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ABSTRACT 1 

Neuroimaging studies have found distinct patterns of neural response to different 2 

categories of scene in scene-selective regions of the human brain.  However, it is not clear 3 

how information about scene category is represented in these regions.  Images from 4 

different categories vary systematically in their visual properties as well as their semantic 5 

category.  So, it is possible that patterns of neural response could reflect variation in visual 6 

properties.  To address this question, we used fMRI to measure patterns of neural 7 

response to intact and scrambled scene categories. Although scrambling preserved many 8 

of their visual characteristics, perception of scene categories was severely impaired.  9 

Nevertheless, we found distinct patterns of response to different scene categories in the 10 

parahippocampal place area (PPA) and the occipital place area (OPA) for both intact and 11 

scrambled scenes. Moreover, intact and scrambled scenes produced highly similar 12 

patterns of response.  Our finding that reliable and distinct patterns of response in scene-13 

selective regions are still evident when categorical perception is impaired suggests that 14 

visual properties play an important role in the topographic organization of these regions. 15 

  16 
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INTRODUCTION 17 

The ability to perceive and recognize the spatial layout of visual scenes is essential for 18 

spatial navigation. Neuroimaging studies have identified a number of regions in the human 19 

brain that respond selectively to visual scenes (Epstein, 2008).  For example, the 20 

parahippocampal place area (PPA) is a region on the ventral surface of the temporal lobe 21 

that displays preferential activity to images of scenes over and above images of objects and 22 

faces (Aguirre, Zarahn, & D’Esposito, 1998; Epstein & Kanwisher, 1998).  Other place 23 

selective regions include the retrosplenial complex (RSC) located immediately superior to 24 

the PPA and the transverse occipital sulcus (TOS) or occipital place area (OPA) on the lateral 25 

surface of the occipital lobe (Dilks, Julian, Paunov, & Kanwisher, 2013). Damage to these 26 

regions leads to specific impairments in scene perception and spatial navigation (Aguirre & 27 

D’Esposito, 1999; Mendez & Cherrier, 2003). 28 

Despite the importance of scene-selective regions for spatial navigation, the 29 

functional organisation of these regions remains unclear (Lescroart, Stansbury, & Gallant, 30 

2015; Groen et al., 2017).  For example, although scene-selective regions show distinct 31 

patterns of response to images of different scene categories (Walther, Caddigan, Fei-Fei, & 32 

Beck, 2009; Watson, Hartley, & Andrews, 2014), the basic organizing principles are 33 

unresolved. Some studies have argued that scene-selective regions represent information 34 

about ‘high-level’ semantic properties of natural scenes (Huth, Nishimoto, Vu, & Gallant, 35 

2012; Stansbury, Naselaris, & Gallant, 2013; Walther et al., 2009; Walther, Chai, Caddigan, 36 

Beck, & Fei-Fei, 2011).  This conclusion has, however, been challenged by other studies that 37 

have suggested that the patterns of response in scene-selective regions are better explained 38 

by properties of the scene, such as openness (Kravitz, Peng, & Baker, 2011; Park, Brady, 39 
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Greene, & Oliva, 2011) or distance (Amit, Mehoudar, Trope, & Yovel, 2012; Park, Konkle, & 40 

Oliva, 2015) rather than by semantic category. 41 

Although concepts such as openness or distance provide plausible ‘mid-level’ 42 

dimensions with which to understand the organization of scene-selective regions, it is not 43 

clear whether they can be explained at an even more basic level in terms of low-level visual 44 

properties that co-vary with these properties (Oliva & Torralba, 2001). In recent studies, we 45 

have shown that variance in the patterns of response to different scene categories can be 46 

explained by corresponding variance in the image properties of the scenes (Andrews, 47 

Watson, Rice, & Hartley, 2015; Watson et al., 2014; Watson, Hymers, Hartley, & Andrews, 48 

2016).  These findings are consistent with previously reported biases in scene-selective 49 

regions for orientation (Nasr, Echavarria, & Tootell, 2014; Nasr & Tootell, 2012), spatial 50 

frequency (Musel et al., 2014; Rajimehr, Devaney, Bilenko, Young, & Tootell, 2011) and 51 

visual field location (Arcaro, McMains, Singer, & Kastner, 2009; Golomb & Kanwisher, 2012; 52 

Levy, Hasson, Avidan, Hendler, & Malach, 2001; Silson, Chan, Reynolds, Kravitz, & Baker, 53 

2015) and provide further evidence for the role of image properties in the organization of 54 

scene-selective regions.  However, a fundamental problem is that images drawn from the 55 

same scene category or with the same spatial layout are likely to have similar visual 56 

properties (Oliva & Torralba, 2001).  So, reliable patterns of response are expected under 57 

high-level, mid-level and low-level accounts of scene perception. 58 

The aim of this study was to directly determine the extent to which the patterns of 59 

neural response across scene-selective regions can be explained by selectivity to more basic 60 

properties of the stimulus. To address this question, we measured the neural response 61 

across scene-selective regions to intact images of different scene categories, as well as 62 

versions of these images that had been phase-scrambled at a global or local level.  Our 63 
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rationale for using scrambled images is that they have many of the visual properties found 64 

in intact images, but disrupt perception of categorical and semantic information (Andrews, 65 

Clarke, Pell, Hartley, 2010; Coggan, Liu, Baker, & Andrews, 2016; Loschky et al., 2007; 66 

