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Abstract COM-Poisson regression is an increasingly popu-

lar model for count data. Its main advantage is that it permits

to model separately the mean and the variance of the counts,

thus allowing the same covariate to affect in different ways

the average level and the variability of the response variable.

A key limiting factor to the use of the COM-Poisson dis-

tribution is the calculation of the normalisation constant: its

accurate evaluation can be time-consuming and is not always

feasible. We circumvent this problem, in the context of esti-

mating a Bayesian COM-Poisson regression, by resorting

to the exchange algorithm, an MCMC method applicable to

situations where the sampling model (likelihood) can only

be computed up to a normalisation constant. The algorithm

requires to draw from the sampling model, which in the

case of the COM-Poisson distribution can be done efficiently

using rejection sampling. We illustrate the method and the

benefits of using a Bayesian COM-Poisson regression model,

through a simulation and two real-world data sets with dif-

ferent levels of dispersion.
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1 Introduction

Observational and epidemiological studies often give rise to

count data, representing the number of occurrences of an

event within some region in space or period of time, e.g.,

number of goals in a football match, number of emergency

hospital admissions during a night shift, etc. A standard

approach to modelling count data is Poisson regression:

the counts are assumed to be independent Poisson random

variables, with means determined, through a link function

(usually the log), by a linear regression on available covari-

ates. The Poisson model entails that the mean and variance

are equal (equidispersion). However, count data frequently

exhibit underdispersion or, especially, overdispersion (these

are often just symptoms of model misspecification, e.g. omis-

sion of important covariates, presence of outliers, lack of

independence, inadequate link function). In the presence of

substantial overdispersion, a commonly used alternative to

the Poisson regression model is the negative binomial regres-

sion model, which allows the variance to be larger than the

mean.

This paper is concerned with an even more flexible model

for count data, the COM-Poisson regression model (Sellers

and Shmueli 2010; Guikema and Coffelt 2008), which allows

the mean and the variance of count data to be modelled

separately. The model is flexible enough to handle under-

dispersion, something that neither of the previous models

can do. The COM-Poisson model has become more popu-

lar in recent years, with SAS/ETS (SAS Institute Inc 2014)

software containing a frequentist implementation. The main

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-017-9750-x&domain=pdf
http://orcid.org/0000-0002-1913-6122


Stat Comput

factor which inhibits the more widespread use of COM-

Poisson regression is that the normalisation constant of the

COM-Poisson distribution does not have a closed form.

We take advantage of an MCMC algorithm, known as the

exchange algorithm (Møller et al. 2006; Murray et al. 2006),

to estimate a Bayesian COM-Poisson regression model with-

out computing any normalisation constant. The resulting

improvements in computational speed and efficiency make

the COM-Poisson regression model a viable and attractive

alternative to the usual count data models.

The paper is organised as follows. In Sect. 2 we review

the COM-Poisson distribution and regression model; show

the drawbacks of its current implementation in R (R Core

Team 2015) and SAS/ETS (SAS Institute Inc 2014) and

then show how one can efficiently sample from the COM-

Poisson distribution using rejection sampling. In Sect. 3 we

show how to overcome the problem of an intractable like-

lihood in a Bayesian setting, using a data augmentation

technique which requires sampling from the COM-Poisson

distribution, and present an exact MCMC algorithm for the

COM-Poisson regression model. We have focused on the

Bayesian implementation of the COM-Poisson regression

model which allows us to use prior information on the dis-

tribution of the regression coefficients. One can use different

methods to estimate the normalisation constant (Geyer 1991)

and apply the frequentist version of the regression model.

In Sect. 4 we apply the Poisson, negative binomial, and

COM-Poisson regression models to one artificial and two

real world data sets. The results indicate the inability of the

first two models to correctly estimate the effect of the covari-

ate on the response variable and show that the COM-Poisson

regression model provides a better fit to the data. Finally, in

Sect. 5 we compare the proposed MCMC algorithm with the

one in Chanialidis et al. (2014) and show that the newly pro-

posed MCMC samples from the correct posterior distribution

and is computationally more efficient.

2 COM-Poisson distribution

The COM-Poisson distribution (Conway and Maxwell 1962)

is a two-parameter generalisation of the Poisson distribu-

tion that allows for different levels of dispersion. We use a

reparametrisation proposed by Guikema and Coffelt (2008):

Y is said to have COM-Poisson(µ, ν) distribution if its prob-

ability mass function is

P(Y = y|µ, ν) =
(

µy

y!

)ν
1

Z(µ, ν)
y = 0, 1, 2, . . . (1)

with Z(µ, ν) =
∑∞

j=0

(
µ j

j !

)ν

for µ > 0 and ν ≥ 0. The

parameter ν governs the amount of dispersion: the Poisson

distribution is recovered when ν = 1, while overdispersion

corresponds to ν < 1 and underdispersion to ν > 1. The nor-

malisation constant Z(µ, ν) does not have a closed form (for

ν �= 1) and has to be approximated, but can be lower and

upper bounded. The original parametrisation of the COM-

Poisson distribution can be obtained by replacing µ in (1) by

λ
1
ν . More details on the COM-Poisson(λ, ν) parametrisation,

and an asymptotic approximation of its normalisation con-

stant are available in Minka et al. (2003) and Shmueli et al.

(2005).

The mode of the COM-Poisson distribution is ⌊µ⌋,

whereas the mean and variance of the distribution can be

approximated by

E[Y ] ≈ µ + 1

2ν
− 1

2
, V[Y ] ≈ µ

ν
. (2)

Thus µ closely approximates the mean, unless µ or ν (or

both) are small.

