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The dzud are extreme weather events in Mongolia of deep snow, severe cold, or ���

other conditions that render forage unavailable or inaccessible, which in turn, result in ���

extensive livestock deaths. Mongolia is economically vulnerable to extreme events ���

due to an increase in non)professional herders and the livestock population, that a ���

de)regularised industry has brought about. Thus it is hugely informative to try to ���

understand the spatial and temporal trends of livestock population change. To this ���

end annual livestock census data are exploited and a geographically weighted �	�

principal components analysis (GWPCA) is applied to goat data recorded from 1990 �
�

to 2012 in 341 regions. This application of GWPCA to temporal data is novel and is ���

able to account for both temporal and spatial patterns in goat population change. ���

Furthermore, the GWPCA methodology is extended to simultaneously optimise the ���

number of components to retain and the kernel bandwidth. In doing so, this study not ���

only advances the GWPCA method but also provides a useful insight into the ���

spatio)temporal variations of the Mongolian goat population. ���

 ���

 ���
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It is important to evaluate the impacts of disasters to improve and support ���

agricultural planning. In Mongolia, deep snow, severe cold and associated conditions, ���

called ����, occur repeatedly and make forage unavailable or inaccessible to ���

livestock. This results in high livestock mortality (Fernandez)Gimenez, Batbuyan, and ���

Baival 2012; Fernández)Giménez et al. 2015) and huge economic losses, as ���

livestock in Mongolia represents 16% of national GDP (UNDP and NEMA 2010). ���

Traditional nomadic pastoralism is one of the most sustainable ways of life on �	�

grasslands and sparsely vegetated lands, as are commonly found in Mongolia �
�

(Millennium Ecosystem Assessment 2005; Research Institute for Humanity and ���

Nature 2012). Vegetation availability depends on the impacts of livestock grazing ���

which has been well managed by nomadic herders over thousands of years ���

(Research Institute for Humanity and Nature 2012), and is not suited to intensive ���

livestock and crop production. In particular, excessive livestock populations, whether ���

managed commercially or traditionally, endangers sustainability (Geist and Lambin ���

2004; Suttie, Reynolds, and Batello 2005). Recent changes to the Mongolian ���

livestock industry, which has become swamped with non)professional herders due to ���
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de)regularisation, has made the grasslands vulnerable to environmental change and �	�

to extreme weather events. Thus there is a clear need to understand the �
�

spatio)temporal trends in Mongolia’s livestock populations, accounting for the impacts ���

of the dzuds. ���

Data on livestock populations (sheep, goat, horse, cattle and camel) are ���

collected for 341 regions (a second administrative subdivision level, called ����) in ���

Mongolia by the official statistics service. For this study, goat data for a 23 year period ���

1990)2012, covering two devastating duzds during 2001)2 and 2009)10, was ���

analysed. A geographically weighted principal components analysis (GWPCA) was ���

used with the aim of generating spatio)temporal insights about goat populations, ���

particularly for abrupt changes caused by dzuds. A standard principal components �	�

analysis (PCA) provides a useful starting point to reduce the dimensionality of the �
�

temporally)indexed goat data and to observe major trends. However, PCA ignores ���

any spatial structure in the data (Demšar et al. 2013), whilst GWPCA is explicitly ���

designed to do so (Fotheringham, Brunsdon, and Charlton 2002; Lloyd 2010; Harris, ���

Brunsdon, and Charlton 2011; Harris et al. 2015). ���
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GWPCA constructs local PCAs from subsets of the data under a moving ���

window or kernel where the data are weighted by their distance to the kernel centre. ���

Critical factors in the operation of GWPCA are the specification of the kernel ���

bandwidth, which controls the degree of localness, and choosing the number of ���

components to retain (NCR). Bandwidth optimization routines exist, but are �	�

dependent on the NCR value, that has to be pre)specified (Harris et al. 2011; 2015). �
�

This paper addresses this technical limitation of GWPCA and proposes two novel ���

methods to determine the bandwidth and NCR value simultaneously. In doing so, a ���

better understanding of the spatio)temporal dynamics of the Mongolian goat ���

populations in relation to the duzds is provided. ���

This article is organised as follows. Firstly, background information on ���

Mongolian livestock populations is presented, together with introductions to PCA and ���

GWPCA. Secondly, the study data is described. Thirdly, PCA and the GWPCA ���

methodology are formally presented. Fourthly, the results of applying PCA and ���

GWPCA to the goat population data are given, including the outcomes of the dual �	�

bandwidth and NCR optimisations for GWPCA. Finally, a summary, discussion and �
�

concluding remarks section is given. 	��
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Livestock populations in Mongolia 	��

Nomadic pastoralism has provided a sustainable way of life for thousands of 	��

years in Mongolia (Research Institute for Humanity and Nature 2012). Although 	��

Mongolian grasslands have been well)managed, there are concerns about the 	��

impacts of increases in livestock populations. The lives of nomadic pastoralists have 	��

been strongly influenced by political changes, especially the move from a planned 		�

economy to a free)market economy in 1992 (Fernandez)Gimenez 2006). Prior to this, 	
�

livestock production was managed centrally and nomadic herders raised state)owned 
��

livestock, restricting excessive livestock production. The government encouraged 
��

herders to organize their collectives locally, and gave salaried (professional) herders 
��

the responsibility of breeding livestock. Collectives were self)regulated in their land 
��

use and their seasonal long)distance travel, resulting in good pasture maintenance 
��

with advance preparedness for keeping livestock secure from extreme events 
��

(Fernandez)Gimenez 2006). Since the transition to a free)market economy, pastures 
��

have been managed by individual herders, leading to serious sustainability and land 
��
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management issues, as herders are now focussed on profit and their number has 
	�

more than doubled (Togtokh 2008) – all of which makes the livestock industry more 

�

vulnerable. Five main livestock types are found in Mongolia (sheep, goat, horse, ����

cattle and camel), and the country)wide goat population has rapidly increased since ����

the government policy change in 1992 (Figure 1). This increase is primarily due to the ����

strong demand for goat cashmere (Saizen, Maekawa, and Yamamura 2010), but ����

unfortunately, the rate of increase threatens livestock sustainability and the nomadic ����

lives of herders. ����

Livestock losses occur during periods of the dzud as a result of deep snow and ����

severe cold (Fernandez)Gimenez, Batbuyan, and Baival 2012; Tsutsumida and ����

Saizen 2014). Additional pressure is also placed on herders as the dzud directly ��	�

results in reduced opportunities for grazing in the summer that follows, as a result of ��
�

droughts. Effects of this combination of winter dzuds and summer droughts can be ����

seen in Figure 1 for the years 2001)2 and 2009)10, where declines in the sheep and ����

goat populations are clearly evident. As a result of the 2009)10 dzud, approximately ����

20% of the country’s livestock population were killed, affecting 28% of Mongolia’s ����

human population (Fernandez)Gimenez, Batbuyan, and Baival 2012; ����
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Fernández)Giménez, Batkhishig, and Batbuyan 2012). The increase in ����

non)professional herders, with limited knowledge in traditional herding, has ����

compounded this livestock loss in the dzud years (UNDP and NEMA 2010). ����

Little attention has been paid into the geographical dynamics of the Mongolian ��	�

livestock population, over this 23)year period of change. Although some research has ��
�

been conducted, notably by Saizen, Maekawa, and Yamamura (2010) who found ����

areas of goat population increase to be independent of land cover. Saizen, Maekawa, ����

and Yamamura (2010) also noted that in more severe conditions, goat herders were ����

not restricted to the grazing pastures close to Ulaanbaatar, as goats are more ����

resilient to severe conditions, and the fact that a key goat product, cashmere, is ����

relatively portable. Liu et al. (2013) investigated the relationship between goat ����

population density and various climatic factors and suggested that the marked ����

increase in goat population density was a key non)climatic factor affecting grassland ����

degradation. Hilker et al. (2014) observed that livestock population increases, ��	�

associated with vegetation greenness, were primarily in the western part of Mongolia. ��
�

Thus previous research has tended to focus on environmental issues and not the ����

vulnerability of the livestock populations due to dzuds, even though they are relatively ����
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common. This study seeks to address this oversight by investigating the ����

spatio)temporal pattern of goat population change in relation to the varying impacts of ����

dzuds, via a GWPCA approach. ����

 ����

PCA and geographically weighted PCA ����

PCA is standard information reduction technique, commonly employed in many ����

areas of data analysis. It transforms a set of m correlated variables into a new set of ��	�

m uncorrelated variables called components. The components are linear ��
�

combinations of the original variables and can allow for a better understanding of ����

differing sources of variation and key trends in data. Its use as a dimension reduction ����

technique is viable if the first few components account for most (say, 80 to 90%) of ����

the variation in the original data. Component scores and component loadings data ����

are produced, where the latter display how much each of the original variables ����

attribute to the dimensional variance of the overall data. For details, see Jolliffe ����

(2002). ����

There are a number of ways that a PCA can be usefully applied to multivariate ����

spatio)temporal data sets, such as the livestock data sets for this study (when all five ��	�
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livestock types are considered). Demšar et al. (2013) provide a review in this respect, ��
�

where the many dimensional groups can be treated in a variety of ways. This study ����

applies a PCA to the goat population data, collected over a 23)year time period. Thus ����

the application of PCA is to a set of 23 time)stamped geographic variables, where ����

each variable measures goat population for a different year. This means that the PCA ����

only accounts for the temporal correlations in the data. ����

PCAs have been used to identify spatio)temporal data characteristics in many ����

scientific fields (e.g. Felipe)Sotelo et al. 2006; Lasaponara 2006; and see Demsar et ����

al. 2013 therein). For example, Lasaponara (2006) applied PCA for the evaluation of ����

vegetation anomalies from multi)temporal remote sensing data; and found that the ��	�

first principal component (PC1) related to a general vegetation distribution pattern, ��
�

while the second (PC2) indicated a decreasing trend of vegetation amount. In the ����

atmospheric sciences, PCAs are commonly applied to spatio)temporal (univariate) ����

data, and is referred to as an empirical orthogonal function (EOF) analysis (e.g. ����

Obled and Creutin (1986)). However for EOFs, the time series data is sufficiently long ����

enough to consider PCA in Q)mode (rather than the usual R)mode), thus spatial ����

correlations are captured as the data matrix is transposed. If the livestock population ����
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data of this study was considered temporally long enough (i.e. collected over 100 ����

years, say), then such an application of Q)mode PCA could also have been ����

considered. Instead, an R)mode PCA is applied and thus only temporal correlations ��	�

in the goat data are captured. Note that applications of PCA to spatio)temporal data ��
�

entails that Q)mode PCA is often referred to as S)mode PCA, where "S" denotes ����

spatial, and R)mode PCA is often referred to as T)mode PCA, where "T" denotes ����

temporal. The idea being that Q)mode and R)mode PCAs are reserved for attribute ����

sub)space applications with no spatio)temporal context. ����

However, a standard (R)mode) PCA application to this study’s goat data does ����

not account for any spatial effects, because it only ensures a non)spatial linear ����

transform (Demšar et al. 2013). In order to deal with such a naïve application, but ����

from a spatial effects point of view only, GWPCA can be used. This adaptation of ����

PCA provides a better description of any spatial phenomenon in the structure of the ��	�

data. It uses a moving window weighting technique and constructs a localized PCA at ��
�

all target locations (e.g. a grid, such as the application by Comber, Harris, and �	��

Tsutsumida (2016)). It is important to note, that although spatio)temporal correlations �	��

in the goat population data are captured via GWPCA, only spatial dependencies in �	��
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the data are fully captured. Temporal dependencies such as those between �	��

neighbouring years, are not fully captured nor are true spatio)temporal dependencies. �	��

That requires a further extension to GWPCA to a full spatio)temporal approach, �	��

similar that proposed for GW regression by Huang, Wu, and Barry (2010). Thus in �	��

this study, both PCA and GWPCA are applied in order to provide a better �	��

understanding of the dynamics of the Mongolian goat population data, at a �		�

soum)level scale, across the period 1990–2012. �	
�

 �
��

��	���������
��

Annual livestock population data were obtained from the National Statistical �
��

Office (NSO) of Mongolia for the period 1990–2012. Populations were summarized �
��

per soum, an administrative sub)division area. Since local governments collect taxes �
��

from herders according to herd size, the data are assumed to reflect livestock �
��

numbers reasonably well (Saizen, Maekawa, and Yamamura 2010). Administrative �
��

boundaries slightly changed during the 23)year study period. To cater for this, the �
��

data were merged accounting for all 341 soums, using the most recent boundaries. �
	�

Thus all data are taken into account when a soum changed or was incorporated into a �

�
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neighbour. Missing data that arose because of these changes, were infilled using a ����

probabilistic PCA method provided in the pcaMethod R package (Stacklies et al. ����

2007). This infilling was fairly minor and was not considered an issue for subsequent ����

analyses. ����

As would be expected, the goats data are highly correlated, especially across ����

adjacent years as shown in Figure 2, with the weakest correlations between the dzud ����

year of 2002 and all others, and the dzud year of 2010 and all others. Intuitively, this ����

correlation analysis for the temporally)indexed goats data, directly implies that goat ����

population change does not increase or decrease at the same rate across all 341 ��	�

soums. This in turn, provides some insight into the expected value of a spatial ��
�

analysis of the goats data, via a GWPCA. ����

 ����

���
��������

Principal components analysis (PCA) ����

Given an �	 × 	� dimensional data matrix �, a PCA to this data consists of ����

conducting this transformation:  ����

 �	�	�� = 
� �         (1) ����
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where� � is the matrix of eigenvectors with �	 × 	� dimension, � is the diagonal ����

matrix of eigenvalues, and 
 is the variance–covariance matrix with �	 × 	� ��	�

dimension. � indicates the eigenvalues of the PCs, representing the axes of a new ��
�

dimension. Each column of � represents the loadings corresponding to a PC. The ����

PCs are ordered according to the size of eigenvalues, meaning that PC1 corresponds ����

to the largest eigenvalue, and PC2 corresponds to the second largest, and so on. ����

Transformed component scores in matrix � is represented by ����

 � = ��         (2) ����

where � consists of a linear combination of the original values, which in this study is ����

the multi)temporal goat population data with � = 341 and � = 23. ����

 ����

Geographically weighted principal components analysis (GWPCA) ��	�

A GWPCA utilises a kernel weighting approach where localised PCs are found ��
�

at target locations. At a target location, neighbouring observations are weighted by a ����

distance)decay weighting function, and then a standard PCA is locally applied to its ����

own specific weighted data subset. The size of the window over which this localised ����

PCA might apply is controlled by the kernel's bandwidth. Small bandwidths lead to ����
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more rapid spatial variation in the results whereas large bandwidths yield results ����

increasingly close to the global PCA solution. This study identifies an adaptive ����

bandwidth corresponding to a bi)square kernel, a discontinuous function that ����

generates distance)decaying weights data points within the set bandwidth. ����

Observations outside of the bandwidth’s range receive weights of zero, and hence ��	�

the discontinuity. For details, see Gollini et al. (2015). ��
�

Thus for coordinates (, �) at spatial location �, GWPCA involves the ����

conception that the goat population time series variables	�� have a certain ����

dependence on their locality where �(�,�) and �(�,�), are the GW mean vector and ����

the GW variance–covariance matrix, respectively. This GW variance–covariance ����

matrix is calculated by  ����

 �(�,�) = ��	�(�,�)	�        (3) ����

where	�(�,�) is a diagonal matrix of geographical weights that are generated by the ����

chosen kernel weighting function. The GWPCA at spatial location � can be ����

computed using ��	�

 �	�	��|(� , ��) = �(��,��)        (4) ��
�
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where ∑(�, ��) is the GW variance)covariance at that location. The scores matrix at ����

the same location can be found using �(� , ��) = ��(� , ��)� On dividing each local ����

eigenvalue by ����(� , ��)�, localized versions of the proportion of the total variance ����

(PTV) in the original data accounted for by each component can be found. Thus at ����

each of the 341 sums of this study (i.e. the target locations), a GWPCA provides 23 ����

components, 23 eigenvalues, a component loadings set of size 341 × 23, and a ����

component scores set of size 341 × 23. ����

Bandwidth selection is crucial for the application of any GW model. For GWPCA, ����

bandwidth selection can be guided by a ‘leave)one)out’ residual (LOOR) approach, ��	�

where scores data are assessed for goodness of fit (GoF) against observed data. The ��
�

optimal bandwidth is one that corresponds to LOOR data that provides the smallest ����

GoF statistic. This cross)validation procedure and extensive commentaries on ����

choosing bandwidths are provided in Harris et al. (2015). Of note is that the NCR ����

value is decided upon a priori and an optimal bandwidth cannot be found if all � ����

components are retained. Thus the results of this residual)based bandwidth selection ����

procedure are somewhat dependent on a user)specified value of NCR. To counter ����

this dependency, this study proposes two alternative techniques to determine the ����
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bandwidth and the NCR value, concurrently. These methodological advances are ����

described and implemented below. ��	�

 ��
�

Geographically weighted correlation analysis ����

A GW correlation analysis (Harris and Brunsdon 2010) on the outputs from the ����

PCA with the raw data is also conducted. Here for variables � and   at spatial ����

location � where the geographical weights !�" again accord to a bi)square function, ����

definitions for a GW standard deviation and a GW correlation coefficient, are ����

respectively ����

 #(��) = $∑ !�" %�" −�(��)'()"*+ ∑ !�")"*+,      (5) ����

and  ����

 -(�� ,  �) = .(��,  �) �#(��)#( �)�/      (6) ��	�

, where a GW mean is ��
�

 �(��) = ∑ !�"�")"*+ ∑ !�")"*+/      (7) �	��

and a GW covariance is �	��

Page 18 of 55Annals of the American Association of Geographers



For Peer Review
 O

nly

� �


 .(�� ,  �) = ∑ !�" 0%�" −�(��)' % " −�( �)'1)"*+ ∑ !�")"*+/   (8)  �	��

Throughout this study, GWPCA and GW correlations use functions (or adapted �	��

functions) from the GWmodel R package (Gollini et al. 2015). �	��

 �	��

���	�����	��

The global PCA �	��

In order to understand any GW model output, it is always important to fit the �		�

usual global model for context. In this respect, a PCA was conducted on the 23 �	
�

temporal variables describing goat populations. Table 1 shows that the first two PCs �
��

have eigenvalues greater than unity, and for these two PCs, the cumulative PTV �
��

exceeds 90%. This implicitly assumes a uniform temporal trend in goat population �
��

across all 341 sums over the 23)year period. The PCA loadings given in Table 2 �
��

indicate that the five of the most influential years are 1996)1999 and 2001 for PC1; �
��

1990)1991 and 2010)2012 for PC2. �
��

 �
��

A GW correlation analysis on the PCA scores and raw data �
��
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As the component loadings in Table 2 are the (global) correlation coefficients �
	�

between the component scores and the raw data, a GW correlation analysis on this �

�

data can be used to investigate whether the correlations change across study region. ����

Figure 3 maps the GW correlations between the PCA scores data for PC1 to PC3, ����

and the raw data from the three most influential years. The GW correlations were ����

found using a user)specified bandwidth of 10% (i.e. each local correlation uses the ����

nearest 34 data pairs). As would be expected, spatial coherence for such correlations ����

is highest for PC1, but diminishes through PC2 to PC3. This suggests that the PCA is ����

missing some spatial structure in the data, and as such, an application of GWPCA is ����

worthwhile. Intuitively, this is expected, as the spatio)temporal trend in goat ����

populations is not expected to be uniformly the same across all of Mongolia (as ��	�

similarly suggested for observations made above, with respect to Figure 2). ��
�

 ����

GWPCA calibration with dual bandwidth and NCR optimization ����

As outlined above, in order to calibrate a GWPCA, first the NCR value needs to ����

be user)specified and only then, can an optimal GWPCA bandwidth be found via ����

cross)validation. In previous GWPCA studies, NCR is commonly chosen according to ����
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a 80% or 90% threshold of the cumulative PTV from the global PCA. Thus in this ����

study, NCR = 1 or 2 would be appropriate (see Table 1). This bandwidth selection ����

approach is far from ideal, as can be seen in Table 3, where different ‘optimal’ ����

bandwidths (found by the cross)validation procedure) simply correspond to different ��	�

choices of NCR (in this case, NCR values from 1 to 10). Furthermore, the results ��
�

suggest a tendency to a global PCA process for the study data, as eight out of ten ����

bandwidths are taken at 341 suggesting a kernel bandwidth that contains all of the ����

soums data. If this is truly the case (see note 1), then there appears no value in ����

applying GWPCA, and the localized analysis should cease at this juncture. ����

However, the choice of bandwidth can be investigated more deeply. This is ����

because the results presented in Table 3 are not directly comparable, as given ����

‘optimal’ bandwidths correspond to minimized GoF statistics (not shown) where the ����

NCR)specific LOOR data sets have been summarized by their mean. To ensure that ����

the minimized GoF statistics are comparable across different values of NCR, the ��	�

LOOR data can be summarized instead by their coefficient of variation (CoV) to ��
�

provide relative (and thus comparable) GoF statistics for each bandwidth and for ����

each NCR value. This leads to a dual optimization approach as shown in Figure 4(i), ����
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where the aim to concurrently find the bandwidth and the NCR value that ����

corresponds to minimum GoF (LOOR CoV) value. Again considering only NCR ����

values from 1 to 10, and a clear minimum GoF is reached at 1.296 corresponding to a ����

bandwidth of 247 nearest neighbours and an NCR value of 5. Each individual line in ����

the plot of Fig 4(i) corresponds to a different bandwidth choice, from 5 to 341. This ����

constitutes the first extension to the existing bandwidth selection procedure. ����

A second alternative is to transfer the usual cumulative PTV approach for NCR ��	�

selection to a local setting. Globally, a user)specified choice of NCR = 1 or 2 is based ��
�

on the global cumulative PTV scree plot (e.g. Varmuza and Filzmoser (2009)). This ����

approach can be transferred locally using the local cumulative PTV data from each ����

local PCA from a series of GWPCAs. Local cumulative PTV data were calculated ����

from GWPCAs calibrated with bandwidths ranging from 10 to a maximum of 341 and ����

the resultant local scree plots are depicted in Figure 4(ii). Clearly, the local scree plots ����

suggest that NCR = 2 is the point when some of the local cumulative PTV data ����

exceeds a 90% threshold. Given this, NCR = 2 again appears appropriate for a ����

GWPCA calibration. However, the bandwidth is still required, and unlike the existing ����

approach a bandwidth is identified that has the smallest GoF (LOOR mean) value, ��	�
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but crucially also corresponds to a localized cumulative PTV value exceeding 90% ��
�

(for all NCR = 2). This indicates a relative tight bandwidth of 198 nearest neighbours. ����

Thus in summary, there are three possible bandwidths for GWPCA calibration: ����

(a) 341 (via NCR = 1 or 2); (b) 247 (via NCR = 5); and (c) 198 (via NCR = 2). All three ����

should be considered as entirely valid, but where approach (a), the existing approach, ����

strongly suggests a stationary process with respect to a PCA. Given that approach ����

(a) has drawbacks, not only with respect to NCR/bandwidth specification, but also ����

(indirectly) due to current limitations in the GWPCA code (see note 1), it is dropped in ����

favour of the two newly proposed approaches (b and c) which are both viewed as a ����

methodological advance. In the spirit of spatial exploration, which all GW models are ��	�

eminently designed for, both approaches were investigated further all of the ��
�

subsequent GWPCA outputs described below are specified with either: (i) a ����

bandwidth of 247 via a NCR value of 5; or (ii) a bandwidth of 198 via a NCR value of ����

2. ����

 ����

PCA versus GWPCA results ����
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GWPCA is now applied to account for expected spatial heterogeneity in the ����

annual goat population data during 1990)2012 with: (i) a bandwidth of 247 via a NCR ����

value of 5 (call this ‘GWPCA)A’); and (ii) a bandwidth of 198 via a NCR value of 2 (call ����

this ‘GWPCA)B’). The GWPCA results are compared with those from global PCA, ��	�

throughout. To compare GWPCA−A, GWPCA)B, and PCA, only the first two ��
�

components (PC1 and PC2) from each calibration are considered. Observe that once ����

a bandwidth is defined, local components up until any NCR value (in this case NCR = ����

23) can actually be found and investigated. So in this respect, the NCR values of 2 ����

and 5 from the bandwidth selection procedure do not have to pervade the remainder ����

of the analysis (e.g. Harris et al. 2015). ����

 ����

Scores data ����

PC1 and PC2 scores from GWPCA)A, GWPCA)B, and the global PCA are ����

mapped in Figure 5. Observe that for GWPCA, a full, � = 341 valued scores data set ��	�

is available at each location, for each component. Thus, the GWPCA scores data that ��
�

are mapped are only those that fully correspond to their location. PC1 scores of �	��

GWPCA)A and GWPCA)B correlate with those from the global PCA, with � = 0.846 �	��

Page 24 of 55Annals of the American Association of Geographers



For Peer Review
 O

nly

� ��

and � = 0.742, respectively. PC2 scores of GWPCA)A and GWPCA)B correlate with �	��

those from the global PCA, with correlations of � = 0.943 and � = 0.872, �	��

respectively. These moderate to strong correlations simply reflect the relatively large �	��

bandwidth sizes used, and such correlations would tend to unity as the bandwidth �	��

increases. However these global correlations hide spatial detail, where the study’s �	��

aim is to see where the local spatial structure in the temporally)changing goat �	��

population (via the GWPCA outputs) differs to that found globally (via the PCA �		�

outputs). In this respect, the clearest regional differences in both the PC1 and PC2 �	
�

scores data appear in the north)eastern regions of Mongolia, bordering Russia and �
��

also the south)western regions bordering China. Thus the temporal dynamics of goat �
��

population change is likely to be clearly different in these regions to that expected �
��

nationally. �
��

 �
��

Percentage PTV data �
��

Globally, the PTV for PC1, and the cumulative PTV for PC1 and PC2 combined, �
��

are 84% and 92%, respectively. This suggests a high correlation amongst the goat �
��

population data, year on year, throughout the 23)year period. However, the global �
	�
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PTV values (from PCA) implicitly assume that such relationships are constant across �

�

Mongolia ) with relatively uniform changes in goat populations everywhere. Mapping ����

the corresponding localized PTV outputs from GWPCA shows where this is the case, ����

and the degree to which it is not (Figure 6). ����

Focusing on the third row only of Figure 6, regionally the temporal trend in goat ����

population change is actually more uniform than that found globally in central ����

northern regions (coloured dark green), where local PTV data are higher. Conversely, ����

the temporal trend in goat population change is actually less uniform than that found ����

globally in western regions (coloured dark pink), where local PTV data is lower. ����

These changes in regional behaviour broadly confirms that observed for the scores ��	�

data, above. The PTV maps in the first and second rows of in Figure 6 provide detail ��
�

of the component contribution to the cumulative PTV maps presented in the third row. ����

Presenting the GWPCA outputs for GWPCA)A and GWPCA)B with their different ����

bandwidths in this way re)affirms the findings, and quantifies how non)stationarities ����

can change at different spatial scales. ����

 ����

Loadings data ����
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In many ways the loadings data from a GWPCA are more difficult to interpret ����

map than the scores and PTV data. In Harris, Brunsdon, and Charlton (2011), three ����

visualizations were proposed, which can only be conducted on a component by ��	�

component basis: (a) map the ‘winning variables’ ) i.e. those that correspond to ��
�

largest absolute loading; (b) map the loading sign patterns, e.g. for eight variables, ����

there are 256 possible sign patterns; and (c) map all loadings together using ����

multivariate glyphs, where a spoke’s length corresponds to the magnitude of the ����

loading, whilst a spoke’s colour corresponds to the sign of the loadings. In this study, ����

the GWPCA loadings data are visualized using the first option. These ‘winning year’ ����

maps are presented in Figure 7 for PC1 and PC2. ����

The ‘winning year’ for PC1 for GWPCA)A and GWPCA)B included 15 and 17 of ����

the 23 years being selected. As so many different years ‘win’, this is viewed as a ����

confirmation of the generally high correlation amongst the goat population data ��	�

throughout the 23)year period. Differences between a year providing the highest ��
�

loading or not, are often extremely small. Thus a ‘winning year or variable’ map tends ����

to provide little useful information when this happens. ����
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In this instance, greater insight stems from considering the ‘winning year’ maps ����

for the next component (PC2). Now far fewer years are represented (3 to 6 of 23) and ����

the dzud years of 2002 and 2010, strongly dominate in two clear regions; the west ����

and south)west, and the east and north, respectively. This suggests that: (i) the dzud ����

of 2002 and the associated goat population decline was more or less pronounced in ����

the west and south)west than elsewhere; and (ii) the dzud of 2010 and the associated ����

goat population decline was more or less pronounced in the east and north than ��	�

elsewhere. This strongly indicates that the severity of the dzuds in 2002 and 2010 ��
�

varied geographically. Visualizing the annual changes in the PCA and GWPCA ����

loadings from PC1 and PC2 for GWPCA)A and GWPCA)B (Figure 8) shows the ����

effects of the 2002 and 2010 dzud years on the loadings, with clear inflection points ����

for both GWPCA fits. ����

Figure 9 displays the loadings maps for PC2 of GWPCA)A only, for 2001)3, and ����

2009)11, covering the two dzuds periods. These maps suggest that the 2001)2 dzud ����

and the 2009)10 dzud have different regional and temporal characteristics. The ����

impact of the 2001)2 dzud starts from central/western regions in 2001 and increases  ����

in western regions in 2002. The impact of the 2009)10 dzud appears first in western ��	�
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regions in 2009 and then in eastern regions in 2010. This is in contrast to the ��
�

reporting of dzuds and the devastating damage to livestock populations, which is ����

typically referred to as impacting Mongolia as a whole, and uniformly. ����

 ����

 ���	������������	���������

Understanding the spatio)temporal characteristics of livestock population ����

change is essential for environmental and disaster responses, to sustainably manage ����

grassland environments and to minimize the impact of the dzud in Mongolia. ����

Unfortunately, such analyses are rarely conducted, as they require skilled statistical ����

expertise (Cheng et al. 2014; Shekhar et al. 2015). This study undertook such an ��	�

analysis for annual goat population data, which are known to have increased over the ��
�

study period, with abrupt declines following dzud events. The application of a ����

geographically weighted PCA (GWPCA), a spatial version of PCA, to the temporally ����

indexed goat data allowed an understanding of the spatial and temporal variations in ����

goat population change across Mongolia over the 23 year study period. ����

Mapping GWPCA scores data allowed regional differences to be observed, ����

particularly in the north)eastern regions of Mongolia, bordering Russia and also ����
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south)western regions bordering China. Thus the temporal dynamics of goat ����

population change is likely to be different in these regions to that expected nationally. ����

By mapping GWPCA variance proportion data, the temporal trend in goat population ��	�

change was found to be more uniform, to that found globally, in central northern ��
�

regions, whilst less uniform (to that found globally) in western regions. Visualizing the ����

‘winning year’ maps for the GWPCA loadings, suggests that the dzud of 2002 and the ����

associated goat population decline was more or less pronounced in the west and ����

south)west regions and that the dzud of 2010 and the associated goat population ����

decline was more or less pronounced in the east and north regions. This, in turn, ����

suggests that the dzuds of 2002 and 2010 varied geographically in their severity. ����

It has been reported that 7.7 million livestock died as a result of the 2001)2 dzud ����

and 9.7 million died as a result of the 2009)10 dzud (UNDP and NEMA 2010). This ����

study helps to re)affirm that regionally)specific dzud preparation and response ��	�

initiatives are required to support different landscape ecological characteristics and ��
�

management strategies (Fernández)Giménez et al. 2015). This study did not �	��

consider change in livestock)type over space and time, and in this respect, future �	��

research will seek to explore the full data set of goats, sheep, cattle, camel and horse. �	��
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Such an analysis could be achieved via extending GWPCA to a full temporally and �	��

geographically weighted PCA form. �	��

This study’s application of GWPCA to temporally indexed spatial data is novel �	��

and adds to a growing portfolio of GWPCA uses, not only for spatial exploration �	��

(Lloyd 2010; Harris, Brunsdon, and Charlton 2011; Harris et al. 2015), but also for �	��

spatial anomaly detection (Harris, Brunsdon, et al. 2014; Harris et al. 2015), spatial �		�

network re)design (Harris, Clarke, et al. 2014), and spatial classification (Harris et al. �	
�

2015; Comber, Harris, and Tsutsumida 2016). Furthermore, this study usefully �
��

extended the GWPCA methodology itself to simultaneously optimise the number of �
��

components to retain and the kernel weighting bandwidth. This is considered an �
��

important advance, and should be adopted in all subsequence GWPCA studies. �
��

 �
��

!������
��

1 Observe that the current version of the GWmodel R package does not allow �
��

adaptive bandwidth values greater than the sample size to be optimally selected. �
��

Thus an adaptive bandwidth that is equal to the sample size only directly indicates a �
	�

stationary spatial process provided a box)car kernel is specified. For any �

�
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distance)decay kernel, such as the bi)square, an adaptive bandwidth that is equal to ����

the sample size can only suggest or allude to a stationary spatial process. ����

 ����
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#��	�����"����� �����

Figure 1. Change in livestock populations across Mongolia during 1990–2012. ��	�

 ��
�

Figure 2. Correlation matrix of annual goat population data (1990)2012), with the plot ����

size proportional to the correlation. ����

 ����

Figure 3. GW correlation maps between PC1)3 scores of the global PCA and the raw ����

data of the corresponding most influential years (see also Table 2). ����

 ����

Figure 4. GWPCA calibration: (i) GoF (via LOOR CoV) versus NCR values; and (ii) ����

scree plots for local cumulative PTVs versus NCR values. The grey lines have a ����

transparency term added to them. In (i) they represent bandwidths in a range of 5 to ��	�

341 and (ii) in a range of 10 to 341. The black line in (i) represents the optimal ��
�

bandwidth of 247 with NCR = 5, at the minimum GoF. Black line in (ii) represents the ����

90% threshold of the cumulative PTV.  ����

 ����
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Figure 5. PC1 and PC2 scores maps for GWPCA)A (top row), GWPCA)B (middle ����

row), and the global PCA (bottom row).  ����

 ����

Figure 6. GWPCA)A and GWPCA)B PTV maps for PC1 (top row), PC2 (middle row) ����

and PC1/PC2 combined (bottom row). ����

 ��	�

Figure 7. GWPCA)A and GWPCA)B ‘winning year’ maps (by highest loadings) for ��
�

PC1 and PC2. Years when dzud occurred are highlighted in grey and black. ����

 ����

Figure 8. GWPCA)A and GWPCA)B loadings for PC1 and PC2, displayed over the 23 ����

study years. The grey lines have a transparency term and represent the loading score ����

at every soum. The black lines represent the loadings from the global PCA. Dark grey ����

rectangles represent dzud periods 2001)2 and 2009)10. ����

 ����

Figure 9. Maps for PC2 loadings from GWPCA)A over dzud periods of 2001)3 (top ����

row) and 2009)11 (bottom row). ��	�
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