Loschky, Hansen, Sethi, & Pydimarri, 2010).  Applying scrambling both locally and globally 67 

allowed us to further investigate the importance of the spatial properties of scenes to the 68 

neural response, as local scrambling better preserves the coarse-scale spatial arrangement 69 

of visual features in the original image. Our hypothesis was that, if scene-selective regions 70 

are sensitive to the visual differences between scene categories, then we would expect to 71 

find similar patterns of neural response to these categories even when images are 72 

scrambled.  73 

  74 
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METHODS 75 

Participants 76 

20 participants (5 males; mean age: 25.85; age range: 19-34) took part in the experiment.  77 

All participants were neurologically healthy, right-handed, and had normal or corrected-to-78 

normal vision. Written consent was obtained for all participants and the study was approved 79 

by the York Neuroimaging Centre Ethics Committee. 80 

 81 

Stimuli 82 

Participants viewed scene images in two independent runs, one to localize the scene-83 

selective regions, the other to experimentally investigate the effects of local and global 84 

scrambling manipulations. Images presented in the experiment runs were taken from the 85 

LabelMe database (http://cvcl.mit.edu/database.htm; Oliva & Torralba, 2001).  Images for 86 

the localiser run were taken from the SUN database 87 

(http://groups.csail.mit.edu/vision/SUN/; Xiao, Hays, Ehinger, Oliva, & Torralba, 2010).  88 

Stimuli were presented using PsychoPy (Peirce, 2007, 2009) and were back-projected onto a 89 

custom in-bore acrylic screen at a distance of approximately 57 cm from the participant, 90 

with all images presented at a resolution of 256x256 pixels subtending approximately 10.7° 91 

of visual angle.    92 

The image set for the main experiment comprised 180 greyscale images from 5 93 

scene categories: city, coast, forest, indoor, and mountain (36 images per category).  Each 94 

image was shown at 3 levels of image scrambling: intact, locally scrambled, and globally 95 

scrambled.  Globally scrambled images were created by randomising the phase of the 2D 96 

frequency components across the whole image while keeping the magnitude constant.  97 
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Locally scrambled images were created by the same process, except that scrambling was 98 

applied independently within each of 64 windows of an 8x8 grid across the image.  99 

Luminance histograms across all images in all conditions were normalised using the SHINE 100 

toolbox (Willenbockel et al., 2010).  Examples of the stimuli used in each condition are 101 

shown in Figure 1. Corresponding Fourier amplitude spectra plots are shown in 102 

Supplementary Figure 1.  In order to assess the impact of the scrambling process on the 103 

visual similarity of the scene categories, we assessed the visual statistics of the images using 104 

the GIST descriptor (Oliva & Torralba, 2001).  This generates a vector for each image 105 

describing the spectral energy at assorted spatial frequencies, orientations, and spatial 106 

positions within the image.  We employed 32 filters spanning 8 orientations and 4 spatial 107 

frequencies, within 64 windows of an 8x8 spatial grid, yielding vectors of 2048 values.  These 108 

vectors were then correlated within- and between-categories using a leave-one-image-out 109 

cross-validation procedure for each scrambling condition independently (Supplementary 110 

Figure 2a). The resulting similarity matrices are shown in Supplementary Figure 2a.  We next 111 

tested the ability to distinguish scene categories based on this visual information by 112 

contrasting the within- over the between-category correlations (Supplementary Figure 2b).  113 

Significantly greater within- than between-category correlations were observed for the 114 

intact (t(35) = 29.44, p < .001, Cohen’s d = 4.91), locally scrambled (t(35) = 25.57, p < .001, 115 

Cohen’s d = 4.26), and globally scrambled scenes (t(35) = 18.69, p < .001, Cohen’s d = 3.11).  116 

Thus, the scene categories remained visually distinct under all conditions of scrambling. 117 

The localiser images comprised a separate set of 64 scene images plus their phase 118 

scrambled counterparts (128 images total), with all images presented in full colour.  Images 119 

were chosen in approximately equal number from categories of indoor-manmade, outdoor-120 
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manmade, and outdoor-natural scenes as these represent the 3 top-level branches of the 121 

SUN database hierarchy.  Fourier-scrambled images were created by randomising the phase 122 

of the 2D frequency components in each colour channel of the original image while keeping 123 

the magnitude constant.  Mean luminance was then equated across images. 124 

[Figure 1 near here] 125 

fMRI Experimental Design 126 

During the experimental runs participants viewed images from the 5 scene categories.  127 

Images from each level of image scrambling were presented across separate experiment 128 

runs.  For all participants, globally scrambled images were presented in the first run, locally 129 

scrambled in the second run, and intact images in the third run.  This order was chosen as it 130 

was crucial to ensure that responses to scrambled scenes could not be primed by earlier 131 

viewing of the intact versions.   132 

In each run, images from each category were presented in a blocked design.  There 133 

were 6 images in each block. Each image was presented for 750ms followed by a 250ms 134 

grey screen that was equal in mean luminance to the scene images.  Each stimulus block 135 

was separated by a 9s period in which the same grey screen as used in the inter-stimulus 136 

interval was presented.  Each condition was repeated 6 times (total 30 blocks) in each run. 137 

To maintain attention throughout the experimental runs, participants had to detect the 138 

presence of a red dot randomly superimposed on one of the images in each block, 139 

responding via a button press.   140 

To define scene-selective regions, independent data was collected while participants 141 

viewed images from 2 stimulus conditions (intact scenes, scrambled scenes).  Images from 142 

each condition were presented in a blocked fMRI design, with each block comprising 9 143 
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images.  Each condition was repeated 8 times (16 blocks). In each stimulus block, an image 144 

was presented for 750ms followed by a 250ms grey screen.  Each stimulus block was 145 

separated by a 9s period in which a grey screen was presented. Participants performed a 146 

one-back task that involved pressing a button when they detected a repeated image in each 147 

block. 148 

 149 

Imaging Parameters 150 

All scanning was conducted at the York Neuroimaging Centre (YNiC) using a GE 3 Tesla HDx 151 