2.1 COM-Poisson regression

Sellers and Shmueli (2010) propose a COM-Poisson regres-

sion model based on the original (λ, ν) formulation, whereas

Guikema and Coffelt (2008) propose a COM-Poisson GLM

based on the reparameterisation (1). We consider the follow-

ing modification of Guikema and Coffelt (2008) model:

P(Yi = yi |µi , νi ) =
(

µ
yi

i

yi !

)νi
1

Z(µi , νi )
,

log µi = x
⊺

i β ⇒ E[Yi ] ≈ exp {x
⊺

i β},
log νi = −x

⊺

i δ ⇒ V[Yi ] ≈ exp {x
⊺

i β + x
⊺

i δ}, (3)

where Y is the dependent random variable being modelled,

while β and δ are the regression coefficients for the centring

link function and the shape link function. The approximations

on the mean and variance in (3) are accurate when µ and ν

are not small (e.g., extreme overdispersion).

Both the likelihood and Bayesian approaches to the esti-

mation of (µ, ν) require the evaluation of the normalisation

constant Z(µ, ν). Note, in particular, that Z(µ, ν), unlike the

normalisation constant of a posterior distribution, does not

cancel out in a Metropolis-Hastings acceptance ratio. Possi-

ble solutions to this problem are:

– Truncation of the normalisation constant series.

– Use of the asymptotic approximation by Minka et al.

(2003).

– Estimate upper and lower bounds for the value of the

normalisation constant and use these in an MCMC algo-

rithm (Chanialidis et al. 2014).
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Only the latter is an exact method, albeit at a significant

computational cost. The former two are approximations, the

quality of which depends on the details of the implementa-

tion.

Deciding in which term one must truncate the normal-

isation constant is not simple since the “mass” of the

normalisation constant depends on the values of µ and

ν. As an example, for an overdispersed distribution (with

ν < 1), we will need to truncate at a higher term compared

to an underdispersed distribution (with ν > 1). The R (R

Core Team 2015) packages, compoisson (Dunn 2012)

and COMPoissonReg (Sellers and Lotze 2015), provide

functions to compute the probability mass by simply trun-

cating the normalisation constant up to a specified precision.

The latter package offers the ability to compute the associ-

ated COM-Poisson regression coefficients (in a maximum

likelihood setting) only when the dispersion parameter ν

is independent of the covariates. The COUNTREG procedure

of the SAS/ETS (SAS Institute Inc 2014) software supports

the COM-Poisson regression model (3), along with its orig-

inal formulation by Sellers and Shmueli (2010). In order to

deal with the problem of evaluating the normalisation con-

stant Z(µ, ν), the asymptotic approximation of Minka et al.

(2003) is used for µ > 20, while the normalisation con-

stant is computed using truncation for µ ≤ 20 (when it is

computationally easier). In this case, when one plots the

probabilities of Y = y across different values of µ (keep-

ing the dispersion parameter ν constant), there exists a jump

at µ = 20. Figure 1 shows this discontinuity of the proba-

bilities for an overdispersed COM-Poisson distribution with

ν = 0.1. The black line in each panel refers to the proba-

bility when computing the normalisation constant, while the

red line refers to the probability when using the asymptotic

approximation.

3 Bayesian methods for COM-Poisson regression

models

The normalisation constant Z(µ, ν) in the COM-Poisson

distribution is not available in closed form, hence evaluat-

ing the likelihood can be computationally expensive. This

makes it difficult to sample from the posterior distribution

of the parameters in a COM-Poisson regression model. One

possible solution is to use an asymptotic approximation of

Z(µ, ν) (Minka et al. 2003), which is known to be rea-

sonably accurate when µ > 10. Alternatively one could

compute Z(µ, ν) by truncating its series at the kth term,

but in order to achieve reasonable accuracy k may need

to be very large. Evaluation of Z(µ, ν) could be avoided

altogether using approximate Bayesian computation (ABC)

methods. However, the resulting algorithms may not sam-

ple from the distribution of interest and are usually much
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Estimated probabilities in SAS for different values of y

for an overdispersed COM−Poisson distribution with ν=0.1

Fig. 1 Probabilities computed in SAS for different values of µ. The

black and red lines refer to the probabilities when computing the nor-

malisation constant and when its asymptotic approximation is used.

(Color figure online)

less efficient than standard MCMC algorithms which assume

that the normalisation constants are known or cheap to com-

pute. We overcome the problem of having an intractable

likelihood by means of an MCMC algorithm that takes

advantage of the exchange algorithm and the sampling tech-

nique of Sect. 3.1. This algorithm is almost as efficient as

one assuming the normalisation constants are readily avail-

able.

3.1 Rejection sampling from the COM-Poisson

distribution

This section sets out a simple, yet efficient method for sam-

pling from the COM-Poisson distribution without having to

evaluate its normalisation constant. This method will be a

key part of the exchange algorithm proposed in Sect. 3.4.

Suppose we want to generate a random variable Y from

the COM-Poisson distribution with probability mass func-

tion p(y|θ) = qθ (y)
Z(θ)

where θ = (µ, ν), qθ (y) =
(

µy

y!

)ν

and Z(θ) =
∑

y qθ (y). Denote by m the mode of the

COM-Poisson distribution, i.e., m = ⌊µ⌋ and denote by

s = ⌈√µ/
√

ν⌉ its approximate standard deviation.

