

This is a repository copy of *The Application of a Geographically Weighted Principal Component Analysis for Exploring Twenty-three Years of Goat Population Change across Mongolia*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/115651/

Version: Accepted Version

Article:

Tsutsumida, N, Harris, P and Comber, A orcid.org/0000-0002-3652-7846 (2017) The Application of a Geographically Weighted Principal Component Analysis for Exploring Twenty-three Years of Goat Population Change across Mongolia. Annals of the American Association of Geographers, 107 (5). pp. 1060-1074. ISSN 2469-4452

https://doi.org/10.1080/24694452.2017.1309968

© 2017 by American Association of Geographers. This is an Accepted Manuscript of an article published by Taylor & Francis in Annals of the American Association of Geographers on 31 May 2017, available online:

http://www.tandfonline.com/10.1080/24694452.2017.1309968.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

- 1
- 2 **Title:** The application of a geographically weighted principal components analysis for
- 3 exploring 23 years of goat population change across Mongolia
- 4
- 5 Author names/Affiliations:
- 6 Narumasa Tsutsumida¹, Paul Harris², Alexis Comber³
- 7 ¹ Graduate School of Global Environmental Studies, Kyoto University,
- 8 Yoshida-honmachi, Sakyo, Kyoto, Kyoto, JP 606-8501
- ⁹ ² Rothamsted Research, North Wyke, Okehampton, Devon, UK EX20 2SB
- ³ School of Geography, University of Leeds, Leeds, UK LS2 9JT

11 Abstract

12	The dzud are extreme weather events in Mongolia of deep snow, severe cold, or
13	other conditions that render forage unavailable or inaccessible, which in turn, result in
14	extensive livestock deaths. Mongolia is economically vulnerable to extreme events
15	due to an increase in non-professional herders and the livestock population, that a
16	de-regularised industry has brought about. Thus it is hugely informative to try to
17	understand the spatial and temporal trends of livestock population change. To this
18	end annual livestock census data are exploited and a geographically weighted
19	principal components analysis (GWPCA) is applied to goat data recorded from 1990
20	to 2012 in 341 regions. This application of GWPCA to temporal data is novel and is
21	able to account for both temporal and spatial patterns in goat population change.
22	Furthermore, the GWPCA methodology is extended to simultaneously optimise the
23	number of components to retain and the kernel bandwidth. In doing so, this study not
24	only advances the GWPCA method but also provides a useful insight into the
25	spatio-temporal variations of the Mongolian goat population.
26	

28 Keywords

29 Spatio-temporal; GWmodel; Livestock; Grasslands; Sustainability

31 Introduction

32	It is important to evaluate the impacts of disasters to improve and support
33	agricultural planning. In Mongolia, deep snow, severe cold and associated conditions,
34	called dzud, occur repeatedly and make forage unavailable or inaccessible to
35	livestock. This results in high livestock mortality (Fernandez-Gimenez, Batbuyan, and
36	Baival 2012; Fernández-Giménez et al. 2015) and huge economic losses, as
37	livestock in Mongolia represents 16% of national GDP (UNDP and NEMA 2010).
38	Traditional nomadic pastoralism is one of the most sustainable ways of life on
39	grasslands and sparsely vegetated lands, as are commonly found in Mongolia
40	(Millennium Ecosystem Assessment 2005; Research Institute for Humanity and
41	Nature 2012). Vegetation availability depends on the impacts of livestock grazing
42	which has been well managed by nomadic herders over thousands of years
43	(Research Institute for Humanity and Nature 2012), and is not suited to intensive
44	livestock and crop production. In particular, excessive livestock populations, whether
45	managed commercially or traditionally, endangers sustainability (Geist and Lambin
46	2004; Suttie, Reynolds, and Batello 2005). Recent changes to the Mongolian
47	livestock industry, which has become swamped with non-professional herders due to

48	de-regularisation, has made the grasslands vulnerable to environmental change and
49	to extreme weather events. Thus there is a clear need to understand the
50	spatio-temporal trends in Mongolia's livestock populations, accounting for the impacts
51	of the dzuds.
52	Data on livestock populations (sheep, goat, horse, cattle and camel) are
53	collected for 341 regions (a second administrative subdivision level, called soum) in
54	Mongolia by the official statistics service. For this study, goat data for a 23 year period
55	1990-2012, covering two devastating duzds during 2001-2 and 2009-10, was
56	analysed. A geographically weighted principal components analysis (GWPCA) was
57	used with the aim of generating spatio-temporal insights about goat populations,
58	particularly for abrupt changes caused by dzuds. A standard principal components
59	analysis (PCA) provides a useful starting point to reduce the dimensionality of the
60	temporally-indexed goat data and to observe major trends. However, PCA ignores
61	any spatial structure in the data (Demšar et al. 2013), whilst GWPCA is explicitly
62	designed to do so (Fotheringham, Brunsdon, and Charlton 2002; Lloyd 2010; Harris,
63	Brunsdon, and Charlton 2011; Harris et al. 2015).

64	GWPCA constructs local PCAs from subsets of the data under a moving
65	window or kernel where the data are weighted by their distance to the kernel centre.
66	Critical factors in the operation of GWPCA are the specification of the kernel
67	bandwidth, which controls the degree of localness, and choosing the number of
68	components to retain (NCR). Bandwidth optimization routines exist, but are
69	dependent on the NCR value, that has to be pre-specified (Harris et al. 2011; 2015).
70	This paper addresses this technical limitation of GWPCA and proposes two novel
71	methods to determine the bandwidth and NCR value simultaneously. In doing so, a
72	better understanding of the spatio-temporal dynamics of the Mongolian goat
73	populations in relation to the duzds is provided.
74	This article is organised as follows. Firstly, background information on
75	Mongolian livestock populations is presented, together with introductions to PCA and
76	GWPCA. Secondly, the study data is described. Thirdly, PCA and the GWPCA
77	methodology are formally presented. Fourthly, the results of applying PCA and
78	GWPCA to the goat population data are given, including the outcomes of the dual
79	bandwidth and NCR optimisations for GWPCA. Finally, a summary, discussion and
80	concluding remarks section is given.

