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Abstract Isoprene surface ocean concentrations and vertical distribution, atmospheric mixing ratios, and

calculated sea-to-air fluxes spanning approximately 125° of latitude (80°N–45°S) over the Arctic and Atlantic

Oceans are reported. Oceanic isoprene concentrations were associated with a number of concurrently

monitored biological variables including chlorophyll a (Chl a), photoprotective pigments, integrated primary

production (intPP), and cyanobacterial cell counts, with higher isoprene concentrations relative to all

respective variables found at sea surface temperatures greater than 20°C. The correlation between isoprene

and the sum of photoprotective carotenoids, which is reported here for the first time, was themost consistent

across all cruises. Parameterizations based on linear regression analyses of these relationships perform

well for Arctic and Atlantic data, producing a better fit to observations than an existing Chl a-based

parameterization. Global extrapolation of isoprene surface water concentrations using satellite-derived Chl a

and intPP reproduced general trends in the in situ data and absolute values within a factor of 2 between 60%

and 85%, depending on the data set and algorithm used.

1. Introduction

Biogenic volatile organic compounds have profound impacts on atmospheric chemistry, predominantly

by forming tropospheric ozone, modifying the oxidative capacity of the atmosphere, and contributing

to secondary organic aerosol [e.g., Carlton et al., 2009; Claeys et al., 2004]. Isoprene, emitted mainly from

trees and plants, accounts for around half of the global biogenic nonmethane hydrocarbon emissions,

with an estimated terrestrial source strength of 500 Tg C yr�1 [Guenther et al., 2012]. More recent research

has suggested that an oceanic source of isoprene could significantly impact atmospheric chemistry and

cloud microphysical properties in the remote marine boundary layer, despite its much lower emission

strength in this region [Meskhidze and Nenes, 2006; Wingenter et al., 2007; Gantt et al., 2009; Arnold

et al., 2009; Metzger et al., 2010]. However, estimates of global oceanic emissions vary by up to 2 orders

of magnitude between bottom-up (seawater derived; ~0.1–1 Tg C yr�1) [Arnold et al., 2009; Luo and Yu,

2010; Palmer and Shaw, 2005; Ito and Kawamiya, 2010; Gantt et al., 2009] and top-down approaches

(1.68–11.6 Tg C yr�1) [Arnold et al., 2009; Luo and Yu, 2010]. The factors controlling marine isoprene

emissions are still poorly understood, partly due to a paucity of field measurements, especially those with

suitable supporting data.

A review of previous work on marine isoprene and its likely oceanic controls can be found in Shaw et al.

[2010], which is briefly repeated and extended here with more recent studies. Bonsang et al. [1992] reported

the first observations of isoprene in seawater and suggested a biological source based on the association

with concurrently measured chlorophyll a concentrations ([Chl a]). This was further supported by a number

of field measurements [Milne et al., 1995; Broadgate et al., 1997; Baker et al., 2000;Wingenter et al., 2004;Moore

and Wang, 2006; Kurihara et al., 2010, 2012; Tran et al., 2013; Kameyama et al., 2014; Zindler et al., 2014; Ooki

et al., 2015] and laboratory studies [Moore et al., 1994; McKay et al., 1996; Shaw, 2001; Shaw et al., 2003; Gantt

et al., 2009; Bonsang et al., 2010; Exton et al., 2013] that observed correlations with Chl a. Additionally, photo-

chemical production from the sea surface microlayer has recently been proposed as a potential abiotic

source [Ciuraru et al., 2015].
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The importance or precise nature of a biological sink within the ocean is still unconfirmed. Acuña Alvarez

et al. [2009] reported isoprene consumption by various hydrocarbon-degrading bacteria from estuarine

sediments in laboratory experiments, while Shaw et al. [2003] did not find an effect of introducing bacteria

into cultures.

Based on these observations of isoprene-Chl a relationships, along with Chl a-normalized laboratory

monoculture production rates, several authors have attempted a global extrapolation of isoprene fluxes.

Palmer and Shaw [2005] assumed steady state oceanic isoprene concentrations, scaling isoprene produc-

tion by satellite [Chl a] and balancing it with losses due to chemical and biological removal, water column

mixing, and air-sea exchange (the latter being the largest loss term by far). They then used the obtained

isoprene water concentrations to model global fluxes. Arnold et al. [2009] refined this approach by differ-

entiating isoprene production rates by phytoplankton functional type (PFT), following findings from

laboratory studies. Production in the water column and loss to the atmosphere were taken to be in steady

state, and both remotely sensed [Chl a] and PFT data based on the PHYSAT algorithm were used for

global scaling.

Another recent global emission estimate has been computed using a physically-based method that takes

into account known influences of several additional parameters on isoprene production based on laboratory

studies [Gantt et al., 2009]. It uses global PFT distributions and [Chl a] from satellite data with PFT-specific

production rates and ambient light levels to derive hourly production within the entire euphotic depth of

the water column. As in the previous methods, the production is assumed to result in instantaneous emission

to the atmosphere, which in combination with the light dependence in this approach leads to a diurnal

profile of the flux. However, observations suggest that significant isoprene production takes place at depths

of 5m or deeper [cf. Bonsang et al., 1992; Milne et al., 1995; Moore and Wang, 2006; Tran et al., 2013] (vertical

distributions in this work) and so would only gradually be vented to the atmosphere, which would smooth

out the diurnal nature of production. In their paper, Gantt and coworkers already reported that field observa-

tions [Matsunaga et al., 2002] did not show the strong diurnal pattern and zero nighttime emissions that their

model predicted.

Despite a qualitative consensus about the existence of a biological control, published equations to predict

isoprene concentrations in water, based on [Chl a] vary widely (this is discussed further in section 3.4 and

Table 4). Likely reasons are the apparent dependence of isoprene production on PFTs, or even lower

taxonomic groups, as well as growth conditions in laboratory cultures [Shaw et al., 2003; Gantt et al., 2009;

Bonsang et al., 2010; Exton et al., 2013], and also variations observed in the field with sea surface temperature

(SST) [Ooki et al., 2015].