Excite MRI scanner.  Images were acquired with an 8-channel phased-array head coil tuned 152 

to 127.72MHz.  Data were collected from 38 contigual axial slices in an interleaved order via 153 

a gradient-echo EPI sequence (TR = 3s, TE = 32.5ms, FOV = 288x288mm, matrix size = 154 

128x128, voxel dimensions = 2.25x2.25 mm, slice thickness = 3mm with no inter-slice gap, 155 

flip angle = 90°, phase-encoding direction = anterior-posterior, pixel bandwidth = 39.06 kHz). 156 

In order to aid co-registration to structural images, T1-weighted in-plane FLAIR images were 157 

acquired (TR = 2.5s, TE = 9.98ms, FOV = 288x288mm, matrix size = 512x512, voxel 158 

dimensions = 0.56x0.56 mm, slice thickness = 3mm, flip angle = 90°).  Finally, high-resolution 159 

T1-weighted structural images were acquired (TR = 7.96ms, TE = 3.05ms, FOV = 160 

290x290mm, matrix size = 256x256, voxel dimensions = 1.13x1.13 mm, slice thickness = 161 

1mm, flip angle = 20°).   162 

 163 

fMRI Analysis 164 

Univariate analyses of the fMRI data were performed with FEAT v5.98 165 

(http://www.fmrib.ox.ac.uk/fsl).  In all scans the initial 9s of data were removed to reduce 166 
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the effects of magnetic stimulation.  Motion correction (MCFLIRT, FSL; Jenkinson, Bannister, 167 

Brady, & Smith, 2002) was applied followed by temporal high-pass filtering (Gaussian-168 

weighted least-squared straight line fittings, sigma=15s).  Spatial smoothing (Gaussian) was 169 

applied at 6mm FWHM to both the localiser and experiment runs, in line with previous 170 

studies employing smoothing in conjunction with MVPA (Op de Beeck, 2010; Watson et al., 171 

2014).  Parameter estimates were generated for each condition by regressing the 172 

hemodynamic response of each voxel against a box-car convolved with a single-gamma HRF.  173 

Next, individual participant data were entered into higher-level group analyses using a 174 

mixed-effects design (FLAME, FSL).  Functional data were first co-registered to an in-plane 175 

FLAIR anatomical image then to a high-resolution T1-anatomical image, and finally onto the 176 

standard MNI brain (ICBM152). 177 

 Scene selective regions of interest (ROIs) were defined from the localiser data of 178 

both experiments.  ROIs were defined for the parahippocampal place area (PPA), 179 

retrosplenial complex (RSC), and occipital place area (OPA) that have been reported in 180 

previous fMRI studies (Dilks et al., 2013; Epstein & Kanwisher, 1998; Maguire, 2001).  The 181 

locations of these ROIs were consistent with those reported in previous literature – see 182 

Supplementary Table 1.  Within the MNI-2x2x2mm space, seed points were defined at the 183 

peak voxels within the intact>scrambled statistical map for each region (PPA, RSC, OPA) in 184 

each hemisphere.  For a given seed, a flood fill algorithm was used to identify a cluster of 185 

spatially contiguous voxels around that seed which exceeded a given threshold.  This 186 

threshold was then iteratively adjusted till a cluster size of approximately 500 voxels was 187 

achieved (corresponding to a volume of 4000mm
3
); actual cluster sizes ranged from 499-502 188 

voxels as an optimal solution to the algorithm was not always achievable. This step ensures 189 

that estimates of multi-voxel pattern similarity are not biased by the different sizes of ROIs 190 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

10 

 

being compared.  Clusters were combined across hemispheres to yield 3 ROIs, each 191 

comprising approximately 1000 voxels.  These regions are shown in Supplementary Figure 3, 192 

and MNI co-ordinates of the seeds are given in Table 1.  For comparison, we defined two 193 

alternative versions of each of the scene ROIs using the same clustering method, based 194 

upon independent localiser data from other experiments (not reported here).  Specifically, 195 

regions were defined using responses from contrasts of 1) Scenes > Faces, and 2) Scenes > 196 

Objects.  The locations of these regions are shown in Supplementary Figure 8, and MNI co-197 

ordinates of the seeds are given in Supplementary Table 2.  In addition, a V1 control ROI was 198 

defined from a recent standard atlas of retinotopic regions (Wang, Mruczek, Arcaro, & 199 

Kastner, 2015). 200 

Next, we measured patterns of response to different stimulus conditions in each 201 

ROI.  Parameter estimates were generated for each condition in the experimental scans.  202 

The reliability of response patterns was tested using a leave-one-participant-out (LOPO) 203 

cross-validation paradigm (Poldrack, Halchenko, & Hanson, 2009; Shinkareva et al., 2008) in 204 

which parameter estimates were determined using a group analysis of all participants 205 

except one.  This generated parameter estimates for each scene condition in each voxel. 206 

This LOPO process was repeated such that every participant was left out of a group analysis 207 

once.  These data were then submitted to correlation-based pattern analyses (Haxby et al., 208 

2001; Haxby, Connolly, & Guntupalli, 2014) implemented using the PyMVPA toolbox 209 

(http://www.pymvpa.org/; Hanke et al., 2009).  Parameter estimates were normalised by 210 

subtracting the voxel-wise mean response across all experimental conditions (Haxby et al., 211 