82 Background

83 Livestock populations in Mongolia

84	Nomadic pastoralism has provided a sustainable way of life for thousands of
85	years in Mongolia (Research Institute for Humanity and Nature 2012). Although
86	Mongolian grasslands have been well-managed, there are concerns about the
87	impacts of increases in livestock populations. The lives of nomadic pastoralists have
88	been strongly influenced by political changes, especially the move from a planned
89	economy to a free-market economy in 1992 (Fernandez-Gimenez 2006). Prior to this,
90	livestock production was managed centrally and nomadic herders raised state-owned
91	livestock, restricting excessive livestock production. The government encouraged
92	herders to organize their collectives locally, and gave salaried (professional) herders
93	the responsibility of breeding livestock. Collectives were self-regulated in their land
94	use and their seasonal long-distance travel, resulting in good pasture maintenance
95	with advance preparedness for keeping livestock secure from extreme events
96	(Fernandez-Gimenez 2006). Since the transition to a free-market economy, pastures
97	have been managed by individual herders, leading to serious sustainability and land

98	management issues, as herders are now focussed on profit and their number has
99	more than doubled (Togtokh 2008) – all of which makes the livestock industry more
100	vulnerable. Five main livestock types are found in Mongolia (sheep, goat, horse,
101	cattle and camel), and the country-wide goat population has rapidly increased since
102	the government policy change in 1992 (Figure 1). This increase is primarily due to the
103	strong demand for goat cashmere (Saizen, Maekawa, and Yamamura 2010), but
104	unfortunately, the rate of increase threatens livestock sustainability and the nomadic
105	lives of herders.
106	Livestock losses occur during periods of the dzud as a result of deep snow and
107	severe cold (Fernandez-Gimenez, Batbuyan, and Baival 2012; Tsutsumida and
108	Saizen 2014). Additional pressure is also placed on herders as the dzud directly
109	results in reduced opportunities for grazing in the summer that follows, as a result of
110	droughts. Effects of this combination of winter dzuds and summer droughts can be
111	seen in Figure 1 for the years 2001-2 and 2009-10, where declines in the sheep and
112	goat populations are clearly evident. As a result of the 2009-10 dzud, approximately
113	20% of the country's livestock population were killed, affecting 28% of Mongolia's
114	human population (Fernandez-Gimenez, Batbuyan, and Baival 2012;

115	Fernández-Giménez, Batkhishig, and Batbuyan 2012). The increase in
116	non-professional herders, with limited knowledge in traditional herding, has
117	compounded this livestock loss in the dzud years (UNDP and NEMA 2010).
118	Little attention has been paid into the geographical dynamics of the Mongolian
119	livestock population, over this 23-year period of change. Although some research has
120	been conducted, notably by Saizen, Maekawa, and Yamamura (2010) who found
121	areas of goat population increase to be independent of land cover. Saizen, Maekawa,
122	and Yamamura (2010) also noted that in more severe conditions, goat herders were
123	not restricted to the grazing pastures close to Ulaanbaatar, as goats are more
124	resilient to severe conditions, and the fact that a key goat product, cashmere, is
125	relatively portable. Liu et al. (2013) investigated the relationship between goat
126	population density and various climatic factors and suggested that the marked
127	increase in goat population density was a key non-climatic factor affecting grassland
128	degradation. Hilker et al. (2014) observed that livestock population increases,
129	associated with vegetation greenness, were primarily in the western part of Mongolia.
130	Thus previous research has tended to focus on environmental issues and not the
131	vulnerability of the livestock populations due to dzuds, even though they are relatively

- 132 common. This study seeks to address this oversight by investigating the
- 133 spatio-temporal pattern of goat population change in relation to the varying impacts of
- 134 dzuds, via a GWPCA approach.
- 135

136 PCA and geographically weighted PCA

- 137 PCA is standard information reduction technique, commonly employed in many
- areas of data analysis. It transforms a set of m correlated variables into a new set of
- 139 m uncorrelated variables called components. The components are linear
- 140 combinations of the original variables and can allow for a better understanding of
- 141 differing sources of variation and key trends in data. Its use as a dimension reduction
- 142 technique is viable if the first few components account for most (say, 80 to 90%) of
- 143 the variation in the original data. Component scores and component loadings data
- are produced, where the latter display how much each of the original variables
- 145 attribute to the dimensional variance of the overall data. For details, see Jolliffe
- 146 (2002).
- There are a number of ways that a PCA can be usefully applied to multivariate
 spatio-temporal data sets, such as the livestock data sets for this study (when all five

149	livestock types are considered). Demšar et al. (2013) provide a review in this respect,
150	where the many dimensional groups can be treated in a variety of ways. This study
151	applies a PCA to the goat population data, collected over a 23-year time period. Thus
152	the application of PCA is to a set of 23 time-stamped geographic variables, where
153	each variable measures goat population for a different year. This means that the PCA
154	only accounts for the temporal correlations in the data.
155	PCAs have been used to identify spatio-temporal data characteristics in many
156	scientific fields (e.g. Felipe-Sotelo et al. 2006; Lasaponara 2006; and see Demsar et
157	al. 2013 therein). For example, Lasaponara (2006) applied PCA for the evaluation of
158	vegetation anomalies from multi-temporal remote sensing data; and found that the
159	first principal component (PC1) related to a general vegetation distribution pattern,
160	while the second (PC2) indicated a decreasing trend of vegetation amount. In the
161	atmospheric sciences, PCAs are commonly applied to spatio-temporal (univariate)
162	data, and is referred to as an empirical orthogonal function (EOF) analysis (e.g.
163	Obled and Creutin (1986)). However for EOFs, the time series data is sufficiently long
164	enough to consider PCA in Q-mode (rather than the usual R-mode), thus spatial
165	correlations are captured as the data matrix is transposed. If the livestock population