This work reports a substantial number of new isoprene observations in the surface ocean and marine

atmosphere across a large range of latitudes, thereby significantly increasing the available data set and

enabling the estimation of sea-to-air fluxes. Supporting measurements of the proposed and potential

additional controls provide new field data to improve our understanding of the different parameters influen-

cing marine isoprene. We investigate the suitability of several parameterizations, derived from the new data,

for predicting isoprene fluxes on a global scale.

2. Experimental

2.1. Cruise and Sampling Overview

Sampling took place during the AMT 22 cruise (Atlantic Meridional Transect, UK-South Atlantic,

October/November 2012, RRS James Cook), AMT 23 cruise (UK-South Atlantic, October/November 2013,

RRS James Clark Ross (JCR)), ACCACIA 1 cruise (March 2013, Arctic, R/V Lance), and ACCACIA 2 cruise

(JR288, Arctic, July/August 2013, JCR). Cruise tracks are indicated in Figure 1 and Figure S1

(supporting information).

CTD (conductivity-temperature-depth) casts were performed twice daily (pre-dawn and solar noon) during

AMT 22 and 23 and once daily (morning) during ACCACIA 1 and 2. Water was subsampled from the Niskin

bottles (20 L) for further processing, described in detail separately for each variable. Various measurements

were also made from the ships’ clean underway seawater supply inlet (nominal depth 5–6m).

Global Biogeochemical Cycles 10.1002/2016GB005531
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Figure 1. (a) Isoprene air mixing ratios (including data<DL as 0.5 × DL; pptv) and (b) isoprene concentration in the surface ocean (pmol L
�1

) along the cruise tracks

(dotted black lines; also see Figure S1) for AMT 22 and 23 and ACCACIA 1 and 2. (c) Air and (d) water data in enlarged ACCACIA sampling region (plus signs for

ACCACIA 1). Also shown are published values for the Pacific, Indian, and Southern Oceans taken from Ooki et al. [2015] and further air and water concentrations from

the literature which are also listed in Table 2 (large colored diamonds). Measurements shown from oceanic sites only, no remotely sensed or coastal data. Literature

values shown are best estimates of averages and locations from graphs or tables; several points are shown per study where data sets covered larger areas. Plots

created with Ocean Data View [Schlitzer, 2016].
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2.2. Isoprene Measurements by (autoP&T)-TD-GC-MS

Trace gases were measured in water and air during all four cruises by (automated Purge & Trap)-Thermal

Desorption-Gas Chromatography-Mass Spectrometry ((autoP&T)-TD-GC-MS), with details given in the

supporting information (Text S1).

Briefly, isoprene in air was measured as discrete samples of 1–2 L air, from a continuously pumped air inlet.

Isoprene in seawater was analyzed from the ships’ pumped nontoxic seawater supplies as well as from

CTD casts from within the photic depth, using the semiautomated P&T system described in Andrews

et al. [2015], with modifications detailed in the supporting information. Analysis was performed by

GC-MS, with regular calibrations using a premixed gas standard. Detection limits were calculated dynami-

cally to account for changing instrument sensitivity and ranged between 0.1–5 pmol L�1 and 0.1–2.5 pptv

(parts per trillion) for water and air, respectively, and the uncertainty of the analysis was typically around

10–20%. Air data were filtered for contamination arising from the ship’s exhaust using hydrocarbon

concentration thresholds.

2.3. Biological and Supporting Data

With the exception of ACCACIA 1, a variety of biological data sets were collected and analyzed during the

cruises, with methods described in the supporting information (Text S2). Data included gross biomass

(Chl a) and integrated primary production (intPP) using the methods described in Tilstone et al. [2009], as well

as flow cytometry and pigment data from high-performance liquid chromatography analysis (HPLC).

Furthermore, CHEMTAX analysis was performed for ACCACIA 2 pigment data.

Meteorological data such as wind speed and sea surface temperature (SST) were obtained from the ship

systems, provided by the British Oceanographic Data Centre (BODC).

2.4. Further Analysis

The isoprene sea-to-air flux was calculated following the approach of Johnson [2010], assuming air concen-

trations of zero due to the large degree of supersaturation of the gas in seawater (see supporting information

Text S3.1). [Chl a] and SST were extracted from Moderate Resolution Imaging Spectroradiometer (MODIS)-

Aqua (http://oceancolor.gsfc.nasa.gov/cms/); intPP was calculated using MODIS-Aqua Chl a and photo-

synthetically active radiation (PAR) and mixed layer depth from a climatology (see supporting information

Text S3.2). Isoprene concentrations were produced from the satellite data using the SST-binned combined

regressions (ALL) detailed in section 3.3 for [Chl a] and intPP(total).

3. Results and Discussion

3.1. Isoprene Air and Water Concentrations

A comprehensive, internally consistent set of isoprene atmospheric mixing ratios and surface ocean concen-

trations is reported here, spanning around 125° of latitude in the Atlantic and Arctic Oceans at comparatively

high spatial and temporal resolution. The data substantially increase the number of currently published

marine isoprene measurements, especially in oligotrophic oceanic regions [cf. Shaw et al., 2010], as can be

seen in Figure 1.

In a typical depth profile (Figure 2), the isoprene concentrations generally followed the shape of the Chl a

profile, with the maximum isoprene concentration slightly shallower than the deep chlorophyll maximum

when present. This is in agreement with published vertical distributions [Bonsang et al., 1992; Milne et al.,

1995; Moore and Wang, 2006; Tran et al., 2013].

As shown in Figure and summarized in Table 1, surface ocean isoprene concentrations varied between 1 and

66 pmol L�1, with mean concentrations around 20 pmol L�1 for all cruises except the Arctic winter/spring

cruise, during which concentrations were much lower (mean of 4 pmol L�1). This compares well with

previously published mean values of typically 25–30 pmol L�1 in the Atlantic and around 10–80 pmol L�1

across all oceans (Table 2). Some authors have also observed much higher concentrations, mostly where

biological productivity in the study region was high (e.g., coastal or spring blooms) [Tran et al., 2013;

Kameyama et al., 2014; Ooki et al., 2015].
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There was no significant difference between average daytime and nighttime concentrations during any of

the cruises (Figure 3), suggesting a lack of diurnal variation for isoprene in surface waters. (Day defined using

a threshold of modeled jNO2> 5× 10�5 s�1 (GEOS-Chem v9.2, 4 × 5° resolution) [Sherwen et al., 2016] during

the sampling period, as the photolysis rate of NO2 (jNO2) is zero at night, threshold allowing for noise in the

data.) There were too few ACCACIA 2 nighttime values (due to light summer nights) to establish a meaningful

difference to daytime.