2001).  For each iteration of the LOPO cross-validation, the normalized patterns of response 212 

to each stimulus condition were correlated between the group and the left-out participant.  213 
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This allowed us to determine whether there are reliable patterns of response that are 214 

consistent across individual participants. 215 

Statistical Analyses 216 

A Fisher’s z-transform was applied to the correlation similarity matrices before further 217 

statistical analyses.  We tested whether scene categories could be distinguished on the basis 218 

of the pattern of activity within each region to under each level of image scrambling.  For 219 

each iteration of the LOPO cross-validation, we calculated an average within-category (on-220 

diagonal) and an average between-category (off-diagonal) value across categories.  These 221 

values were then entered into a paired-samples t-test.  If scene category can be 222 

discriminated based on the pattern of activity it elicits, then significantly greater within- 223 

than between-category correlations would be expected.  For the scene regions, a 224 

Bonferroni-Holm correction for multiple comparisons was applied across the 3 regions (PPA, 225 

RSC, OPA) and 3 scrambling conditions (intact, locally scrambled, globally scrambled).  The 226 

V1 ROI represents a control analysis and hence was handled separately; here a Bonferroni-227 

Holm correction for multiple comparisons was applied across the 3 scrambling conditions.  A 228 

possible caveat here is that the leave-one-out procedure means that samples from each 229 

iteration are not truly independent, potentially violating the statistical assumptions of the t-230 

test.  To address this we repeated these analyses using a sign-flip permutation test on the 231 

differences between the scores.  The results of these analyses closely followed those of the 232 

parametric t-tests – see Supplementary Table 3. 233 

Next, we conducted a series of representational similarity analyses (RSAs; 234 

Kriegeskorte, Mur, & Bandettini, 2008) to investigate effects of different levels of 235 

scrambling.  Correlation matrices were averaged across iterations of the cross-validation.  236 
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Representational similarity was assessed by correlating the off-diagonal elements of the 237 

averaged similarity matrices between the intact and locally scrambled conditions, and 238 

between the intact and globally scrambled conditions.  If the scrambling does not abolish 239 

the pattern of relative similarity between categories relative to the intact condition, then a 240 

significant positive correlation would be expected between the intact and corresponding 241 

scrambled matrices.  For the scene regions, a Bonferroni-Holm correction was applied 242 

across the 3 regions (PPA, RSC, OPA) and 2 analyses (intact versus locally scrambled, intact 243 

versus globally scrambled).  The V1 ROI represents a control analysis and hence was handled 244 

separately; here a Bonferroni-Holm correction for multiple comparisons was applied across 245 

the 2 analyses. 246 

To test for effects outside our ROIs, we also performed a series of whole-brain 247 

searchlight analyses (Kriegeskorte, Goebel, & Bandettini, 2006).  A spherical ROI (6mm 248 

radius) was iterated over the whole-brain volume, and the MVPA repeated within each 249 

sphere.  Decoding and representational similarity analyses were conducted in the same 250 

manner as for the ROI analyses.  For the decoding analysis, for a given sphere an average 251 

within- and between-category correlation value was calculated for each LOPO iteration, and 252 

then a paired-samples t-test used to test the within > between difference across LOPO 253 

iterations.  For the representational similarity analyses, for a given sphere the correlation 254 

matrices were averaged across LOPO iterations and the off-diagonal elements correlated 255 

between the scrambling conditions.  In both cases, the p-value of the test was then assigned 256 

to the central voxel of the sphere. 257 
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Behavioural Experiment 258 

We also tested the ability of participants to recognise the scenes under each level of image 259 

scrambling.  An independent set of 18 participants naive to the purposes of the study were 260 

recruited (6 males; mean age: 21.7; age range: 19-39).  Written consent was obtained for all 261 

participants and the study was approved by the University of York Psychology Department 262 

Ethics Committee.  Each participant viewed a subset of 1/6th of the image set comprising 6 263 

images from each category.  Subsets were counterbalanced across participants.  Participants 264 

viewed each image under all three levels of scrambling. Crucially, to prevent priming effects, 265 

participants viewed globally scrambled images first, followed by locally scrambled images, 266 

and finally intact images (as per the fMRI experiment).  In each trial participants were shown 267 

an image for 750ms, and were then prompted to describe the type of scene they thought 268 

was shown, typing their responses.  The stimulus duration was chosen to match that of the 269 

fMRI experiment.  Participants were free to provide any description they wanted, and were 270 

also informed that they did not have to give a response if they could not reasonably see 271 

what type of scene was depicted.  Accuracy was coded manually by two independent raters 272 

(both authors of the study).  A correct response was defined as any which could reasonably 273 

be seen to accurately describe the corresponding intact scene, while an incorrect response 274 

was defined as one that did not accurately describe the intact scene or where no response 275 

was given.  Accuracies were converted to proportions and an arcsine square-root transform 276 

was applied prior to further statistical tests. If participants did provide a description, they 277 

were next prompted to provide a confidence rating of their decision on a 7 point scale (not 278 

at all confident - very confident).  No confidence ratings were collected for trials where 279 

participants did not provide descriptive responses.  Participants were not provided with any 280 

information about the scene categories prior to the experiment – this was necessary in 281 
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order to match the design of the fMRI experiment, where participants were not provided 282 

with any information about the structure of the stimulus set beforehand either. 283 

  284 
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RESULTS  285 

Behavioural Experiment 286 

We tested the effects of the different levels of scrambling on participants’ ability to 287 

recognise the scenes.  Two independent raters (both authors) coded the descriptive 288 

responses for accuracy.  Inter-rater reliability was high across the subjects (mean Cohen’s 289 

kappa = .96 ± .01).  For all subsequent tests, accuracy values were averaged between the 290 

raters.  Mean accuracy for each condition is shown in Figure 2a.   As expected, accuracy was 291 

higher for intact (mean = 98.33 ± 0.80%) compared to locally scrambled (mean = 20.20 ± 292 