166	data of this study was considered temporally long enough (i.e. collected over 100
167	years, say), then such an application of Q-mode PCA could also have been
168	considered. Instead, an R-mode PCA is applied and thus only temporal correlations
169	in the goat data are captured. Note that applications of PCA to spatio-temporal data
170	entails that Q-mode PCA is often referred to as S-mode PCA, where "S" denotes
171	spatial, and R-mode PCA is often referred to as T-mode PCA, where "T" denotes
172	temporal. The idea being that Q-mode and R-mode PCAs are reserved for attribute
173	sub-space applications with no spatio-temporal context.
174	However, a standard (R-mode) PCA application to this study's goat data does
175	not account for any spatial effects, because it only ensures a non-spatial linear
176	transform (Demšar et al. 2013). In order to deal with such a naïve application, but
177	from a spatial effects point of view only, GWPCA can be used. This adaptation of
178	PCA provides a better description of any spatial phenomenon in the structure of the
179	data. It uses a moving window weighting technique and constructs a localized PCA at
180	all target locations (e.g. a grid, such as the application by Comber, Harris, and
181	Tsutsumida (2016)). It is important to note, that although spatio-temporal correlations
182	in the goat population data are captured via GWPCA, only spatial dependencies in

183	the data are fully	y captured.	Temporal	dependencies	such as	those between
	-	/ 1				

- neighbouring years, are not fully captured nor are true spatio-temporal dependencies.
- 185 That requires a further extension to GWPCA to a full spatio-temporal approach,
- similar that proposed for GW regression by Huang, Wu, and Barry (2010). Thus in
- 187 this study, both PCA and GWPCA are applied in order to provide a better
- 188 understanding of the dynamics of the Mongolian goat population data, at a
- soum-level scale, across the period 1990–2012.
- 190

191 Study data

- 192 Annual livestock population data were obtained from the National Statistical
- 193 Office (NSO) of Mongolia for the period 1990–2012. Populations were summarized
- 194 per soum, an administrative sub-division area. Since local governments collect taxes
- 195 from herders according to herd size, the data are assumed to reflect livestock
- 196 numbers reasonably well (Saizen, Maekawa, and Yamamura 2010). Administrative
- 197 boundaries slightly changed during the 23-year study period. To cater for this, the
- 198 data were merged accounting for all 341 soums, using the most recent boundaries.
- 199 Thus all data are taken into account when a soum changed or was incorporated into a

200	neighbour. Missing data that arose because of these changes, were infilled using a
201	probabilistic PCA method provided in the pcaMethod R package (Stacklies et al.
202	2007). This infilling was fairly minor and was not considered an issue for subsequent
203	analyses.
204	As would be expected, the goats data are highly correlated, especially across
205	adjacent years as shown in Figure 2, with the weakest correlations between the dzud
206	year of 2002 and all others, and the dzud year of 2010 and all others. Intuitively, this
207	correlation analysis for the temporally-indexed goats data, directly implies that goat
208	population change does not increase or decrease at the same rate across all 341
209	soums. This in turn, provides some insight into the expected value of a spatial
210	analysis of the goats data, via a GWPCA.
211	
212	Methods
213	Principal components analysis (PCA)

- Given an $n \times m$ dimensional data matrix X, a PCA to this data consists of
- 215 conducting this transformation:
- $216 L V L^T = S (1)$

217	where L is the matrix of eigenvectors with $n \times m$ dimension, V is the diagonal
218	matrix of eigenvalues, and S is the variance–covariance matrix with $m \times m$
219	dimension. V indicates the eigenvalues of the PCs, representing the axes of a new
220	dimension. Each column of L represents the loadings corresponding to a PC. The
221	PCs are ordered according to the size of eigenvalues, meaning that PC1 corresponds
222	to the largest eigenvalue, and PC2 corresponds to the second largest, and so on.
223	Transformed component scores in matrix T is represented by
224	$T = XL \tag{2}$
225	where T consists of a linear combination of the original values, which in this study is
226	the multi-temporal goat population data with $n = 341$ and $m = 23$.
227	
228	Geographically weighted principal components analysis (GWPCA)
229	A GWPCA utilises a kernel weighting approach where localised PCs are found
230	at target locations. At a target location, neighbouring observations are weighted by a
231	distance-decay weighting function, and then a standard PCA is locally applied to its
232	own specific weighted data subset. The size of the window over which this localised
233	PCA might apply is controlled by the kernel's bandwidth. Small bandwidths lead to

234	more rapid spatial variation in the results whereas large bandwidths yield results
235	increasingly close to the global PCA solution. This study identifies an adaptive
236	bandwidth corresponding to a bi-square kernel, a discontinuous function that
237	generates distance-decaying weights data points within the set bandwidth.
238	Observations outside of the bandwidth's range receive weights of zero, and hence
239	the discontinuity. For details, see Gollini et al. (2015).
240	Thus for coordinates (u, v) at spatial location <i>i</i> , GWPCA involves the
241	conception that the goat population time series variables x_i have a certain
242	dependence on their locality where $\mu_{(u,v)}$ and $\Sigma_{(u,v)}$, are the GW mean vector and
243	the GW variance-covariance matrix, respectively. This GW variance-covariance
244	matrix is calculated by
245	$\Sigma_{(u,v)} = X^T W_{(u,v)} X $ (3)
246	where $W_{(u,v)}$ is a diagonal matrix of geographical weights that are generated by the
247	chosen kernel weighting function. The GWPCA at spatial location i can be
248	computed using
249	$L V L^{T} (u_{i}, v_{i}) = \Sigma_{(u_{i}, v_{i})} $ (4)