We construct an upper bound for the COM-Poisson distri-

bution based on a piecewise geometric distribution. We start

by defining three cut-off points, m −s, m, m +s. For the sake

of simplicity, we assume that m − s ≥ 0; otherwise, we can

simply omit the part of the upper bound falling to the left of

0.
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Now consider a distribution with p.m.f. proportional to

rθ (y) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

qθ (m − s) ·
(

m−s
µ

)ν·(m−s−y)

for y = 0, . . . , m − s

qθ (m − 1) ·
(

m−1
µ

)ν·(m−1−y)

for y = m − s + 1, . . . , m − 1

qθ (m) ·
(

µ
m+1

)ν·(y−m)

for y = m, . . . , m + s − 1

qθ (m + s) ·
(

µ
m+s+1

)ν·(y−m−s)

for y = m + s, m + s + 1, . . .

(4)

By construction rθ (y) ≥ qθ (y).

For instance, if y ∈ {m + 1, . . . , m + s − 1}, then

qθ (y)1/ν = µy

y! = µm

m!
︸︷︷︸

=qθ (m)1/ν

y
∏

x=m+1

µ

x
︸︷︷︸

≤ µ
m+1

≤ qθ (m)1/ν

(
µ

m + 1

)y−m

= rθ (y)1/ν . (5)

In contrast to the COM-Poisson distribution, the piece-

wise geometric distribution has a closed-form normalisation

constant,

Zg(θ) =
∞
∑

y=0

rθ (y) = qθ (m − s)
1 −

(
m−s
µ

)(m−s+1)ν

1 −
(

m−s
µ

)ν

+ qθ (m − 1)
1 −

(
m−1

µ

)(s−1)ν

1 −
(

m−1
µ

)ν

+ qθ (m)
1 −

(
µ

m+1

)sν

1 −
(

µ
m+1

)ν + qθ (m + s)
1

1 −
(

µ
m+s+1

)ν .

(6)

Clearly Z(θ) ≤ Zg(θ). Then, letting gθ (y) = Pθ (Y = y) =
rθ (y)
Zg(θ)

be the normalised p.m.f. corresponding to rθ (y), one

has that

p(y|θ) = qθ (y)

Z(θ)
≤ rθ (y)

Z(θ)
= Zg(θ)

Z(θ)

rθ (y)

Zg(θ)
= Zg(θ)

Z(θ)
gθ (y).

This suggests sampling from p(y|θ) using the rejection

method, with
Zg(θ)

Z(θ)
gθ (y) as rejection envelope: a candidate

y is drawn from gθ (y) and accepted with probability

p(y|θ)

Zg(θ)

Z(θ)
gθ (y)

=
qθ (y)
Z(θ)

Zg(θ)

Z(θ)
rθ (y)
Zg(θ)

= qθ (y)

rθ (y)
,

which only involves unnormalised densities.

We can sample from gθ (y) using a simple two-stage sam-

pling procedure. First decide which part of the piecewise
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Fig. 2 Rejection rate of the rejection sampler for the COM-Poisson

distribution as a function of log(µ) and log(ν). The rejection rates were

estimated based on samples of size 106

geometric distribution to sample from, according to proba-

bilities proportional to the terms in (6). Then sample from the

selected truncated geometric distribution using the inverse

c.d.f. method, which is very efficient as the inverse c.d.f. is

known in closed form.

The instrumental distribution in (4) is based on the same

principle as the upper bounds used in the retrospective sam-

pling algorithm proposed by Chanialidis et al. (2014). In

contrast to the arbitrarily precise upper bound required for the

retrospective algorithm, the bounds set out above are based

on a trade-off between achieving a high acceptance rate while

at the same time keeping the instrumental distribution simple

so that sampling from it is computationally efficient. Figure 2

shows the rejection rate of the above sampling algorithm as

a function of the two parameters µ and ν. For most values

of µ and ν, the rejection rate is less than 30% and one can

draw 106 realisations from the COM-Poisson distribution in

one second on a modern desktop computer (Intel Core i5).

Using a tighter rejection envelope (say by using more than

four geometric pieces) yields a small reduction in the rejec-

tion rate, but overall the computational cost increases.

Finally, our proposed rejection algorithm in close in spirit

to the basic adaptive rejection sampling technique (Gilks and

Wild 1992) that constructs piecewise exponential proposal

distributions which are adaptively refined using previously

rejected samples.

3.2 Exchange algorithm

Møller et al. (2006) presented a Metropolis-Hastings algo-

rithm for cases where the likelihood function involves an

intractable normalisation constant that is a function of the
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parameters. The idea behind this algorithm is to enlarge the

state of the Markov chain to include, beside the parameter θ ,

an auxiliary variable y∗ defined on the same sample space as

the data y = (y1, . . . , yn). Suitable choice of the proposal

distribution ensures that the Metropolis-Hastings acceptance

ratio is free of normalisation constants. Murray et al. (2006)

proposed a modification, known as the exchange algorithm,

which still generates at each step y∗, but only updates the

parameter θ if the move is accepted. To describe this algo-

rithm, let us suppose that the sampling model p(y|θ) can

be written as p(y|θ) = qθ (y)
Z(θ)

where qθ (y) is the unnor-

malised probability density and the normalisation constant

Z(θ) =
∑

y qθ (y) or Z(θ) =
∫

qθ (y)dy is unknown. This

can easily be extended to the case where the yi are not i.i.d.

