the evolution
rule [30]. In our case, the firing events and the elicited
phase responses constitute such discontinuities.
Similarly to the effect of small perturbations, a system

with clock jitter exhibited a strong departure from syn-
chrony in the intermediate regime. Jitter is, to a lesser
degree, also deleterious for synchronization if the move-
ment is slow. Consequently, in real applications using the
multiplicative phase-response curve, synchronization is
stable only for sufficiently high agent speeds.
An important difference between our model and the

previous approach on nearest-neighbor interactions [7] is
that, in our case, the motion of the units is totally decoupled
from the oscillator dynamics. Although not presented
here, other motion dynamics were explored with similar
results—namely, randomly reorienting units upon firing or
upon being influenced by another unit (as in Ref. [7]).
Therefore, we observe that the emergence of synchroniza-
tion regimes depends on the relationship between the
temporal dynamics of the oscillators, the spatiotemporal
dynamics of the units’ motion, and the spatial influence of
the neighborhood models.
In practical applications in multiagent systems, such as

sensor networks or robotic swarms, both synchronization
and desynchronization can serve their purpose to coordi-
nate the agents’ activities. The former allows the agents to
perform their actions at the same time, whereas the latter
allows us to distribute individual activities over time. We
observed that the intermediate regime not only slows
synchronization down but also promotes desynchronization
after small perturbations are applied to the system.
Depending on what is most desirable at the time, the
agents could switch between a synchronized state or a
desynchronized one by changing their speed, modifying
their neighborhood scope, increasing or decreasing the
refractory period, and/or perturbing the phase of one
of them.

In order to test the applicability of our findings in a
practical scenario, an experimental study was carried out
with a swarm of ten physical robots. These robots com-
municate the firing of their internal oscillator by flashing
onboard lights. These flashings can, in turn, be detected by
other robots with their cameras. The physical implementa-
tion lead to differences with respect to the simulation, such
as finite size of the agents, imperfect signal detection,
noninstantaneous firing, etc. Despite the aforementioned
challenges, our findings confirm the existence of the
nonmonotonic behavior in a swarm of physical robots
and the emergence of the intermediate inhibitory regime.
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