2.54%) and globally scrambled images (mean = 3.35 ± 0.82%).  A one-way repeated 293 

measures ANOVA revealed a significant main effect of scrambling (F(2,34) = 374.76, p < 294 

.001, generalized-ƞ
2
 = .95).  A series of post-hoc t-tests revealed significantly higher 295 

accuracies for intact compared to locally scrambled scenes, intact compared to globally 296 

scrambled scenes, and locally scrambled compared to globally scrambled scenes (all p < 297 

.001). For trials where descriptive responses were given, participants also provided 298 

confidence ratings of their descriptions on a scale of 1 (not at all confident) to 7 (very 299 

confident).  Median ratings for each condition were calculated for each participant and are 300 

shown in Figure 3b. One participant’s data were excluded from the analysis as they provided 301 

no responses, and hence no confidence ratings, for the scrambled images.  Similar to 302 

accuracy, confidence ratings were higher for intact (median = 7, IQR = 6 - 7) compared to 303 

locally scrambled (median = 2, IQR = 2 - 3) and globally scrambled images (median = 2, IQR = 304 

1 - 2). A Friedman’s ANOVA revealed a significant main effect of scrambling (χ
2
(2) = 31.60, p 305 

< .001).  A series of post-hoc Wilcoxon signed-rank tests revealed significantly higher 306 

confidence ratings for intact than locally scrambled scenes (p < .001), intact than globally 307 
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scrambled scenes (p < .001), and locally scrambled than globally scrambled scenes (p = 308 

.004).  Thus both types of scrambling significantly impaired participants’ recognition and 309 

confidence on a scene recognition test. 310 

[Figure 2 near here] 311 

Scene Decoding Analysis 312 

Next, we used fMRI to measure the patterns of neural response to each of the conditions.  313 

The group normalised responses within the PPA, RSC, and OPA regions are shown in 314 

Supplementary Figure 4 (red and blue colours indicate responses above and below the 315 

mean respectively).  Correlation-based MVPA (Haxby et al., 2001) using a leave-one-316 

participant-out (LOPO) cross-validation scheme was then used to assess the reliability of 317 

these responses.  Average correlation similarity matrices for each of the ROIs and each of 318 

the scrambling types are shown in Figure 3, with symmetrically opposite points averaged 319 

across the diagonal to aid visualisation. 320 

[Figure 3 near here] 321 

 We first assessed the ability of the MVPA to decode the scene categories under each 322 

of the levels of scrambling.  We calculated within- and between-category correlation values 323 

averaged across categories for each scrambling type and ROI.  These values are shown in 324 

Figure 4.  Paired-samples t-tests were then used to test for differences between within- and 325 

between-category correlations; if categories can be decoded based on patterns of brain 326 

activity, then significantly greater within- than between-category correlations would be 327 

expected.  For the intact scenes, significantly greater within- than between-category 328 

correlations were observed in the PPA (t(19) = 10.90, p < .001, Cohen’s d = 2.44) and OPA 329 
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(t(19) = 9.89, p < .001, Cohen’s d = 2.21), but not in the RSC (t(19) = 0.17, p > .999, Cohen’s d 330 

= 0.04).  In the locally scrambled condition, significantly greater within- than between-331 

category correlations were found in the PPA (t(19) = 5.54, p < .001, Cohen’s d = 1.24) and 332 

OPA (t(19) = 4.57, p = .001, Cohen’s d = 1.02), but not in the RSC (t(19) = 1.43, p = .498, 333 

Cohen’s d = 0.32).  For the globally scrambled scenes, no significant differences were seen 334 

for any ROI (PPA: t(19) = 0.43, p > .999, Cohen’s d = 0.10; RSC: t(19) = 2.20, p = .200, Cohen’s 335 

d = 0.49; OPA: t(19) = 2.14, p = .200, Cohen’s d = 0.48). 336 

 A further test of the similarity in response between scrambling conditions is the 337 

extent to which neural response patterns generalise across them.  This was tested using 338 

cross-decoding analyses.  MVP analyses were conducted in which the neural response 339 

patterns to intact scenes were now correlated with the neural response patterns to 1) the 340 

locally scrambled scenes, and 2) the globally scrambled scenes.  If response patterns to a 341 

given scene category remain similar across the scrambling conditions, then significant 342 

decoding of the scene categories from these cross-condition MVP analyses would be 343 

expected.  The results of these cross-decoding analyses are shown in Supplementary Figure 344 

7.  The comparison of intact and locally scrambled scenes revealed significant decoding of 345 

scene category in the PPA (t(19) = 8.13, p < .001, Cohen’s d = 1.82) and OPA (t(19) = 7.13, p < 346 

.001, Cohen’s d = 1.59), but not the RSC (t(19) = 1.08, p = .583, Cohen’s d = 0.24).  Similarly, 347 

the comparison of intact and globally scrambled scenes also revealed significant decoding of 348 

scene category in the PPA (t(19) = 5.62, p < .001, Cohen’s d = 1.26) and OPA (t(19) = 5.82, p < 349 

.001, Cohen’s d = 1.30), but not the RSC (t(19) = 0.45, p = .655, Cohen’s d = 0.10).  Thus, 350 

response patterns in PPA and OPA generalised well between intact and locally scrambled, 351 

and intact and globally scrambled conditions. 352 
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[Figure 4 near here] 353 

Representational Similarity Analysis  354 

We next conducted a series of representational similarity analyses (RSAs; Kriegeskorte et al., 355 