(i.e., instead of p(y|θ) and qθ (y) we will have pi (y|θ) and

qi,θ (y) since the sampling model and its unnormalised prob-

ability density will be different for each observation).

For each MCMC update, first a candidate parameter θ∗ is

generated from the proposal distribution h(θ∗|θ); then aux-

iliary data y∗ are drawn from the sampling model p( y∗|θ∗),
conditional on the candidate parameter value. The candidate

θ∗ is accepted with probability min{1, a}. The computation

of the acceptance ratio a is detailed below, where we contrast

it with the acceptance ratio in a standard Metropolis-Hastings

algorithm; in both we assume that the proposal density is

symmetric in its two arguments, i.e., h(θ |θ∗) = h(θ∗|θ). In

the exchange algorithm we have:

a = p( y|θ∗)p(θ∗)p( y∗|θ)h(θ |θ∗)

p( y|θ)p(θ)p( y∗|θ∗)h(θ∗|θ)
,

=

{
∏

i
qθ∗ (yi )

✘✘✘Z(θ∗)

}

p(θ∗)h(θ |θ∗)
{
∏

i

qθ (y∗
i )

✟
✟Z(θ)

}

{
∏

i
qθ (yi )

✟
✟Z(θ)

}

p(θ)h(θ∗|θ)

{
∏

i

qθ∗ (y∗
i )

✘✘✘Z(θ∗)

} ,

=
{∏

i qθ∗(yi )
}

p(θ∗)
{∏

i qθ (y∗
i )

}

{∏

i qθ (yi )
}

p(θ)
{∏

i qθ∗(y∗
i )

} , (7)

while in the Metropolis-Hastings algorithm:

a = p( y|θ∗)p(θ∗)h(θ |θ∗)

p( y|θ)p(θ)h(θ∗|θ)
,

=

{
∏

i
qθ∗ (yi )

Z(θ∗)

}

p(θ∗)h(θ |θ∗)
{
∏

i
qθ (yi )
Z(θ)

}

p(θ)h(θ∗|θ)
,

=

{
∏

i
qθ∗ (yi )

Z(θ∗)

}

p(θ∗)
{
∏

i
qθ (yi )
Z(θ)

}

p(θ)
. (8)

Notice how the acceptance ratio a for the standard Metropo-

lis-Hastings algorithm involves the ratio of normalisation

constants Z(θ)

Z(θ∗) , which makes its computation hard. In the

expression for the exchange algorithm, the ratio Z(θ)

Z(θ∗) can-

cels out and it is replaced by
qθ (y∗

i )

qθ∗ (y∗
i )

, suggesting that the latter

can be thought of as an importance sampling estimate for the

former. We refer to Murray et al. (2006) for further discussion

of the exchange algorithm.

Recently, Lyne et al. (2015) provided the first practi-

cal and asymptotically correct MCMC method for doubly

intractable distributions that does not require exact sam-

pling. This was done by constructing unbiased estimates of

the reciprocal normalisation constant 1/Z(θ) using unbiased

estimates of Z(θ) obtained by importance sampling. The

pseudo-marginal approach by Andrieu and Roberts (2009) is

then adapted to use these estimates to form an MCMC algo-

rithm. Finally, Wei and Murray (2016) construct unbiased

estimates of reciprocal normalisation constants by applying

Russian roulette truncations to a Markov chain rather than

an importance sampler. However, given that we can draw

exact samples from the COM-Poisson distribution at very

little computational cost there is no need to resort to these

methods.

We discuss next the prior distributions for the regression

coefficients β and δ in the COM-Poisson regression model

in (3).

3.3 Choice of prior for the regression coefficients

For the priors of the regression coefficients, one can choose

between a plethora of distributions. For the rest of the paper

we will focus on three Bayesian COM-Poisson regression

models; each one with a vague multivariate normal prior on

β and a different prior for δ. The first model uses vague

multivariate normal priors for both the regression coefficients

β and δ with mean zero and a variance of 106, while the

other two models use a shrinkage prior (lasso or spike and

slab) for δ. The motivation behind using a penalty for large

values of the regression coefficients of the variance is not just

variable selection. Putting a penalty on the coefficients is a

way of having the Poisson regression model as the “baseline”

model. The aforementioned models can be specified as:

Lasso prior

δ|t2
j ∼ Np(0, Dt )

t2
j |λ2 ∼ Exp(

λ2

2
)

λ2 ∼ Gamma(a, b)

Dt = diag(t2
1 , . . . , t2

p)

Spike and slab prior

δ|t2
j , φ j ∼ Np(0, Dt )

t2
j ∼ IG(a, b)

φ j |ω ∼ (1 − ω)I0() + ωI1()

ω ∼ U(0, 1)

Dt = diag(t2
1 φ1, . . . , t2

pφp)

where the first column represents a model with a lasso prior,

while the second column represents a model with a spike

and slab prior. The first model uses a conditional (on the

variance) Laplace prior for the regression coefficients δ and
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takes advantage of the representation of the Laplace as a scale

mixture of normals with an exponential mixing density (Park

and Casella 2008). The maximum a posteriori (MAP) solu-

tion, under the aforementioned Laplace prior, is identical to

the estimate for the standard (non-Bayesian) lasso proce-

dure. The idea behind the second model is that the prior

of every regression coefficient is a mixture of a point mass

at zero and a diffuse uniform distribution elsewhere. This

form of prior is known as a spike and slab prior (Mitchell

and Beauchamp 1988). The parameter ω controls how likely

each of the binary variables φ j is to equal 1. Since it con-

trols the size of the models, it can be seen as a complexity

parameter.