250	where $\sum (u_i, v_i)$ is the GW variance-covariance at that location. The scores matrix at
251	the same location can be found using $T(u_i, v_i) = XL(u_i, v_i)$. On dividing each local
252	eigenvalue by $tr(V(u_i, v_i))$, localized versions of the proportion of the total variance
253	(PTV) in the original data accounted for by each component can be found. Thus at
254	each of the 341 sums of this study (i.e. the target locations), a GWPCA provides 23
255	components, 23 eigenvalues, a component loadings set of size 341 $ imes$ 23, and a
256	component scores set of size 341 \times 23.
257	Bandwidth selection is crucial for the application of any GW model. For GWPCA,
258	bandwidth selection can be guided by a 'leave-one-out' residual (LOOR) approach,
259	where scores data are assessed for goodness of fit (GoF) against observed data. The
260	optimal bandwidth is one that corresponds to LOOR data that provides the smallest
261	GoF statistic. This cross-validation procedure and extensive commentaries on
262	choosing bandwidths are provided in Harris et al. (2015). Of note is that the NCR
263	value is decided upon a priori and an optimal bandwidth cannot be found if all m
264	components are retained. Thus the results of this residual-based bandwidth selection
265	procedure are somewhat dependent on a user-specified value of NCR. To counter
266	this dependency, this study proposes two alternative techniques to determine the

- 267 bandwidth and the NCR value, concurrently. These methodological advances are
- 268 described and implemented below.
- 269

270 Geographically weighted correlation analysis

- A GW correlation analysis (Harris and Brunsdon 2010) on the outputs from the
- 272 PCA with the raw data is also conducted. Here for variables x and y at spatial
- location *i* where the geographical weights w_{ij} again accord to a bi-square function,
- 274 definitions for a GW standard deviation and a GW correlation coefficient, are
- 275 respectively

276
$$s(x_i) = \sqrt{\frac{\sum_{j=1}^{n} w_{ij} \left(x_j - m(x_i)\right)^2}{\sum_{j=1}^{n} w_{ij}}}$$
(5)

277 and

278
$$\rho(x_i, y_i) = \frac{c(x_i, y_i)}{(s(x_i)s(y_i))}$$

, where a GW mean is

280
$$m(x_i) = \frac{\sum_{j=1}^{n} w_{ij} x_j}{\sum_{j=1}^{n} w_{ij}}$$
(7)

and a GW covariance is

(6)

282
$$c(x_i, y_i) = \frac{\sum_{j=1}^{n} w_{ij} \left\{ \left(x_j - m(x_i) \right) \left(y_j - m(y_i) \right) \right\}}{\sum_{j=1}^{n} w_{ij}}$$
(8)

- 283 Throughout this study, GWPCA and GW correlations use functions (or adapted
- functions) from the GWmodel R package (Gollini et al. 2015).

- 286 **Results**
- 287 The global PCA

288	In order to under	stand any GW mo	del output, it is a	always important to	fit the
-----	-------------------	-----------------	---------------------	---------------------	---------

- usual global model for context. In this respect, a PCA was conducted on the 23
- temporal variables describing goat populations. Table 1 shows that the first two PCs
- have eigenvalues greater than unity, and for these two PCs, the cumulative PTV
- 292 exceeds 90%. This implicitly assumes a uniform temporal trend in goat population
- across all 341 sums over the 23-year period. The PCA loadings given in Table 2
- indicate that the five of the most influential years are 1996-1999 and 2001 for PC1;
- 295 1990-1991 and 2010-2012 for PC2.

296

297 <u>A GW correlation analysis on the PCA scores and raw data</u>

298	As the component loadings in Table 2 are the (global) correlation coefficients
299	between the component scores and the raw data, a GW correlation analysis on this
300	data can be used to investigate whether the correlations change across study region.
301	Figure 3 maps the GW correlations between the PCA scores data for PC1 to PC3,
302	and the raw data from the three most influential years. The GW correlations were
303	found using a user-specified bandwidth of 10% (i.e. each local correlation uses the
304	nearest 34 data pairs). As would be expected, spatial coherence for such correlations
305	is highest for PC1, but diminishes through PC2 to PC3. This suggests that the PCA is
306	missing some spatial structure in the data, and as such, an application of GWPCA is
307	worthwhile. Intuitively, this is expected, as the spatio-temporal trend in goat
308	populations is not expected to be uniformly the same across all of Mongolia (as
309	similarly suggested for observations made above, with respect to Figure 2).
311	GWPCA calibration with dual bandwidth and NCR optimization
312	As outlined above in order to calibrate a GWPCA first the NCR value needs to
312	be user-specified and only then can an optimal GWPCA bandwidth be found via
314	cross-validation. In previous GWPCA studies. NCR is commonly chosen according to

315	a 80% or 90% threshold of the cumulative PTV from the global PCA. Thus in this
316	study, NCR = 1 or 2 would be appropriate (see Table 1). This bandwidth selection
317	approach is far from ideal, as can be seen in Table 3, where different 'optimal'
318	bandwidths (found by the cross-validation procedure) simply correspond to different
319	choices of NCR (in this case, NCR values from 1 to 10). Furthermore, the results
320	suggest a tendency to a global PCA process for the study data, as eight out of ten
321	bandwidths are taken at 341 suggesting a kernel bandwidth that contains all of the
322	soums data. If this is truly the case (see note 1), then there appears no value in
323	applying GWPCA, and the localized analysis should cease at this juncture.
324	However, the choice of bandwidth can be investigated more deeply. This is
325	because the results presented in Table 3 are not directly comparable, as given
326	'optimal' bandwidths correspond to minimized GoF statistics (not shown) where the
327	NCR-specific LOOR data sets have been summarized by their mean. To ensure that
328	the minimized GoF statistics are comparable across different values of NCR, the
329	LOOR data can be summarized instead by their coefficient of variation (CoV) to
330	provide relative (and thus comparable) GoF statistics for each bandwidth and for
331	each NCR value. This leads to a dual optimization approach as shown in Figure 4(i),