Atmospheric mixing ratios were consistently low and often below the detection limit (DL), with mean values

of around 1–3 pptv. This lies at the lower end of the range of previous observations; several studies found

tens to a couple of hundreds of pptv isoprene above phytoplankton blooms or in coastal areas (Table 2).

Figure 2. Typical isoprene (blue) depth profiles alongside CTD fluorescence sensor Chl a (green) and temperature (black)

traces to indicate biological activity and mixed layer depth; (a) tropical North Atlantic, 14°N, 34°W (CTD 30, AMT 22); (b)

North Atlantic Gyre, 23°N, 41°W (CTD 23, AMT 22); and (c) Arctic, 83°N, 26°E (CTD 18a, ACCACIA 2). Error bars for isoprene

data represent the measurement uncertainty. Further depth profiles available in the full data set held at BODC.

Table 1. Isoprene Concentrations in Water and Air for Each of the Four Cruises Reported in This Study
a

Cruise
b

Mean (Range) Mean (0.5 × DL) Median (n) Median (n) (0.5 × DL) DL Range
d

Surface CTD
e
Mean (n)

Air (pptv) AMT 22 1.88 (<DL–18.28) 1.47 1.51 (347) 1.07 (496) 0.09–2.42

AMT 23
c

2.76 (<DL–10.24) 2.72 2.27 (502) 2.24 (509) 0.05–0.47

ACCACIA 1
c

3.37 (<DL–13.82) 3.17 2.61 (610) 2.41 (648) 0.03–0.27

ACCACIA 2 0.41 (<DL–1.61) 0.19 0.35 (150) 0.16 (891) 0.08–0.71

Water (pmol L
�1

) AMT 22 26.76 (8.75–63.36) - 23.18 (290) - 0.12–2.57 29.59 (37)

AMT 23 18.74 (1.12–38.20) - 17.20 (196) - 0.07–0.12 25.85 (28)

ACCACIA 1 4.40 (1.96–10.57) - 4.25 (166) - 0.28–0.68 6.29 (9)

ACCACIA 2 24.12 (3.86–66.38) - 19.91 (221) - 0.80–4.88 22.01 (43)

a
Mean andmedian are given for only data>DL as well as for all data, substituting a value of half the DL (0.5 × DL) for points that fall below the DL but are other-

wise not flagged as bad (or probably bad) data. A dash indicates that no data were<DL. Number of data points n applies to both mean and median (only shown
with median).

b
AMT cruises: North and South Atlantic (October/November); ACCACIA 1: Arctic (March); and ACCACIA 2: Arctic (July/August).

c
May be compromised due to hydrocarbon contamination.
d
Dynamic DL.

e
Surface CTD (<10m depth).
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Table 2. Published Air and Water Concentrations of Isoprene

Mean ± Standard

Deviation (Range) [Notes] Location
a
(Month) Reference

Air (pptv)

<2–36 South Pacific (May/Jun); Bonsang et al. [1992]

<10–20 Southern Indian Ocean (all year)

<5–11 Florida Gulf (Sep) Milne et al. [1995]

3.9; 6.2 (<5–24) [NW; SW

winds]

Mace Head Observatory (Aug) Lewis et al. [1997]

2.6 [NW; SW

winds]

Mace Head Observatory (Aug) Lewis et al. [1999]

<0.1–250 SE Asian Sea, Indian Ocean, SO (two

cruises, Nov–Mar)

Yokouchi et al. [1999]

<1.6; 5.7 [night; day] Cape Grim Observatory (summer) Lewis et al. [2001]

45 (7.2–110) Western North Pacific (May) Matsunaga et al. [2002]

1.9; 0.9 [oceanic;

arctic air]

Arctic (summer) Hopkins et al. [2002]

<3 Southern Ocean (Jan) Wingenter et al. [2004]

180 (<60–2380) Mesocosm (Norway; Jun) Sinha et al. [2007]

67 ± 40 and 73 ± 27
c

[remote] Southern Ocean (Jan) Williams et al. [2010]

274 ± 40 and 203 ± 32
c

[bloom] [leg 1]

2.1 ± 2.1
c

[remote] Southern Ocean (Jan/Mar) Williams et al. [2010] (average of

both legs)

26 (<(1–5)� 48) [remote] Southern Ocean (Jan) Yassaa et al. [2008]

99 (60–138) [distant

bloom]

[leg 1]
g

187 (32–375) [bloom]

40 (20–340) [south of

35°S]

Southern Indian Ocean (Dec) Colomb et al. [2009]

20 ± 20 [background]

14 [2006] Cape Grim observatory

(hourly mean, marine air)

Lawson et al. [2011]

and Galbally et al. [2007]21 [2007]

14 SW Pacific Ocean (Mar) Lawson et al. [2015]

Water (pmol L
�1

)

Up to 23.3 Mediterranean (Oct/May)

and Pacific (Apr/May/Jun)
d

Bonsang et al. [1992]

Up to 41

30.8 ± 16.3 (9.8–50.8) Florida Gulf (Sep) Milne et al. [1995]

0.7–54 North Sea (Feb–Sep) Broadgate et al. [1997]

14–61 Eastern Atlantic (May) Baker et al. [2000]

30 (<12–94) Western North Pacific (May) Matsunaga et al. [2002]

1.8 [out of patch] Southern Ocean (Jan) Wingenter et al. [2004]

7.3 [in patch]

20.8 [3 km off

coast]

Mace Head Observatory (Sep) Broadgate et al. [2004]

19.7 (3.8–68.2) Western North Pacific (Apr) Kurihara et al. [2010]

70.6 ± 17.3 NW Pacific (Jul–Aug) Kameyama et al. [2010]
e

7.3 (4.4–10.0) Sagami Bay (Japan/Pacific; Apr–Dec) Kurihara et al. [2012]

26 ± 31 (1–541) Arctic and Atlantic Oceans (Jun/Jul) Tran et al. [2013]