3.4 MCMC sampling

For the COM-Poisson regression model, the acceptance ratio

in (7) for the exchange algorithm becomes

a =
{∏

i qθ∗(yi )
}

p(β∗)p(δ∗)
{∏

i qθ (y∗
i )

}

{∏

i qθ (yi )
}

p(β)p(δ)
{∏

i qθ∗(y∗
i )

} , (9)

where θ = (β, δ). In the sampler, we make use of two dif-

ferent kinds of moves, in order to reduce the correlation

between successive samples of the regression coefficients β

and δ. Each sweep of the MCMC sampler performs these two

moves in a sequence. The first proposes a move from β to

β∗ and afterwards from δ to δ∗. The second proposes a move

from (βi , δi ) to (β∗
i , δ∗

i ) for i = 1, 2, . . . , p, where p is the

number of variables. The first move is meant to address pos-

terior correlation between coefficients of different covariates.

The second move is meant to address posterior correlation

between coefficients for the mean and coefficients for the

dispersion.

The two kinds of moves of the MCMC algorithm can be

specified as

A. First kind:

1. We draw β∗ ∼ h(·|β) where the proposal h() is a

multivariate Gaussian centred at β. Specifically,

Current value

θ i = (µi , νi ),

µi = exp {x
⊺

i β},
νi = exp {−x

⊺

i δ},

Proposal

θ∗
i = (µ∗

i , ν
∗
i ),

µ∗
i = exp {x

⊺

i β∗},
ν∗

i = νi ,

(10)

where for the unnormalised COM-Poisson densities

in (9) we have,

qθi
(yi ) =

(

µ
yi

i

yi !

)νi

, qθ∗

i
(yi ) =

(
(µ∗

i )
yi

yi !

)ν∗
i

,

qθi
(y∗

i ) =

⎛

⎝
µ

y∗
i

i

y∗
i !

⎞

⎠

νi

, qθ∗

i
(y∗

i ) =
(

(µ∗
i )

y∗
i

y∗
i !

)ν∗
i

.

(11)

2. We now draw δ∗ ∼ h(·|δ) where the proposal h() is a

multivariate Gaussian centred at δ. Specifically,

Current value

θ i = (µi , νi ),

µi = exp {x
⊺

i β},
νi = exp {−x

⊺

i δ},

Proposal

θ∗
i = (µ∗

i , ν
∗
i ),

µ∗
i = µi ,

ν∗
i = exp {−x

⊺

i δ∗}
(12)

where the unnormalised COM-Poisson densities can

be evaluated as in (11).

B. Second kind: For j = 1, . . . , p:

We draw β∗
j ∼ h(·|β j ) and δ∗

j ∼ h(·|δ j ) where the

proposal distribution h() is a univariate Gaussian cen-

tred at β j , δ j respectively and for l �= j copy β∗
l = βl

and δ∗
l = δl . Specifically,

Current value

θ i = (µi , νi ),

µi = exp {x
⊺

i β},
νi = exp {−x

⊺

i δ},

Proposal

θ∗
i = (µ∗

i , ν
∗
i ),

µ∗
i = exp {x

⊺

i β∗},
ν∗

i = exp {−x
⊺

i δ∗}
(13)

where the unnormalised COM-Poisson densities can

be evaluated as in (11).

Each sweep of the MCMC algorithm performs both afore-

mentioned moves i.e., we first update (βi , δi ) for i =
1, . . . , p and then update β and δ separately; there are p + 2

accept/reject decisions within each iteration of the MCMC

algorithm.

In order to assess the computational efficiency of the

proposed MCMC sampler, we have compared the effective

sample size (ESS) per second of the proposed method to

the one of a vanilla MCMC sampler for Poisson regression.

We have simulated Poisson-distributed data (i.e., ν = 1), for

which the latter sampler has used the closed-form expression

of the normalisation constant. The ESS per second in the lat-

ter case is only 10 times higher than the one for our proposed

MCMC sampler, i.e., in order to get the same effective sample

size the proposed method takes about 10 times as long. This

factor of about 10 can be broken down into a factor of about

2 caused by the slower mixing of the exchange algorithm and

a factor of about 5 caused by the higher computational cost

of evaluating the acceptance ratio.
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4 Simulation and case studies

4.1 Simulation

As already mentioned, the COM-Poisson regression model

is a flexible alternative to count data models typically used

in the literature, such as Poisson or negative binomial regres-

sion. The key strength of the COM-Poisson regression model

is its ability to differentiate between a covariate’s effect on the

mean of the response variable and its effect on the (excess)

variance. This can be seen if we simulate from the overdis-

persed Poisson regression model (3), with

xi = (1, xi1, xi2, xi3, xi4)
⊺, β = (0, 0, 0, 0.3, 2)⊺,

ηi = x
⊺

i β, Yi ∼ Poi(exp(ηi )), (14)

where xi j
i id∼ U(−1, 1), j = 1, 2, 3 and xi4|xi3 ∼

U(−ai , ai ) with ai =
√

1−xi3

2
(for i = 1, 2, . . . , n, where

n is the number of observations). In this setup the range, and

thus the dispersion, of xi4 depends on xi3. The larger xi3,

the smaller the dispersion of xi4. However, xi3 and xi4 are

uncorrelated.