332	where the aim to concurrently find the bandwidth and the NCR value that
333	corresponds to minimum GoF (LOOR CoV) value. Again considering only NCR
334	values from 1 to 10, and a clear minimum GoF is reached at 1.296 corresponding to a
335	bandwidth of 247 nearest neighbours and an NCR value of 5. Each individual line in
336	the plot of Fig 4(i) corresponds to a different bandwidth choice, from 5 to 341. This
337	constitutes the first extension to the existing bandwidth selection procedure.
338	A second alternative is to transfer the usual cumulative PTV approach for NCR
339	selection to a local setting. Globally, a user-specified choice of NCR = 1 or 2 is based
340	on the global cumulative PTV scree plot (e.g. Varmuza and Filzmoser (2009)). This
341	approach can be transferred locally using the local cumulative PTV data from each
342	local PCA from a series of GWPCAs. Local cumulative PTV data were calculated
343	from GWPCAs calibrated with bandwidths ranging from 10 to a maximum of 341 and
344	the resultant local scree plots are depicted in Figure 4(ii). Clearly, the local scree plots
345	suggest that NCR = 2 is the point when some of the local cumulative PTV data
346	exceeds a 90% threshold. Given this, NCR = 2 again appears appropriate for a
347	GWPCA calibration. However, the bandwidth is still required, and unlike the existing
348	approach a bandwidth is identified that has the smallest GoF (LOOR mean) value,

349	but crucially also corresponds to a localized cumulative PTV value exceeding 90%
350	(for all NCR = 2). This indicates a relative tight bandwidth of 198 nearest neighbours.
351	Thus in summary, there are three possible bandwidths for GWPCA calibration:
352	(a) 341 (via NCR = 1 or 2); (b) 247 (via NCR = 5); and (c) 198 (via NCR = 2). All three
353	should be considered as entirely valid, but where approach (a), the existing approach,
354	strongly suggests a stationary process with respect to a PCA. Given that approach
355	(a) has drawbacks, not only with respect to NCR/bandwidth specification, but also
356	(indirectly) due to current limitations in the GWPCA code (see note 1), it is dropped in
357	favour of the two newly proposed approaches (b and c) which are both viewed as a
358	methodological advance. In the spirit of spatial exploration, which all GW models are
359	eminently designed for, both approaches were investigated further all of the
360	subsequent GWPCA outputs described below are specified with either: (i) a
361	bandwidth of 247 via a NCR value of 5; or (ii) a bandwidth of 198 via a NCR value of
362	2.
363	

364 PCA versus GWPCA results

365	GWPCA is now applied to account for expected spatial heterogeneity in the
366	annual goat population data during 1990-2012 with: (i) a bandwidth of 247 via a NCR
367	value of 5 (call this 'GWPCA-A'); and (ii) a bandwidth of 198 via a NCR value of 2 (call
368	this 'GWPCA-B'). The GWPCA results are compared with those from global PCA,
369	throughout. To compare GWPCA-A, GWPCA-B, and PCA, only the first two
370	components (PC1 and PC2) from each calibration are considered. Observe that once
371	a bandwidth is defined, local components up until any NCR value (in this case NCR =
372	23) can actually be found and investigated. So in this respect, the NCR values of 2
373	and 5 from the bandwidth selection procedure do not have to pervade the remainder
374	of the analysis (e.g. Harris et al. 2015).
374 375	of the analysis (e.g. Harris et al. 2015).
374375376	of the analysis (e.g. Harris et al. 2015). Scores data
374375376377	of the analysis (e.g. Harris et al. 2015). <u>Scores data</u> PC1 and PC2 scores from GWPCA-A, GWPCA-B, and the global PCA are
 374 375 376 377 378 	of the analysis (e.g. Harris et al. 2015). Scores data PC1 and PC2 scores from GWPCA-A, GWPCA-B, and the global PCA are mapped in Figure 5. Observe that for GWPCA, a full, $n = 341$ valued scores data set
 374 375 376 377 378 379 	of the analysis (e.g. Harris et al. 2015). Scores data PC1 and PC2 scores from GWPCA-A, GWPCA-B, and the global PCA are mapped in Figure 5. Observe that for GWPCA, a full, $n = 341$ valued scores data set is available at each location, for each component. Thus, the GWPCA scores data that
 374 375 376 377 378 379 380 	of the analysis (e.g. Harris et al. 2015). Scores data PC1 and PC2 scores from GWPCA-A, GWPCA-B, and the global PCA are mapped in Figure 5. Observe that for GWPCA, a full, <i>n</i> = 341 valued scores data set is available at each location, for each component. Thus, the GWPCA scores data that are mapped are only those that fully correspond to their location. PC1 scores of

382	and $r = 0.742$, respectively. PC2 scores of GWPCA-A and GWPCA-B correlate with
383	those from the global PCA, with correlations of $r = 0.943$ and $r = 0.872$,
384	respectively. These moderate to strong correlations simply reflect the relatively large
385	bandwidth sizes used, and such correlations would tend to unity as the bandwidth
386	increases. However these global correlations hide spatial detail, where the study's
387	aim is to see where the local spatial structure in the temporally-changing goat
388	population (via the GWPCA outputs) differs to that found globally (via the PCA
389	outputs). In this respect, the clearest regional differences in both the PC1 and PC2
390	scores data appear in the north-eastern regions of Mongolia, bordering Russia and
391	also the south-western regions bordering China. Thus the temporal dynamics of goat
392	population change is likely to be clearly different in these regions to that expected
393	nationally.
394	
395	Percentage PTV data
396	Globally, the PTV for PC1, and the cumulative PTV for PC1 and PC2 combined,
397	are 84% and 92%, respectively. This suggests a high correlation amongst the goat
398	population data, year on year, throughout the 23-year period. However, the global