78.7 (0.2–348) Southern Ocean (Dec–Jan) Kameyama et al. [2014]

25.7 ± 14.7 (~5–60) East Atlantic (Nov) Zindler et al. [2014]

27 (1.3–121) [basin]
f

Arctic, Pacific, Indian,

and Southern Oceans

Ooki et al. [2015]

44 (1.5–165) [slope]
f

30 (2.7–136) [shelf]
f

a
Ship unless specified.
b
Programmable temperature vaporization-GC-FID.

c
Median ±median absolute deviation.
d
Open ocean only.

e
Values also reported as part of Ooki et al. [2015] data set.

f
Basin (bottom depth >2000m), slope (200–2000m), and shelf (<200m) areas.
g
Same cruise as Williams et al. [2010] but unclear whether same samples.
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The magnitude of our reported atmospheric concentrations is consistent with past studies in which an insig-

nificant role for isoprene for marine secondary organic aerosol has been inferred [Arnold et al., 2009]. Our air

measurements also provided a constraint for flux calculations in this work (see Text S3.1). Similar to water, no

diurnal trends were observed in air, even when levels were consistently above the detection limit. However,

the generally low biological activity during our cruises is comparable to “background” or “remote” regions for

which isoprene near or below the detection limit is often reported (Table 2). Careful filtering for potential ship

influence in this work may also have resulted in lower values; comparisons are limited as the extent of filter-

ing has, to our knowledge, not been described in detail for other studies.

As a substantial part of our air data fell below the DL, mean and median values were also calculated including

a value of 0.5 ×DL for data<DL. The results should represent a more accurate approximation of the typical

isoprene mixing ratios by accounting for low values (and assuming that samples<DL are unlikely to be at

zero). A mean or median calculated from only data>DL is necessarily biased toward higher values and omits

some of the valid data (cf. Table 1).

3.2. Sea-to-Air Fluxes

Fluxes determined in this study are of comparable magnitude to previously published fluxes for the Atlantic

and Arctic Oceans (Figure 4 and values in Table S1, supporting information), taking into account the overall

large spatial and temporal variability. The error bars shown on the previously published fluxes reflect the

large range in isoprene concentrations observed within each study, with an additional distinction between

different water masses in the Tran et al. [2013] data. The Tran et al. [2013] data shown are the two water

masses with the lowest and highest isoprene concentrations and fluxes observed during that study, to high-

light the extent of the variation in the North Atlantic and Arctic Oceans.

There is a further distinction for different approaches to the flux calculations in two studies (values in Table S1).

The calculated isoprene fluxes fromMeskhidze andNenes [2006] highlight that the choice of empirical relation-

ship strongly influences results from remotely sensed Chl a: mean fluxes calculated according to Palmer and

Shaw [2005] (based on laboratory production rates) were 3 times higher than the SOFeX method (calculated

from in situ Southern Ocean isoprene concentrations), even though both approaches scaled surface isoprene

by the same satellite [Chl a]. Furthermore, the choice of flux calculation can affect the results by more than

50%, as evident from the twomethods employed by Tran et al. [2013]. Owing to this combination of large var-

iations in concentrations and calculations, it is difficult to obtain close agreement between different studies.

Considering this, the mean values and ranges for the cruises from this work generally compare very well

(within a factor of 2) with the corresponding literature, such as Atlantic values from various studies, or the

in-ice ACCACIA 2 and all ACCACIA 1 data with Tran et al. [2013] polar waters.

From equation (1) (supporting information Text S3.1), it can be seen that the main controls of the calculated

bottom-up fluxes are wind speed and isoprene surface ocean concentration, as kw is strongly dependent on

wind speed and flux scales linearly with seawater concentration. The former is most obvious in Figure 4 for

Figure 3. Daytime (red) and nighttime (blue) isoprene concentrations in water for all four cruises; day defined as model

jNO2> 5 × 10
�5

s
�1

; for details, see main text. Mean (open square), median (line), 25th–75th percentiles (box); 5th–95th

percentiles (whiskers), and outlier data points (filled diamonds).
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theAMTcruises,withdistinctlyhigherfluxes for theperiodswithhigherwind inone year compared to theother

year (around 30–45°S), while isoprene concentrations matched closely between both years (see Figure 1a).

The latter is evident from the larger isoprene concentrations for ACCACIA 2 out-of-ice compared to in-ice,

with higher fluxes despite similar wind speeds. As wind speed can be obtained on a global scale from a

number of sources including climatologies, comprehensive databases, and satellite products (e.g., from

http://giovanni.gsfc.nasa.gov/giovanni/), a better understanding of the factors affecting isoprene concentra-

tions would be a large step toward a more accurate global extrapolation of isoprene fluxes. We will therefore

now focus on potential controls of isoprene in the surface water.

3.3. Potential Biological Controls on Seawater Isoprene Concentrations

Based on previously published associations of marine isoprene with phytoplankton biomass (Chl a), PFTs, and

general biological productivity, relationships of surface ocean isoprene concentrations with concurrently

monitored biological variables were investigated. Spatial and temporal variation of selected biological

variables is shown alongside isoprene concentrations in Figure 5. These analyses were not possible for

ACCACIA 1 due to the lack of supporting biological data; therefore, the cruise was excluded from the

following investigations. Due to the nature of the cruise tracks, AMT cruises are shown as latitudinal transects,

while ACCACIA data are shown as time series.

In order to explore controls on concentrations of isoprene in seawater, we assume that concentrations are

directly correlated with production rates, i.e., that oceanic losses do not vary significantly across the

Figure 4. Latitudinal transect of seawater-derived sea-to-air fluxes for all four cruises alongside wind speed (at ~20m

above sea level) and literature values for Atlantic waters, with ACCACIA 2 (>60°N only) separated into in-ice and out-of-

ice sampling regions. Literature values shown at approximate latitudes with error bars representing ranges given in the

references; Wan/L&M= flux parameterization from Wanninkhof [1992] and Liss and Merlivat [1986], respectively; for

Meskhidze and Nenes [2006], see main text.
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different water bodies sampled. Chemical and physical loss rates due to reaction in the water column and

downward mixing are believed to be slow, with estimated lifetimes of 19, >1000, and >250 days with

respect to reaction with OH, singlet oxygen, and losses due to mixing, respectively [Palmer and Shaw, 2005];

thus, to a first approximation they can be assumed to be constant. (Using the values of k1O2=106M�1 s�1

and [1O2] = 10�14M cited in Palmer and Shaw [2005] results in a calculated lifetime of 1150 rather than

115 days as stated by the authors. Using the value of k1O2= 3.7 × 104M�1 s�1 (in chloroform solution) given

in the original reference [Monroe, 1981], the lifetime with respect to singlet oxygen becomes >30 000 days.)