2008) to test to what extent the two types of scrambling influence the representational 356 

structure of the responses relative to those of the intact scenes.  The off-diagonal elements 357 

of the group average matrices (20 elements per matrix) were correlated between intact and 358 

locally scrambled conditions, and intact and globally scrambled conditions.  If the scrambling 359 

does not disrupt the representational space, a significant positive correlation would be 360 

expected with the intact scenes matrix.  A significant positive correlation was observed 361 

between intact and locally scrambled scenes in the PPA (r(18) = .66, p = .009), but not in the 362 

OPA  (r(18) = -.15, p > .999), whilst a significant negative correlation was observed in the RSC 363 

(r(18) = -.56, p = .044).  A significant positive correlation was observed between intact and 364 

globally scrambled conditions in the OPA(r(18) = .62, p = .019), but not the PPA (r(18) = .44, 365 

p = .160)or RSC(r(18) = .02, p > .999).  These results are illustrated in Figure 5 (see also 366 

Supplementary Figure 6). 367 

[Figure 5 near here] 368 

To further quantify the degree of preserved pattern similarity under scrambling we 369 

undertook an additional analysis of representational similarity, taking into account 370 

individual variation and the distribution of correlations this entails (Supplementary Figure 371 

7). Such variation leads to a “noise ceiling” (Nili et al., 2014), i.e., an upper bound to the 372 

observable correlation between intact and scrambled conditions. By comparing the 373 

observed correlations with the noise ceiling, we can determine the degree to which 374 

preserved representational structure under scrambled conditions accounts for the 375 
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explicable variance in the data. This approach also permits a more sensitive comparison 376 

with a zero correlation, which would be expected if scrambling abolished the 377 

representational structure for intact images. 378 

The noise ceiling is estimated by correlating each LOPO iteration’s intact similarity 379 

matrix against the group average intact similarity matrix (calculated across all LOPO 380 

iterations for the noise ceiling upper bound, and across all LOPO iterations but the current 381 

one for the noise ceiling lower bound), and then averaging these correlations.  This reflects 382 

the maximum similarity that could be expected for any correlation between the intact and 383 

scrambled conditions. Noise ceilings were reasonably high in the PPA and OPA indicating a 384 

good degree of reliability in the intact responses across LOPO iterations, but were much 385 

closer to zero in the RSC indicating relatively poor reliability in this region.   386 

Next, we calculated the correlation between each LOPO iteration’s locally- or 387 

globally-scrambled similarity matrix and the group average intact similarity matrix.  A one-388 

sample t-test was used to contrast each of these correlation distributions against zero.  For 389 

the comparison of intact and locally scrambled conditions, correlations were significantly 390 

greater than zero in the PPA (t(19) = 7.44, p < .001, Cohen’ d = 1.66), significantly less than 391 

zero in the RSC (t(19) = 3.17, p = .015, Cohen’s d = 0.71),  and less than zero in the OPA with 392 

the difference approaching significance (t(19) = 2.41, p = .053, Cohen’ d = 0.54).  For the 393 

comparison of intact and globally scrambled conditions, correlations were significantly 394 

greater than zero in the PPA (t(19) = 5.51, p < .001, Cohen’s d = 1.23) and OPA (t(19) = 8.83, 395 

p < .001, Cohen’s d = 1.97), and did not differ significantly from zero in the RSC (t(19) = 0.09, 396 

p = .929, Cohen’s d = 0.02).  Next, we compared the correlations with the noise ceiling.  For 397 

the comparison of intact and locally scrambled conditions, correlations were significantly 398 
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below the lower bound of the noise ceiling in the RSC (t(19) = 5.00, p < .001, Cohen’s d = 399 

1.12) and OPA (t(19) = 14.69, p < .001, Cohen’s d = 3.28), but not the PPA (t(19) = 1.70, p = 400 

.211, Cohen’s d = 0.38).  For the comparison of intact and globally scrambled conditions, 401 

correlations were significantly below the lower bound of the noise ceiling in the PPA (t(19) = 402 

5.89, p < .001, Cohen’s d = 1.32) and OPA (t(19) = 2.97, p = .023, Cohen’s d = 0.66), but not 403 

the RSC (t(19) = 1.21, p = .241, Cohen’s d = 0.27).  This shows that in most cases the local 404 

and global scrambling conditions ability to predict the intact responses fell significantly 405 

below the theoretical maximum of the noise ceiling.  Overall, this analysis demonstrates 406 

that, for PPA and OPA, significant representational structure is preserved under even global 407 

scrambling conditions although it also shows that other sources of variance play a role. 408 

 We next tested the extent to which the definition of the scene ROIs influenced the 409 

MVPA results.  The main scene ROIs were defined using a contrast of Scenes > Phase 410 

Scrambled versions of those scenes.  We defined an alternative set of ROIs for the main 411 

scene regions (PPA, RSC, OPA) from independent localiser data of separate experiments (not 412 

reported here) using contrasts of Scenes > Faces and Scenes > Objects.  The locations of 413 

these ROIs are illustrated in Supplementary Figure 8, and co-ordinates of the corresponding 414 

peak voxels are given in Supplementary Table 2.  Locations of the PPA and RSC regions 415 

remained relatively consistent across the definitions (cf. Table 1 and Supplementary Figure 416 

3).  We next repeated our MVP analyses for these alternative ROIs.  Results of the decoding 417 

analyses were largely consistent with those for the main ROIs (Supplementary Figure 9; cf. 418 