An overdispersed regression model is then obtained by

omitting xi4 from the model specification, which corresponds

to xi4 not being directly observable. Because xi3 is related

to the dispersion of xi4, the degree of overdispersion of Yi

depends on xi3 as well. In this case, the third covariate has a

positive effect on the mean of the response variable (i.e., the

value of the regression coefficient is positive) and a negative

effect on its variance since higher values of xi3 will result in

smaller dispersion for the covariate xi4. Thus, the dispersion

of the response variable will also be smaller. Figure 3 shows

the relationship between the response variables and the two

covariates xi3 and xi4.

Our intention behind this simulation is not model selec-

tion; our aim is to show that the parameter estimates from

both the Poisson and negative binomial models may be dis-

torted due to the effects of some covariates on the variance

of the response variable.

We simulate n = 1000 observations, which have empiri-

cal mean and variance of 1.36 and 2.37, respectively. The 95

and 68% credible intervals for the coefficients for the Pois-

son, negative binomial, and COM-Poisson regression model

can be seen in Figs. 4 and 5. Figure 4 shows the credible

intervals for the regression coefficients of µ for all the mod-

els.

The results for the Poisson and negative binomial mod-

els both lead to the conclusion that the third covariate has a

negative effect on the mean of the response variable. This

happens due to the covariate having a negative effect on

the variance of the response variable. On the other hand,

the COM-Poisson regression model correctly identifies all
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Scatterplot matrix

Fig. 3 Scatterplot matrix which focuses on the relationship between

the response variables and the covariates xi3 and xi4
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var3

var2

var1

intercept

Poisson
Neg. binomial

COM−Poisson

Regression coefficients for µ

Fig. 4 Simulation: 95 and 68% credible intervals for the regression

coefficients of µ. The latter are plotted with a shorter and thicker line

regression coefficients for the mean of the response variable.

The credible intervals for the regression coefficients of ν for

the COM-Poisson model can be seen in Fig. 5. The only pos-

terior credible interval that does not include zero is the one

for the third covariate (the one for the intercept is also wholly

positive, although the lower end is very close to 0).

In order to generalise the results of the previous simula-

tion, we have simulated 100 different samples from the model

in (14) each one comprised of n = 1000 observations. The
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Fig. 5 Simulation: 95 and 68% credible intervals for the regression

coefficients of ν. The latter are plotted with a shorter and thicker line

Table 1 Number of times, out of 100 different replications of the model

in (14), that the 95% credible interval for the coefficient of the third

covariate is wholly negative, includes 0, or is wholly positive

Negative Includes 0 Positive

Poisson 6 88 6

Negative binomial 1 94 5

COM-Poisson 0 20 80

results can be seen in Table 1. The Poisson and negative

binomial models conclude that there is a positive effect of

the third covariate on the response variable, in only 6 and 5

samples respectively. The COM-Poisson, on the other hand,

infers a positive effect of the third covariate in 80 samples.

4.2 Publications by Ph.D. students

Long (1990) examined the effect of education, marriage, fam-

ily, and the mentor on gender differences in the number of

published papers during the Ph.D. studies of 915 individ-

uals. The population was defined as all male biochemists

who received their Ph.D.’s during the periods 1956–1958

and 1961–1963 and all female biochemists who obtained

their Ph.D.’s during the period 1950–1967. Some of the vari-

ables that were used in the paper are shown in Table 2. For

ease of interpretation, we standardise all non-binary covari-

ates by subtracting their mean and dividing by their standard

deviation.

The study found, amongst other things, that females and

Ph.D. students having children publish fewer (on average)

papers during their Ph.D. studies. In addition, having a men-

tor with a large number of publications in the last three years

Table 2 Description of variables

Variable Description

Gender of student Equals 1 if the student is female;

else 0

Married at Ph.D. Equals 1 if the student was married

by the year of the Ph.D.; else 0

Children under 6 years old Number of children less than 6

years old at the year of the

students Ph.D.

Ph.D. prestige Prestige of the Ph.D. program in

biochemistry based on studies.

Unranked institutions were

assigned a score of 0.75, while

ranked institutions had scores

ranging from 1 to 5

Mentor Number of articles produced by

Ph.D. mentor during the last 3

years

has a positive effect on the number of publications of the

Ph.D. student. We will focus on the students with at least

one publication (640 individuals) with empirical mean and

variance of 1.42 and 3.54, respectively, a sign of overdisper-

sion. Note that after focusing on the students with at least

one publication, we subtract 1 from each student’s number

of publications (e.g. the 246 students that had 1 publication

in the original dataset are represented with a 0 in the final

dataset). Removing the students with no publications (275

students out of the 915 students in the original dataset) allows

us to fit a simple parametric model on the subset instead of a

more complex alternative on the original dataset (e.g. zero-

inflated model, hurdle model, non-parametric model). Thus,

we only compare the Poisson, negative binomial, and the

COM-Poisson regression models.

Figure 6 shows the 95 and 68% credible intervals for the

regression coefficients of µ for all the regression models. The

Poisson and negative binomial models have similar results.

The only difference between them is that for the latter model

the 95% posterior interval on the effect of having children

includes zero. The gender of a Ph.D. student and the number

of articles by the Ph.D. mentor are the only covariates that

have credible intervals that do not include zero, for both the

Poisson and negative binomial models.