Biological losses as a result of bacterial consumption were similarly assumed to be very small by these

authors, based on evidence from laboratory experiments by Shaw et al. [2003]. The main loss from the

surface ocean is, in fact, due to sea-air gas exchange, which is strongly dependent on wind speed (see

section 3.2 above). This means that our assumption breaks down at high wind speeds especially, as the

concentrations are controlled by losses to a larger extent and therefore no longer proportional to

production (also observed by Moore and Wang [2006] outside a fertilized patch).

Several core measurements are collected on AMT voyages each year, including pigments, primary production

(PP), and phytoplankton abundance and community composition. Typical results are described in detail in

Robinson et al. [2002], Tilstone et al. [2009, 2015a, 2015b], Tarran et al. [2006], Heywood et al. [2006], and

Aiken et al. [2009]. Significant linear relationships were found (for each cruise and for combined data sets)

between isoprene and Chl a, other pigments including the sum of photoprotective carotenoids (PPC), some

PFTs, and PP (only AMT data for the latter two). Correlations generally improved when binned by sea surface

temperature (SST) with a threshold of 20°C (Table 3 and Figure 6). The threshold value was chosen based on

inspection of the correlation plots for each variable, which generally exhibited a change in slope at that value

(Figure 6; also cf. Figures S2–S5 in the supporting information). For variables where binning produced an

insignificant correlation (p> 0.05) for at least one bin, only relationships for the complete data set are shown

and used for further calculations.

Regression equations were calculated as the Robust Line of Organic Correlation (RLOC), which is affected less

than the LOC approach by outliers and points below the detection limit [Khalil and Adamowksi, 2012].

Equations were determined for each data set internally (A22 for AMT 22, A23 for AMT 23, and Ac2 for

Figure 5. Transect/time series plots of surface ocean isoprene concentrations alongside selected biological measure-

ments: total Chl a, sum of photoprotective carotenoids (PPC; sum of aeaxanthin, alloxanthin, diadinoxanthin, α- and β-

Carotenes, and diatoxanthin), integrated primary production (intPP total), and Synechococcus and Prochlorococcus cell

counts (Syn, Pro; Syn in Syn + Pro are scaled by a factor of 3.5 to account for cell-normalized isoprene production rates

given in Shaw et al. [2003]).

Global Biogeochemical Cycles 10.1002/2016GB005531

HACKENBERG ET AL. ISOPRENE CONTROLS IN THE SURFACE OCEAN 9



ACCACIA 2) and also for all available data sets for that variable combined (ALL; may refer to all three cruises or

only AMT data; Table 3).

3.4. Isoprene-Pigment Relationships

Slopes of the isoprene-Chl a correlations for waters with SST <20°C in the current study (Table 3) are of the

same order of magnitude as in published relationships for similarly low-SST regions, listed in Table 4. The

threshold SST of around 20°C for these relationships agrees in principle with findings by Ooki et al. [2015]

who calculated different linear regressions for different SST bins. Their data were, however, divided into four

SST bins (<3.3, 3.3–17, 17–27, and>27°C) as opposed to only two in this work (see section 3.3). It is likely that

the SST is an indicator of changes in biological variables rather than a direct cause of the change in isoprene

emissions. The differences between Ooki et al. [2015] and our work (cf. Figure 7) could stem from differences

in the phytoplankton community between the Atlantic and Pacific/Indian Oceans, different sampling

seasons, and frequencies and different [Chl a] measurement techniques (see below). The discrepancies

between the studies indicate that either data set is likely not directly applicable to all parts of the world’s

oceans and further refinement is needed in order to obtain a more accurate global algorithm, especially

for Arctic regions.

Exton et al. [2013] also reported different isoprene production rates (normalized to [Chl a]) from phyto-

plankton monocultures grown at different temperatures in accordance with their origins (polar, temperate,

or tropical). However, the relative difference in slope between the temperate and tropical regimes was

considerably smaller than between slopes for low- and high SST isoprene-[Chl a] correlations in the cur-

rent study (factors of <2 and 6–8, respectively, even larger for Ooki et al. [2015]; Table 4), which could

point to limited comparability of laboratory and field data. This might include additional controls on the

production in the field such as the proposed photochemical surface source [Ciuraru et al., 2015] and/or

currently unknown loss processes. It highlights that global emission estimates based on laboratory data

Table 3. Summary of Linear Relationships Between Isoprene and the Variables With the Most Consistent Correlations for

All Three Cruises, As Well As the Entire Data Set (ALL), Binned by SST Where a Significant Correlation (p< 0.05) Existed for

Both Bins

Parameter SST/°C Cruise (n) Regression Equation R
2

Chl a (by HPLC) <20 AMT 22 (39) 37.9*[Chl a] + 17.5 0.37

AMT 23 (11) 15.1*[Chl a] + 18.4 0.55

ACCACIA 2 (34) 34.1*[Chl a] + 11.1 0.61

ALL (84) 33.2*[Chl a] + 13.7 0.33

≥20 AMT 22 (93) 300*[Chl a]� 3.35 0.60

AMT 23 (22) 103*[Chl a] + 5.58 0.82

ALL (115) 266*[Chl a]� 1.68 0.54

Photoprotective carotenoids (PPC) <20 AMT 22 (39) 97.6*[PPC] + 19.5 0.50

AMT 23 (11) 87.3*[PPC] + 12.9 0.33 (p = 0.06)