399	PTV values (from PCA) implicitly assume that such relationships are constant across
400	Mongolia - with relatively uniform changes in goat populations everywhere. Mapping
401	the corresponding localized PTV outputs from GWPCA shows where this is the case,
402	and the degree to which it is not (Figure 6).
403	Focusing on the third row only of Figure 6, regionally the temporal trend in goat
404	population change is actually more uniform than that found globally in central
405	northern regions (coloured dark green), where local PTV data are higher. Conversely,
406	the temporal trend in goat population change is actually less uniform than that found
407	globally in western regions (coloured dark pink), where local PTV data is lower.
408	These changes in regional behaviour broadly confirms that observed for the scores
409	data, above. The PTV maps in the first and second rows of in Figure 6 provide detail
410	of the component contribution to the cumulative PTV maps presented in the third row.
411	Presenting the GWPCA outputs for GWPCA-A and GWPCA-B with their different
412	bandwidths in this way re-affirms the findings, and quantifies how non-stationarities
413	can change at different spatial scales.

415 Loadings data

416	In many ways the loadings data from a GWPCA are more difficult to interpret
417	map than the scores and PTV data. In Harris, Brunsdon, and Charlton (2011), three
418	visualizations were proposed, which can only be conducted on a component by
419	component basis: (a) map the 'winning variables' - i.e. those that correspond to
420	largest absolute loading; (b) map the loading sign patterns, e.g. for eight variables,
421	there are 256 possible sign patterns; and (c) map all loadings together using
422	multivariate glyphs, where a spoke's length corresponds to the magnitude of the
423	loading, whilst a spoke's colour corresponds to the sign of the loadings. In this study,
424	the GWPCA loadings data are visualized using the first option. These 'winning year'
425	maps are presented in Figure 7 for PC1 and PC2.
426	The 'winning year' for PC1 for GWPCA-A and GWPCA-B included 15 and 17 of
427	the 23 years being selected. As so many different years 'win', this is viewed as a
428	confirmation of the generally high correlation amongst the goat population data
429	throughout the 23-year period. Differences between a year providing the highest
430	loading or not, are often extremely small. Thus a 'winning year or variable' map tends
431	to provide little useful information when this happens.

432	In this instance, greater insight stems from considering the 'winning year' maps
433	for the next component (PC2). Now far fewer years are represented (3 to 6 of 23) and
434	the dzud years of 2002 and 2010, strongly dominate in two clear regions; the west
435	and south-west, and the east and north, respectively. This suggests that: (i) the dzud
436	of 2002 and the associated goat population decline was more or less pronounced in
437	the west and south-west than elsewhere; and (ii) the dzud of 2010 and the associated
438	goat population decline was more or less pronounced in the east and north than
439	elsewhere. This strongly indicates that the severity of the dzuds in 2002 and 2010
440	varied geographically. Visualizing the annual changes in the PCA and GWPCA
441	loadings from PC1 and PC2 for GWPCA-A and GWPCA-B (Figure 8) shows the
442	effects of the 2002 and 2010 dzud years on the loadings, with clear inflection points
443	for both GWPCA fits.
444	Figure 9 displays the loadings maps for PC2 of GWPCA-A only, for 2001-3, and
445	2009-11, covering the two dzuds periods. These maps suggest that the 2001-2 dzud
446	and the 2009-10 dzud have different regional and temporal characteristics. The
447	impact of the 2001-2 dzud starts from central/western regions in 2001 and increases
448	in western regions in 2002. The impact of the 2009-10 dzud appears first in western

449	regions in 20	009 and then	in eastern	regions ir	า 2010.	This is in	n contrast to the
	0						

- 450 reporting of dzuds and the devastating damage to livestock populations, which is
- 451 typically referred to as impacting Mongolia as a whole, and uniformly.
- 452

453 **Discussion and conclusions**

454	Understanding the spatio-temporal characteristics of livestock population
455	change is essential for environmental and disaster responses, to sustainably manage
456	grassland environments and to minimize the impact of the dzud in Mongolia.
457	Unfortunately, such analyses are rarely conducted, as they require skilled statistical
458	expertise (Cheng et al. 2014; Shekhar et al. 2015). This study undertook such an
459	analysis for annual goat population data, which are known to have increased over the
460	study period, with abrupt declines following dzud events. The application of a
461	geographically weighted PCA (GWPCA), a spatial version of PCA, to the temporally
462	indexed goat data allowed an understanding of the spatial and temporal variations in
463	goat population change across Mongolia over the 23 year study period.
464	Mapping GWPCA scores data allowed regional differences to be observed,
465	particularly in the north-eastern regions of Mongolia, bordering Russia and also

466	south-western regions bordering China. Thus the temporal dynamics of goat
467	population change is likely to be different in these regions to that expected nationally.
468	By mapping GWPCA variance proportion data, the temporal trend in goat population
469	change was found to be more uniform, to that found globally, in central northern
470	regions, whilst less uniform (to that found globally) in western regions. Visualizing the
471	'winning year' maps for the GWPCA loadings, suggests that the dzud of 2002 and the
472	associated goat population decline was more or less pronounced in the west and
473	south-west regions and that the dzud of 2010 and the associated goat population
474	decline was more or less pronounced in the east and north regions. This, in turn,
475	suggests that the dzuds of 2002 and 2010 varied geographically in their severity.
476	It has been reported that 7.7 million livestock died as a result of the 2001-2 dzud
477	and 9.7 million died as a result of the 2009-10 dzud (UNDP and NEMA 2010). This
478	study helps to re-affirm that regionally-specific dzud preparation and response
479	initiatives are required to support different landscape ecological characteristics and
480	management strategies (Fernández-Giménez et al. 2015). This study did not
481	consider change in livestock-type over space and time, and in this respect, future
482	research will seek to explore the full data set of goats, sheep, cattle, camel and horse.