Specifically, these models conclude that female Ph.D. stu-

dents publish less on average than male Ph.D. students and

that a mentor who has published a lot of articles has a positive

effect on the number of articles of the Ph.D. student. On the

other hand for the COM-Poisson models, the previous two

covariates seem to not have an effect on the mean of the num-

ber of articles published by a Ph.D. student. It must be noted

that there are four male Ph.D. students with a large number of

articles published (11, 11, 15, 18) that could be considered

as outliers. If these four students are taken out of the data
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Fig. 6 Publication data: 95 and 68% credible intervals for the regres-

sion coefficients of µ. The latter are plotted with a shorter and thicker

line

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

mentor

phd

kids

married

female

intercept

COM−Poisson
COM−Poisson lasso
COM−Poisson spike

Regression coefficients for ν

Fig. 7 Publication data: 95 and 68% credible intervals for the regres-

sion coefficients of ν. The latter are plotted with a shorter and thicker

line

set, the gender covariate does not have a significant effect

for the Poisson and negative binomial models. In addition,

the empirical means of the male and female Ph.D. students

are 1.5 and 1.2, respectively, while the empirical median is 1

for both genders. Thus the COM-Poisson regression model

seems to be doing a better job at not concluding that there is

an effect of the gender covariate.

Figure 7 shows the 95 and 68% credible intervals for the

regression coefficients of ν for the COM-Poisson regression

models. This figure shows that there seems to be a positive

effect of the “mentor” covariate on the variance of the articles

of the Ph.D. student. The more articles a mentor publishes

(during the last 3 years) the larger the variance for the number

of articles published by a Ph.D. student. This seems to be

reinforced further when we look at the empirical variance of

students having mentors with an above average number of

articles published versus students having mentors with less

than average number of articles published. The empirical

variance for the former group is 5.8, with the latter group

having a variance of 2.1, respectively (ratio of around 2.8).

The corresponding empirical means are 1.9 and 1.2 (ratio of

around 1.6). In Poisson-distributed data, one would expect

the ratios to be roughly equal.

4.3 Fertility data

This section uses data from Winkelmann (1995) on the num-

ber of births given by a cohort of women in Germany. The

data consist of 1243 women over 44 in 1985. The explanatory

variables that were used can be seen in Table 3.

The empirical mean and variance of the response are

2.39 and 2.33, respectively. The unconditional variance is

already slightly smaller than the unconditional mean. Includ-

ing covariates the conditional variance will reduce further,

thus suggesting that the data show underdispersion. For this

reason, the negative binomial model was not used in this con-

text. The results can be seen in Figs. 8 and 9. The credible

intervals for the coefficients of µ are similar across all the

models. Looking at Fig. 9 we can see the credible intervals

for the coefficients of ν. The posterior intervals that do not

include zero refer to the vocational education, age, and age

at marriage.

Table 3 Description of variables

Variable Description

Nationality Equals 1 if the woman is German;

else 0

General education Measured as years of schooling

Post-secondary education

(vocational training)

Equals 1 if the woman had

vocational training; else 0

Post-secondary education

(university)

Equals 1 if the woman had a

university degree; else 0

Religion The woman’s religious

denomination (Catholic,

Protestant, Muslim) with other or

none as the baseline group

Area of residence Equals 1 if its a rural area; else 0

Age Age of the woman at the time of

the survey

Age at marriage Age of the woman at the time of

marriage
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Fig. 8 Fertility data: 95 and 68% credible intervals for the regression

coefficients of µ. The latter are plotted with a shorter and thicker line
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Fig. 9 Fertility data: 95 and 68% credible intervals for the regression

coefficients of ν. The latter are plotted with a shorter and thicker line

For model selection, we will use the deviance information

criterion (DIC) by Spiegelhalter et al. (2002). This can be

seen as a Bayesian alternative model selection tool to AIC

and BIC. A smaller DIC indicates a better fit to the data set.

The results for both data sets (published papers and fertility

data) can be found in Table 4 and show that the COM-Poisson

models outperform the Poisson and the negative binomial

models in both examples.

5 Comparing MCMC algorithms for

COM-Poisson regression models

Besides showing the flexibility the COM-Poisson distribu-

tion offers, the goal of this paper is to propose an MCMC

algorithm for COM-Poisson regression models more effi-

Table 4 Deviance information criterion for all models and all data sets

with the minimum DIC in bold

Ph.D. data Fertility data

Poisson 2251.09 4214.55

Negative binomial 2108.05 –

COM-Poisson 2056.77 4121.92

COM-Poisson (lasso) 2058.05 4121.43

COM-Poisson (spike and slab) 2062.23 4121.74
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mentor
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COM−Poisson (exchange)
COM−Poisson (bounds)
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Fig. 10 Publication data: 95 and 68% credible intervals for the regres-

sion coefficients of µ. The latter are plotted with a shorter and thicker

line

cient than the exact MCMC algorithm of Chanialidis et al.

(2014). The main idea behind the algorithm given in Cha-

nialidis et al. (2014) is to take advantage of a sequence of

increasingly and arbitrarily precise lower and upper bounds

on the likelihood, resulting in bounds on the target density

and the acceptance probability of the Metropolis-Hastings

algorithm. This sequence of arbitrarily precise bounds is cre-

ated by increasing the number of terms that are computed

exactly for the estimation of the normalisation constant and

using piecewise geometric bounds for the remaining terms.

Assuming that π̌n and π̂n are the lower and upper bounds

of the target density after n refinements, the proposed algo-

rithm for deciding on the acceptance of θ∗ then proceeds as

follows:

1. Draw U ∼ Unif(0, 1) and set the number of refinements

n = 0.

2. Compute π̌n and π̂n and compare them to U .

– If U ≤ π̌n, accept the candidate value.