ACCACIA 2 (34) 155*[PPC] + 6.59 0.47

ALL (84) 102*[PPC] + 14.4 0.48

≥20 AMT 22 (93) 377*[PPC]� 1.88 0.66

AMT 23 (22) 176*[PPC] + 2.75 0.68

ALL (115) 345*[PPC]� 0.81 0.61

Pro + Syn (scaled Syn) (AMT only) <20 AMT 22 (19) 4.70 × 10
�5

*[Pro + Syn] + 20.0 0.53

ALL (32) 7.07 × 10
�5

*[Pro + Syn] + 13.5 0.45

≥20 AMT 22 (44) 8.49 × 10
�5

*[Pro + Syn] + 5.75 0.56

ALL (66) 8.97 × 10
�5

*[Pro + Syn] + 9.23 0.34

all data
a

AMT 23 (34) 1.36 × 10
�5

*[Pro + Syn]� 11.2 0.12

intPPTotal (AMT only) <20 AMT 22 (10) 0.017*(intPP) + 19 0.64

ALL (16) 0.017*(intPP) + 16 0.30

≥20 AMT 22 (21) 0.059*(intPP) + 8.2 0.73

ALL (32) 0.086*(intPP) + 0.084 0.67

all data
a

AMT 23 (17) 0.051*(intPP) + 1.4 0.32

a
Relationship insignificant for lower SST (p> 0.4), so only nonbinned results are shown. Regressions calculated using

[isoprene] in pmol L
�1

, [TChl a] and [PPC] in μg L
�1

, [Pro+ Syn] in cells mL
�1

, and (intPP) inmgCm
�2

d
�1

. Abbreviations
see Figure 5. PPC; see Figure 6.

Global Biogeochemical Cycles 10.1002/2016GB005531

HACKENBERG ET AL. ISOPRENE CONTROLS IN THE SURFACE OCEAN 10



may not accurately reflect those in the wider marine environment and validation against field

measurements is required.

A significant limitation to comparability between studies, unrelated to potential differences in isoprene

measurements, may be Chl ameasurement techniques. HPLC pigment analysis can be considered the most

accurate method but is more expensive and labor intensive than fluorometric Chl a analysis. The latter is

faster and easier, allowing shipboard analysis to be completed typically in less than 2 days (including 24 h

for pigment extraction). The different techniques can provide results that vary by up to a factor of 2, with

HPLC Chl a concentrations typically lower than those reported from fluorometric analysis [Jacobsen and

Rai, 1990]. Fluorometric analysis does not physically separate Chl a from the suite of pigments present; rather,

it analyzes the pigment extract as a whole. It has been shown that Chl b and Chl c can interfere with the

estimation of Chl a [Coveney, 1982; Trees et al., 1985; Welschmeyer, 1994], and HPLC analysis indicated that

Figure 6. Correlations of isoprene with several biological variables (Chl a, PPC, Pro + Syn, and intPPTotal) for AMT 22, AMT 23, and ACCACIA 2. Colored by SST and

binned for regression analysis (threshold 20°C); regression lines and R
2
values only shown for significant correlations (p< 0.05). For abbreviations, see Figure 5;

Diato for PPC not available for ACCACIA 2.
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both Chl b and Chl c were present in samples from this study. Additionally, the pigment extraction method

should be considered as a source of discrepancy between the two results. While both methods used 90%

acetone as a solvent, extraction for fluorometric analysis relied on this solution over time to fully extract

the pigments. This has been suggested to be less efficient than additionally using physical disruption

through sonication [Neveux and Panouse, 1987; Jacobsen and Rai, 1990], which was the extraction method

used for HPLC analysis.

Associations of isoprene with specific pigments other than Chl a are consistent with the literature, as the

isoprene-pigment correlations found in this study included both fucoxanthin and zeaxanthin (Figures

S2–S3 in the supporting information). Diatoms, which contain fucoxanthin as a dominant carotenoid, have

been shown to produce isoprene [Moore et al., 1994; Milne et al., 1995; McKay et al., 1996; Colomb et al.,

2009; Bonsang et al., 2010; Exton et al., 2013]. Prochlorococcus spp. have also been shown to produce isoprene

[Shaw et al., 2003] and contain zeaxanthin. However, a significant correlation between isoprene and DV-Chl a,

which is specific to Prochlorococcus, was only present in the high SST bin (Figure S2), so although

Prochlorococcus may at least be partly responsible for the isoprene signal at high SST, other phytoplankton

containing zeaxanthin are also likely to have contributed throughout.

3.5. Predicting Isoprene Concentrations From In Situ Observations

The regression equations (Table 3) were used to predict isoprene concentrations from the different biological

measurements made during each cruise and were found to replicate the observed surface isoprene reason-

ably well (Figure 7; Table S2 in the supporting information). The empirical formulae published by Ooki et al.

[2015] (referred to as O15; details in Table 4) were also applied to the current data sets and gave generally

good agreement except for Arctic data and between 20 and 27°C SST (both underpredicted by O15;

Figure 7).

3.6. Predicting Isoprene Concentrations From Remotely Sensed Data

Satellite data could provide a basis for global extrapolation using the empirical relationships presented here,

if they can be shown to reproduce observations well. Ocean surface Chl a concentration is a standard satellite

product, the accuracy of which has been rigorously assessed for the Atlantic Ocean [Brewin et al., 2016]. IntPP

has become routinely derived from remote measurements and is well validated [Tilstone et al., 2009, 2015a,

2015b; Carr et al., 2006; Friedrichs et al., 2009; Saba et al., 2010; Brewin et al., 2017]. Both were used here to

evaluate their suitability for predicting marine isoprene concentrations, and hence ultimately sea-to-air

Table 4. Published Regression Equations for Isoprene Versus Chl a

Study (Location)

Binning Criteria/Study

Location Regression Equation
a

R
2

Ooki et al. [2015] SST bins (Pacific Ocean/Indian Ocean/

Arctic Ocean/Southern Ocean)

<3.3°C 9.8 × [Chl a] + 1.49 × SST + 0.649 0.71

3.3–17°C 14.3 × [Chl a] + 2.27 × SST + 2.83 0.64

17–27°C 20.9 × [Chl a]� 1.92 × SST + 63.1 0.77

>27°C 319 × [Chl a] + 8.55 × SST� 244 0.75

Broadgate et al. [1997] Southern Ocean and

North Sea

6.4 × [Chl a] + 1.2 0.62

Kurihara et al. [2010]
b

North Pacific 18.8 × [Chl a] + 6.1 0.79

Kurihara et al. [2012] Temperate Pacific

(Sagami Bay)