483	Such an analysis could be achieved via extending GWPCA to a full temporally and
484	geographically weighted PCA form.
485	This study's application of GWPCA to temporally indexed spatial data is novel
486	and adds to a growing portfolio of GWPCA uses, not only for spatial exploration
487	(Lloyd 2010; Harris, Brunsdon, and Charlton 2011; Harris et al. 2015), but also for
488	spatial anomaly detection (Harris, Brunsdon, et al. 2014; Harris et al. 2015), spatial
489	network re-design (Harris, Clarke, et al. 2014), and spatial classification (Harris et al.
490	2015; Comber, Harris, and Tsutsumida 2016). Furthermore, this study usefully
491	extended the GWPCA methodology itself to simultaneously optimise the number of
492	components to retain and the kernel weighting bandwidth. This is considered an
493	important advance, and should be adopted in all subsequence GWPCA studies.
494	
495	Notes
496	¹ Observe that the current version of the GWmodel R package does not allow
497	adaptive bandwidth values greater than the sample size to be optimally selected.
498	Thus an adaptive bandwidth that is equal to the sample size only directly indicates a
499	stationary spatial process provided a box-car kernel is specified. For any

- 500 distance-decay kernel, such as the bi-square, an adaptive bandwidth that is equal to
- 501 the sample size can only suggest or allude to a stationary spatial process.
- 502

503 Acknowledgements

- 504 The authors would like to thank the National Statistics Office of Mongolia for providing
- 505 livestock population data. We appreciate Dr. Izuru Saizen and Dr. Atsushi Otomo to
- 506 support this work. This work was supported by Sinfonica Statistical GIS Research
- 507 Grants, the RIHN (project number D-04), JSPS KAKENHI Grant Number 15K21086,
- 508 grants for young researchers in GSGES KU, and KU SPIRITS project. For Paul
- 509 Harris, a UK Biotechnology and Biological Sciences Research Council grant (BBSRC
- 510 BB/J004308/1).
- 511

512 **References**

- 513 Cheng, T., J. Haworth, B. Anbaroglu, G. Tanaksaranond, and J. Wang. 2014.
- 514 Spatiotemporal Data Mining. In Handbook of Regional Science, eds. M. M. Fischer
- and P. Nijkamp, 1173–1193. Berlin, Heidelberg: Springer Berlin Heidelberg
- 516 http://link.springer.com/10.1007/978-3-642-23430-9_68.

517	Comber, A. J., P. Harris, and N. Tsutsumida. 2016. Improving land cover
518	classification using input variables derived from a geographically weighted principal
519	components analysis. ISPRS Journal of Photogrammetry and Remote Sensing
520	119:347–360. http://linkinghub.elsevier.com/retrieve/pii/S0924271616301290.
521	Demšar, U., P. Harris, C. Brunsdon, A. S. Fotheringham, and S. McLoone. 2013.
522	Principal Component Analysis on Spatial Data: An Overview. Annals of the
523	Association of American Geographers 103 (1):106–128.
524	http://www.tandfonline.com/doi/abs/10.1080/00045608.2012.689236.
525	Felipe-Sotelo, M., L. Gustems, I. Hernàndez, M. Terrado, and R. Tauler. 2006.
526	Investigation of geographical and temporal distribution of tropospheric ozone in
527	Catalonia (North-East Spain) during the period 2000-2004 using multivariate data
528	analysis methods. Atmospheric Environment 40 (38):7421–7436.
529	Fernandez-Gimenez, M. E. 2006. Land Use and Land Tenure in Mongolia : A Brief
530	History and Current Issues. In Rangelands of Central Asia: Proceedings of the
531	Conference on Transformations, Issues, and Future Challenges, eds. D. J. Bedunah,
532	E. D. McArthur, and M. E. Fernandez-Gimenez, 30–36. Salt Lake City: U.S.
533	Department of Agriculture, Forest Service, Rocky Mountain Research Station.

- 534 Fernandez-Gimenez, M. E., B. Batbuyan, and B. Baival. 2012. Lessons from the
- 535 Dzud: Adaptation and Resilience in Mongolian Pastoral Social-Ecological Systems.
- 536 The world bank.
- 537 http://www.worldbank.org/en/news/feature/2012/11/06/lessons-from-dzud.
- 538 Fernández-Giménez, M. E., B. Batkhishig, and B. Batbuyan. 2012. Cross-boundary
- and cross-level dynamics increase vulnerability to severe winter disasters (dzud) in
- 540 Mongolia. *Global Environmental Change* 22 (4):836–851.
- 541 http://linkinghub.elsevier.com/retrieve/pii/S0959378012000684.
- 542 Fernández-Giménez, M. E., B. Batkhishig, B. Batbuyan, and T. Ulambayar. 2015.
- 543 Lessons from the Dzud: Community-Based Rangeland Management Increases the
- 544 Adaptive Capacity of Mongolian Herders to Winter Disasters. *World Development*
- 545 **68:48–65**.
- 546 Fotheringham, A. S., C. Brunsdon, and M. Charlton. 2002. Geographically weighted
- 547 *regression: the analysis of spatially varying relationships*. Chichester: Wiley.
- 548 Geist, H. J., and E. F. Lambin. 2004. Dynamic Causal Patterns of Desertification.
- 549 *BioScience* 54 (9):817.
- 550 https://academic.oup.com/bioscience/article-lookup/doi/10.1641/0006-3568(2004)05