Figure 4).  Representational similarity analyses remained broadly consistent between the 419 

main and alternative definitions (Supplementary Figure 10; cf. Figure 5). 420 
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 In order to interpret the results of representational similarity analyses within scene 421 

selective regions, it is essential to identify any disruption of earlier stages of visual 422 

processing. To test whether category specific visual responses in early visual cortex survive 423 

scrambling of low-level image properties, we repeated our analyses in a V1 control region 424 

defined using a probabilistic atlas (Wang et al., 2015).  The results of this analysis are shown 425 

in Supplementary Figure 11.  Paired-samples t-tests revealed significantly higher within- 426 

than between-category correlations for the intact (t(19) = 7.82, p < .001, Cohen’s d = 1.75), 427 

locally scrambled (t(19) = 4.28, p < .001, Cohen’s d = 0.96), and globally scrambled scenes 428 

(t(19) = 4.68, p < .001, Cohen’s d = 1.05).  Representational similarity analyses revealed a 429 

significant correlation between the intact and globally scrambled conditions (r(18) = .71, p = 430 

.001), but not between intact and locally scrambled conditions (r(18) = .37, p = .112). 431 

Overall, these results indicate that preserved low-level features are sufficient to maintain 432 

reliable spatial patterns of response in V1 after scrambling. 433 

 Finally, we repeated our analyses using a whole-brain searchlight approach to 434 

identify areas beyond our regions of interest where patterns of response to intact and 435 

scrambled images are systematically affected by stimulus category.  The results of these 436 

analyses are plotted on the cortical surface in Supplementary Figure 12.  Spheres showing 437 

significant decoding of category for intact scenes were observed throughout occipital and 438 

ventro-temporal cortices.  Decoding for the scrambled scene conditions was less 439 

widespread; nevertheless, significant spheres were observed in right ventro-temporal 440 

cortices and some occipital regions for locally scrambled scenes, and in some occipital 441 

regions for globally scrambled scenes.  Representational similarity analyses revealed 442 

significant spheres in regions including ventro-temporal and occipital cortices, both for the 443 
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comparison of intact and locally scrambled scenes, and intact and globally scrambled 444 

scenes. 445 

  446 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

23 

 

DISCUSSION 447 

The aim of the present study was to directly determine whether category-selective patterns 448 

of response in scene-selective regions can be explained by the visual properties of the 449 

stimulus.  To address this issue, we compared patterns of response to intact and scrambled 450 

images. Our hypothesis was that, if category-selective patterns of response purely reflect 451 

the semantic content of the images, there should be little similarity between the patterns of 452 

response elicited by intact and scrambled images.  On the other hand, if category-specific 453 

patterns are based on visual properties, similar patterns should be elicited by both intact 454 

and scrambled images. Image scrambling significantly impaired the ability to categorize 455 

scenes, consistent with previous results showing that local phase information is important 456 

for recognition of scene gist (Loschky et al., 2007).  However, we found distinct and reliable 457 

category-selective patterns of response for both the intact and scrambled image conditions 458 

in the PPA and OPA scene-selective regions.   Moreover, the patterns of response elicited by 459 

intact scenes were similar to the patterns of response to scrambled scenes. 460 

Previous studies have identified distinct patterns of neural response to different 461 

categories of scene in scene selective regions (Walther et al., 2009, 2011; Watson et al., 462 

2014). Our results show that categorical patterns of response in scene-selective regions are 463 

still evident to images with significantly reduced semantic information. These findings are 464 

consistent with recent studies in which we have shown that basic image properties of 465 

different scene categories can predict patterns of response in scene-selective regions (Rice, 466 

Watson, Hartley, & Andrews, 2014; Watson et al., 2014, 2016).  However, because images 467 

drawn from the same category are likely to have similar visual properties (Oliva & Torralba, 468 

2001), it was unclear from this previous work whether or not patterns are determined 469 
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primarily by categorical or visual properties of the image.  The results from the current study 470 

provide more direct evidence that lower-level visual properties of the image can account for 471 

a substantial proportion of the variance in the patterns of response in scene-selective 472 

regions.  This does not dispute that there are distinct patterns of response to different scene 473 

categories in scene-selective regions, but rather suggests that such effects may be 474 

underpinned, at least in part, by sensitivity to the visual properties of scenes.   475 

To evaluate the importance of spatial properties in the neural representation of 476 

scenes, we compared scrambling across the full global extent of the image, or 477 

independently within local windows of the image.  The local scrambling thus preserves the 478 

coarse-scale global structure of the original image more than the global scrambling, in the 479 

sense that the local scrambling leaves the windows of the grid in their original spatial 480 

positions (see also Figure 1 & Supplementary Figure 1).  In PPA, we found that responses 481 

could be discriminated for locally scrambled scenes, but the ability to discriminate globally 482 

scrambled images was less reliable.  Furthermore, a representational similarity analysis 483 

showed that local scrambling preserved the pattern of response to intact images more than 484 

globally scrambling.  This would suggest that the PPA is sensitive to the coarse-scale spatial 485 

organisation of the image, such that responses are disrupted more by global scrambling.  486 

Such a conclusion would be consistent with previous studies demonstrating sensitivity of 487 

the PPA to the spatial structure of scenes (Epstein, Higgins, Parker, Aguirre, & Cooperman, 488 

2006; Kravitz et al., 2011; Park et al., 2011), and displaying visual field biases (Arcaro et al., 489 

2009; Cichy et al., 2013; Silson et al., 2015).  Indeed, it has been proposed that the PPA may 490 

support extraction of local spatial geometries of the scene (Epstein, 2008; Epstein, Parker, & 491 