10.7 × [Chl a] + 5.9 0.49

Hashimoto et al. [2009]
c

Subarctic Pacific 8.2 × [Chl a] + 16 0.67

Exton et al. [2013]
d
biome (latitude) bins (laboratory;

production rates)

Polar (60–90°N and 60–

90°S)

0.03(±0.006) × [Chl a] + 6.20(±8.39) × 10
�7

0.76

Temperate (23.5–60°N

and 23.5–60°S)
e

0.24(±0.056) × [Chl a] + 2.50(±4.18) × 10
�6

{0.04(±0.025)

× [Chl a] + 1.50(±0.32) × 10
�5

}

0.43

{0.08}

Tropical (23.5°N–23.5°S) 0.39(±0.221) × [Chl a] + 1.30(±1.44) × 10
�5

0.15

a
[Chl a] in μg L

�1
.

b
Using entire depth profiles for correlation rather than surface values only.

c
Values given by Kurihara et al. [2012].
d
(±standard error).

e
Without outlying value, equation in curly brackets includes the outlying value.
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fluxes, globally. The best match with in situ data would be expected for daily satellite products; however, we

also investigate the performance of composite images compiled over longer time periods, which are relevant

for stable areas of the ocean such as Atlantic oligotrophic gyres, as daily images provide less comprehensive

data due to cloud and reduced spatial coverage.

Figure 7. Observed isoprene concentrations alongside predicted values using parameterizations as shown in the legends

(details see main text): relationships based on the respective data set itself (A22 and A23) and also O15 and ALL relation-

ships for each cruise: (a) A22 and (b) O15/ALL applied to AMT 22, (c) A23 and (d) O15/ALL applied to AMT 23, and (e) Ac2

and also O15 and ALL applied to ACCACIA 2.
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Only paired values for isoprene observations and satellite-derived values were used in comparisons. Only a

few pairs were available at low SST due to comparatively poor satellite coverage and increased cloud cover

over high latitudes. The satellite validation was performed using the full data set, but as a control was also

calculated for only independent data (Text S3.2 in the supporting information).

Predicted isoprene from optically derived in situ [Chl a] produced a closematch with observations (Figures 8a

and S6a in the supporting information), showing that the algorithm works well with underway measure-

ments of Chl a derived from the absorptive properties of phytoplankton particles, which were validated

and corrected for bias against HPLC pigment measurements on the same cruise [Brewin et al., 2016].

There was also overall good agreement between observations and isoprene estimated from both daily and

monthly satellite [Chl a] (Figures 8a and 8b; Table S1 and Figure S6a in the supporting information), with

trends being captured well for the AMT cruises and predicted values within a factor of 3 of the measurements

90% of the time. No obvious difference could be seen in goodness of fit between the daily and monthly data

(Figure 8b; Figure S6b in the supporting information; R2= 0.33 and 0.23, respectively). A slight underestima-

tion in the oligotrophic gyres (higher SST) could be partially due to degradation of the sensor (slightly lower

satellite [Chl a] than in situ techniques in recent years) [Brewin et al., 2016]. For coastal data (>50°N), satellite

[Chl a] resulted in significant overestimation (Figure 8a; Figure S6a in the supporting information), which

could be related to the use of an open ocean algorithm for optically complex waters.

Overestimation of isoprene concentrations in some coastal locations can also be observed in a comparison of

O15 with satellite-derived values (Figure 9a). However, the inverse is even more common for that data set: in

situ data near the Japanese coast (around 138–148°E, 34–44°N; especially April/May 2009) show high

isoprene concentrations of >100 pmol L�1 (cf. Figure 1), which are often underestimated by a factor of 2–4

by the satellite algorithm. Even though it does not capture the magnitude of the variations (Figure S8 in

the supporting information), the [Chl a]-based algorithm is able to reproduce general trends in the in situ

data and 90% of the absolute measured values within a factor of 3 (Table S2 in the supporting information).

Monthly intPP predicts isoprene with varying degrees of success: AMT data are generally good (91% within a

factor of 2), with the exception of low latitudes (high SST; Figure 8c; Figure S6 in the supporting information).

Figure 8. In situ and satellite-derived predicted isoprene concentrations from this work; (a) AMT 22, Chl-based algorithm,

with satellite-derived monthly data extracted every 20min along the cruise track and “5d”-satellite data from matchups

±2 days of the observation, alongside isoprene based on in situ AC-s [Chl a]; (b) all data (AMT, ACCACIA) matched with

“5 day” satellite-derived data, for Chl-based algorithm, with 1:1 line; (c) as Figure 8a but for intPP-based algorithm (monthly

satellite data only); (d) as Figure 8c but for monthly satellite data and intPP-based algorithm. Some outlier points (circled;

coastal data) were excluded from the correlation. Further data in Figure S6 (supporting information).
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Arctic values are within a factor of 10 (96% within factor of 5) of the measurements, but trends are not always

reproduced and additionally suffer from sparse coverage particularly in spring (Figure S6 in the supporting

information). A comparison of intPP-predicted isoprene with O15 data appears reasonable (Figure 9b inset

graph; Table S3 in the supporting information), but there is significant underprediction in the tropical

North Pacific (Figure 9b). A latitudinal plot shows that performance is also poor at high latitudes and

trends are not reflected very well overall (Figure S8 in the supporting information).

These difficulties can be partly attributed to the satellite product being less well validated than Chl a, espe-

cially outside the Atlantic, and can vary significantly depending on the satellite model used [Carr et al., 2006].

Lee et al. [2015] suggest that PP models need to be carefully tuned for the Arctic in order to perform well for

that region and note that the variability of PP is underestimated by most models. Furthermore, PP measured

in situ using 14C on-deck incubations has been found to differ significantly from other methods [Quay et al.,

2010]. The satellite production model used here was not parameterized using on-deck incubations, instead

using photosynthesis-irradiance experiments [Brewin et al., 2017]. IntPP is controlled by a variety of factors;

its relationship with isoprene may be less consistent on a global scale than for Chl a, and relationships for

the open ocean cannot necessarily be applied to coastal regions. In addition, despite a similar correlation

coefficient and bias for the intPP-based algorithm compared to that based on Chl a, the regression was

performed for far fewer points and should therefore be considered less reliable. Despite these issues, the

algorithm still predicts observed values within a factor of 3 for all oceanic regions evaluated here at least

84% of the time (and 98% within a factor of 5; Table S3 in the supporting information).