– If U > π̂n, reject the candidate value.

– If π̌n < U < π̂n, refine the bounds, i.e increase n

and return to step 2.
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Fig. 11 Publication data: 95 and 68% credible intervals for the regres-

sion coefficients of ν. The latter are plotted with a shorter and thicker

line

Traceplot for regression coefficients of µ for the exchange algorithm
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Fig. 12 Publication data: Traceplots for the regression coefficients of

µ for the exchange algorithm

We will now compare the algorithm presented in Chania-

lidis et al. (2014) with the MCMC algorithm presented in

this paper, using the publications data discussed in Sect. 4.2.

Both MCMC algorithms include the two kinds of moves pre-

sented in Sect. 3.4, have a burn-in period of 20,000 iterations

and a posterior sample size of 60,000.

Figures 10 and 11 show the 95 and 68% credible intervals

for the regression coefficients of µ and ν for both MCMC

algorithms. It can be seen that the “exchange” MCMC gives

similar results as the “bounds” MCMC.

Traceplot for regression coefficients of µ for the bounds algorithm
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Fig. 13 Publication data: Traceplots for the regression coefficients of

µ for the bounds algorithm

Traceplot for regression coefficients of ν for the exchange algorithm
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Fig. 14 Publication data: Traceplots for the regression coefficients of

ν for the exchange algorithm

Traceplots for the regression coefficients of µ can be

seen in Figs. 12, 13, while the traceplots for the regression

coefficients of ν can be seen in Figs. 14, 15. Both MCMC

algorithms seem to mix well.

The main difference between the two algorithms is the

computation time. For the “exchange” MCMC algorithm the

computation time was 14 min, while the “bounds” MCMC
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Traceplot for regression coefficients of ν for the bounds algorithm
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Fig. 15 Publication data: Traceplots for the regression coefficients of

ν for the bounds algorithm

algorithm needed 238 min for the same number of iterations,

seventeen times longer. A similar difference on the compu-

tation time is seen on the fertility data set.

Tables 5 and 6 show the effective sample sizes (ESS) per

minute for the regression coefficients of µ and ν respec-

tively. In both tables and across all the regression coefficients,

the “exchange” MCMC outperforms the “bounds” MCMC

algorithm. The average ESS per minute for the “exchange”

MCMC is 123.01 while for the “bounds” MCMC is 11.94.

Figure 16 shows the scatterplot of the parameters µi , νi

for i = 1, . . . , 640. The parameters µi , νi were obtained

using the posterior sample of the “exchange” algorithm and

substituting the posterior mean of each regression coefficient

β j , δ j for j = 1, . . . , 6 in Eq. (3).

Figure 17 shows the conditional mean and variance

approximations (on the log scale) seen at the start of Sect. 2.

The x-axes refer to the right-hand side of the Eq. (2), while

the y-axes refer to the mean and variance of a COM-Poisson
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Fig. 16 Publication data: Scatterplot of the parameters µ and ν

distribution with parameters µi , νi . In order to compute

the mean and variance, we first estimated the probability

mass function of the COM-Poisson distribution evaluation

the normalisation constant Z(µi , νi ) and then used the defi-

nitions of the mean and variance of a distribution. Figure 18

shows a scatterplot of the conditional mean versus the con-

ditional variance. The dotted line refers to the case where

the conditional mean is equal to the conditional variance.

In this case all the points are above the line, a sign of

overdispersion.

Finally, we have used both MCMC algorithms on the

publications and fertility data sets, with 5 different start-

ing values and the “exchange” MCMC algorithm consis-

tently outperforms the “bounds” MCMC. Due to constraints

of space, we have only shown the results for one of

those seeds on the smaller data set (i.e., publications data

set).

R (R Core Team 2015) was used for all the computa-

tions in this paper. Traceplots, density plots, autocorrelation

plots (for every regression coefficient) and results for the Gel-

man and Rubin diagnostic, Gelman and Rubin (1992), were

Table 5 Effective sample size

per minute for the regression

coefficients of µ

β1 β2 β3 β4 β5 β6

“Exchange” MCMC 65.51 91.01 99.21 154.03 157.42 186.54

“Bounds” MCMC 6.32 8.40 10.04 15.08 14.22 15.94

Table 6 Effective sample size

per minute for the regression

coefficients of ν

δ1 δ2 δ3 δ4 δ5 δ6

“Exchange” MCMC 58.87 91.86 74.67 168.63 161.44 166.85

“Bounds” MCMC 5.80 8.74 8.07 16.85 15.55 16.68
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Fig. 18 Publication data: conditional mean versus conditional variance

employed to assess convergence of the MCMC samplers to

the posterior distribution, using the coda package (Plummer

et al. 2006). The plots for the credible intervals and the tra-

ceplots of the regression coefficients were made using the

mcmcplots package (Curtis 2015).

The code for both MCMC algorithms (“exchange” and

“bounds”) is now available on Github.1

1 https://github.com/cchanialidis/combayes

6 Conclusions

In this paper, we presented a computationally more efficient

MCMC algorithm for COM-Poisson regression compared to

the alternative in Chanialidis et al. (2014). We showed how

rejection sampling, combined with the exchange algorithm,

can be used to overcome the problem of an intractable likeli-

hood in the COM-Poisson distribution. Finally, this allowed

us to use a Bayesian COM-Poisson regression model and

show its benefits, compared to the most common regression

models for count data, through a simulation and two real-

world data sets.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.
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