Feiler, 2007), for which local visual features may be important. 492 
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There was a reduction in the magnitude of the category effect for scrambled scenes 493 

relative to intact scenes, suggesting that the scrambling process introduced some disruption 494 

to the neural representations.  This suggests that patterns of response are dependent on 495 

higher-level information about the scene that is only available from the intact images. One 496 

possibility is that this higher-level information reflects the semantic or categorical properties 497 

conveyed by the image.  For example, our noise ceiling analysis suggests that while 498 

significant pattern similarity is preserved, a substantial component is disrupted, particularly 499 

by global scrambling.  However, an alternative possibility is that unexplained variance might 500 

reflect image properties that are disrupted by the scrambling process. An important feature 501 

of intact images is the strong statistical dependencies between features, such as location-502 

specific combinations of orientation and spatial frequency.  Indeed, the behavioural 503 

sensitivity to the regularities that occur in intact objects suggests that these properties are 504 

critical for differentiating between different classes of images (Loschky et al., 2007, 2010). It 505 

is possible that these properties also contribute to the patterns of response in scene-506 

selective regions. When evaluating these possibilities, it is important to recognize that high- 507 

and low-level contributions to the observed representational structure are not mutually 508 

exclusive. The extraction of any high-level features depends on the availability of relevant 509 

low-level features preserved in the scrambled stimuli. 510 

We found that category responses in the OPA could be discriminated for intact 511 

scenes and locally scrambled scenes, but not globally scrambled scenes.  However, in 512 

contrast to the PPA the representational structure of the intact scenes was maintained by 513 

the global scrambling.  Although the OPA has been causally implicated in the perception of 514 

scenes (Dilks et al., 2013; Ganaden, Mullin, & Steeves, 2013), its precise functional 515 
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properties are less well established than other scene regions.  The greater similarity 516 

between intact and globally scrambled images suggests that the OPA is sensitive to global 517 

visual statistics, such as the texture of the image.  Interestingly, this implies a possible 518 

functional distinction between PPA and OPA, with the PPA more clearly tuned to the local 519 

visual features than the OPA.  Recent studies have reported a double dissociation in visual 520 

field biases between the PPA and OPA (Silson et al., 2015; Silson, Groen, Kravitz, & Baker, 521 

2016), suggesting inputs to these regions may at least partially function in parallel rather 522 

than in series, and which may therefore support some degree of functional dissociation 523 

between them. 524 

In contrast to the PPA and OPA, responses in RSC failed to discriminate the scene 525 

categories in any of the conditions.  The representational similarity analyses showed that 526 

neither local nor global scrambling maintained the representational structure relative to the 527 

intact scenes.  It has been proposed that the RSC may play a role representing the scene as 528 

part of the wider spatial environment (Epstein, 2008; Epstein et al., 2007) playing a crucial 529 

role in spatial memory, navigation and imagery – for example, translating between ego- and 530 

allocentric spatial representations (Byrne, Becker, & Burgess, 2007; Vann, Aggleton, & 531 

Maguire, 2009).  Such processes suggest a more abstract form of representation, less 532 

directly tied to image features.  533 

We also examined the response patterns within a V1 control region (Wang et al., 534 

2015).  We would expect this region to display sensitivity to the visual features of the 535 

scenes, but would be less likely to be modulated by higher-level semantic features of the 536 

scene categories.  We observed significant decoding of the scene categories under all of the 537 

different scrambling conditions, consistent with the reliable differences in visual features 538 
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between different scene categories.  We also observed a significant association between the 539 

patterns in the intact and globally scrambled conditions, consistent with the presence of the 540 

shared global visual features between the intact and globally scrambled conditions. 541 

In conclusion, our results demonstrate distinct responses to different categories of 542 

scenes even when the perception of scene category is severely impaired by phase 543 

scrambling.  These results should not be taken to imply that perception of scene category is 544 

independent of the neural response in scene-selective regions, but they do suggest that the 545 

topographic organization of regions such as the PPA and, to a lesser extent, the OPA can be 546 

explained by selectivity for the visual properties of the image.    547 
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TABLES 757 

Table 1. Peak MNI mm co-ordinates, voxel counts, and thresholds of standard scene 758 

selective clusters (PPA, RSC, OPA). 759 

Region Hemisphere x y z Voxel count Threshold (Z) 

PPA L -34 -46 -22 500 5.06 

 R 26 -50 -18 500 5.59 

RSC L -18 -52 -2 500 4.63 

 R 16 -58 6 502 4.79 

OPA L -36 -90 2 500 5.14 

 R 38 -82 4 499 5.03 

  760 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

35 

 

FIGURES 761 

 762 

Figure 1.  Examples of the scene images used in each condition.  763 
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 764 

Figure 2.  Results of the behavioural experiment.  (a)  Mean scene identification accuracies 765 

for each level of scrambling.  Error bars represents 1 SEM.  (b)  Box-plots of median 766 

confidence ratings for each level of scrambling.  (*** p < .001, ** p < .01, * p < .05). 767 
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 768 

Figure 3.  MVPA results: correlation similarity matrices for each level of scrambling in each 769 

region of interest.  To aid visualisation, symmetrically opposite points across the diagonal 770 

have been averaged and displayed within the lower-triangle portion of the matrix only. 771 
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 772 

Figure 4.  Decoding of categories from MVPA.  Average within-category (on-diagonal) and 773 

between-category (off-diagonal) values were calculated from the MVPA correlation 774 

matrices.  Significantly greater within- than between-category correlations indicate 775 

categories can be successfully decoded.  Error bar represent 1 SEM.  (*** p < .001, ** p < 776 

.01, * p < .05).  777 
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 778 

Figure 5.  Representational similarity analyses.  Off-diagonal elements of group average 779 

MVPA correlation matrices (Figure 3) are correlated between (a) intact and locally-780 

scrambled conditions, and (b) intact and globally-scrambled conditions.  Shaded regions 781 

represent 95% confidence intervals.  (*** p < .001, ** p < .01, * p < .05).782 
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