4. Conclusions

We found strong relationships between surface ocean isoprene concentrations and concurrently monitored

biological variables such as Chl a, PFTs, and productivity, with better correlations for two separate SST bins

with a threshold at 20°C. This is qualitatively consistent with previous studies [Bonsang et al., 1992; Moore

et al., 1994; Milne et al., 1995; McKay et al., 1996; Broadgate et al., 1997; Baker et al., 2000; Shaw et al., 2003;

Wingenter et al., 2004; Moore and Wang, 2006; Gantt et al., 2009; Bonsang et al., 2010; Exton et al., 2013;

Kurihara et al., 2010, 2012; Kameyama et al., 2014; Ooki et al., 2015]. Our current lack of understanding of

isoprene production processes and biological functions prevents an assignment of factors responsible for

this threshold. We also observed associations of isoprene with specific pigments other than Chl a, which to

our knowledge have not been previously reported. A strong and relatively consistent relationship with the

sum of photoprotective carotenoids across all three cruises,

isoprene½ � ¼ 102� PPC½ � þ 14:4 R2 ¼ 0:48; <20°C
� �

(1)

isoprene½ � ¼ 345� PPC½ � � 0:81 R2 ¼ 0:61; ≥20°C
� �

; (2)

could point to a photoprotective function of isoprene or at least to isoprene being a by-product of a

Figure 9. Ratio (log10 scale) of predicted isoprene from satellite data to the Ooki et al. [2015] data set; (a) using Chl a-based

algorithm (one outlier at 1.5) and (b) using intPP-based algorithm (full-scale version of inset graph in supporting infor-

mation Figure S7). Maps created with Ocean Data View [Schlitzer, 2016].
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photoprotective response of the organisms present. An alternative explanation could be the effect of a

physical driver that affects both PPC and isoprene abundances: photoprotective pigments are abundant in

surface samples in highly stratified marine environments due to the high light exposure of the cells [Babin

et al., 1996]. This could also correlate with other light-driven reactions or processes that occur under these

conditions and may increase isoprene concentrations. Emission has been linked to light (and light stress)

by various laboratory studies [Shaw et al., 2003; Gantt et al., 2009; Bonsang et al., 2010; Meskhidze et al.,

2015] but not yet directly to a photoprotective mechanism of the phytoplankton such as has been proposed

for terrestrial plants [Sharkey and Yeh, 2001].

Arguably, individual regression analyses have limited diagnostic potential as each assumes by definition that

the investigated variable is solely responsible for the total isoprene, so that the resulting equation is only

useful for predicting isoprene if that assumption is true and the variables are independent of each other.

Following the same argument, a steeper slope by no means automatically implies that the entity in question

(e.g., microplankton; cf. Figure S5 in the supporting information) is a strong emitter: the phenomenon can

also be caused by the presence of other organisms or processes responsible for isoprene emission in regions

where the examined variable has low concentrations.

For a global emission estimate, the investigated variables must have good global coverage so that an

extrapolation using the equations presented here is possible. Currently, surface [Chl a] is available as a

standard satellite product, while dominant PFTs can be obtained from ocean color satellite products using

the PHYSAT method [Alvain et al., 2008; Brewin et al., 2011; Ben Mustapha et al., 2014; IOCCG, 2014] and

intPP can also be derived from satellite data [Carr et al., 2006; Brewin et al., 2017]. Information on PPC distribu-

tions can be obtained from data sets such as MAREDAT [Peloquin et al., 2013] and, potentially, from biogeo-

chemical and ecosystem models that are beginning to resolve PPC concentrations on regional and global

scales [Bissett et al., 1999, Dutkiewicz et al., 2015]. If all parameterizations found here can be extrapolated,

the degree to which they converge on a global value should give an indication of how well they reflect

the actual emissions.

The extrapolations based on satellite Chl a and intPP performed as part of this study, using the following

equations,

isoprene½ � ¼ 33:2� Chl a½ � þ 13:7 R2 ¼ 0:33; <20°C
� �

(3)

isoprene½ � ¼ 266� Chl a½ � � 1:68 R2 ¼ 0:54; ≥20°C
� �

(4)

isoprene½ � ¼ 0:017� intPPð Þ þ 16 R2 ¼ 0:30; <20°C
� �

(5)

isoprene½ � ¼ 0:086� intPPð Þ þ 0:084 R2 ¼ 0:67; ≥20°C
� �

; (6)

show that the proposed algorithms are able to reproduce in situ data reasonably well, including data sets

acquired independently and in different ocean basins. Chl a generally captured the shape and trends of

the data better than intPP but could still not closely reproduce the magnitude of the variations.

This study has contributed a large number of observations to the existing data set of marine isoprene,

covering areas of the Arctic and the Atlantic Ocean at basin scale and providing representative values

of isoprene in surface water for a large range of latitudes (80°N–45°S). Using a variety of supporting data,

relationships with different biological variables have been confirmed and extended. When applied to the

different cruises, equations derived from the combined data sets were able to predict isoprene concentra-

tions close to the measured values, including Arctic data. However, no single variable has been identified

as a more suitable proxy for predicting isoprene concentrations in water than Chl a, which is currently the

most widely used, except perhaps integrated PP and photoprotective carotenoids (PPC). It was neverthe-

less shown that a separation of ocean regions by temperature ranges is crucial for most proxies in order to

obtain representative predictions with empirical relationships. The uncertainty in setting global threshold

values for that separation, as seen when contrasting Atlantic and Pacific/Indian Ocean data sets, highlights

the need for further field measurements spanning different oceans and seasons and comparison of empiri-

cal relationships between studies. Ideally, trace gas measurements should be accompanied by as wide a

range of biological measurements as possible, in order to validate the correlations found in this work

and examine the suitability of the suggested additional proxies for predicting isoprene concentrations

on a global scale.
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