- 551 4[0817:DCPOD]2.0.CO;2.
- 552 Gollini, I., B. Lu, M. Charlton, C. Brunsdon, and P. Harris. 2015. GWmodel: An R
- 553 Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models.
- 554 Journal of Statistical Software 63 (17):85–101.
- 555 http://www.tandfonline.com/doi/abs/10.1080/10095020.2014.917453.
- 556 Harris, P., and C. Brunsdon. 2010. Exploring spatial variation and spatial
- 557 relationships in a freshwater acidification critical load data set for Great Britain using
- 558 geographically weighted summary statistics. *Computers & Geosciences* 36 (1):54–70.
- 559 http://dx.doi.org/10.1016/j.cageo.2009.04.012.
- 560 Harris, P., C. Brunsdon, and M. Charlton. 2011. Geographically weighted principal
- 561 components analysis. International Journal of Geographical Information Science 25
- 562 (10):1717–1736.
- 563 http://www.tandfonline.com/doi/abs/10.1080/13658816.2011.554838.
- 564 Harris, P., C. Brunsdon, M. Charlton, S. Juggins, and A. Clarke. 2014. Multivariate
- 565 Spatial Outlier Detection Using Robust Geographically Weighted Methods.
- 566 *Mathematical Geosciences* 46 (1):1–31.
- 567 http://link.springer.com/10.1007/s11004-013-9491-0.

- 568 Harris, P., A. Clarke, S. Juggins, C. Brunsdon, and M. Charlton. 2014. Geographically
- 569 weighted methods and their use in network re-designs for environmental monitoring.
- 570 Stochastic Environmental Research and Risk Assessment 28 (7):1869–1887.
- 571 http://link.springer.com/10.1007/s00477-014-0851-1.
- 572 ——. 2015. Enhancements to a Geographically Weighted Principal Component
- 573 Analysis in the Context of an Application to an Environmental Data Set. *Geographical*
- 574 Analysis 47 (2):146–172. http://doi.wiley.com/10.1111/gean.12048.
- 575 Huang, B., B. Wu, and M. Barry. 2010. Geographically and temporally weighted
- 576 regression for modeling spatio-temporal variation in house prices eds. M. M. Fischer
- and P. Nijkamp. International Journal of Geographical Information Science 24
- 578 (3):383–401. http://link.springer.com/10.1007/978-3-642-23430-9 (last accessed 11
- 579 July 2014).
- 580 Lasaponara, R. 2006. On the use of principal component analysis (PCA) for
- 581 evaluating interannual vegetation anomalies from SPOT/VEGETATION NDVI
- 582 temporal series. *Ecological Modelling* 194 (4):429–434.
- 583 http://linkinghub.elsevier.com/retrieve/pii/S0304380005005454 (last accessed 5 April
- 584 **2012**).

- 585 Lloyd, C. D. 2010. Analysing population characteristics using geographically
- 586 weighted principal components analysis: A case study of Northern Ireland in 2001.
- 587 Computers, Environment and Urban Systems 34 (5):389–399.
- 588 http://dx.doi.org/10.1016/j.compenvurbsys.2010.02.005.
- 589 Lu, B., P. Harris, M. Charlton, and C. Brunsdon. 2014. The GW model R package:
- 590 further topics for exploring spatial heterogeneity using geographically weighted
- 591 models. *Geo-spatial Information Science* 17 (2):85–101.
- 592 http://www.tandfonline.com/doi/abs/10.1080/10095020.2014.917453.
- 593 Millennium Ecosystem Assessment. 2005. Ecosystems and Human Well-being:
- 594 Desertification Synthesis. Washington, D.C.
- 595 http://library.wur.nl/WebQuery/clc/1785684.
- 596 Obled, C., and J. D. Creutin. 1986. Some Developments in the Use of Empirical
- 597 Orthogonal Functions for Mapping Meteorological Fields. Journal of Climate and
- 598 Applied Meteorology 25 (9):1189–1204.
- 599 http://journals.ametsoc.org/doi/abs/10.1175/1520-0450%281986%29025%3C1189%
- 600 3ASDITUO%3E2.0.CO%3B2.
- 601 Research Institute for Humanity and Nature. 2012. Collapse and restoration of

- 602 ecosystem networks with human activity. Kyoto.
- 603 Saizen, I., A. Maekawa, and N. Yamamura. 2010. Spatial analysis of time-series
- 604 changes in livestock distribution by detection of local spatial associations in Mongolia.
- 605 Applied Geography 30 (4):639–649.
- 606 http://linkinghub.elsevier.com/retrieve/pii/S0143622810000032 (last accessed 6
- 607 August 2011).
- 608 Shekhar, S., Z. Jiang, R. Ali, E. Eftelioglu, X. Tang, V. Gunturi, and X. Zhou. 2015.
- 609 Spatiotemporal Data Mining: A Computational Perspective. ISPRS International
- 610 Journal of Geo-Information 4 (4):2306–2338.
- 611 http://www.mdpi.com/2220-9964/4/4/2306/.
- 612 Stacklies, W., H. Redestig, M. Scholz, D. Walther, and J. Selbig. 2007. pcaMethods a
- bioconductor package providing PCA methods for incomplete data. *Bioinformatics* 23
- 614 **(9)**:1164–1167.
- 615 https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bt
- 616 m069.
- 617 Suttie, J. M., S. G. Reynolds, and C. Batello. 2005. Grasslands of the world eds. J. .
- 618 Suttie, S. G. Reynolds, and C. Batello. Rome: Food and Agriculture Organization.

- 619 Togtokh, C. 2008. Climate change adaptation strategies for pastoral communities of
- 620 Mongolia's central mountainous region. IHDP Update :53-58.
- 621 Tsutsumida, N., and I. Saizen. 2014. Internal Regional Migration Analysis and
- 622 Modeling of Population Concentration for Ulaanbaatar, Mongolia. Papers on
- 623 Environmental Information Science 28:25–30.
- 624 UNDP and NEMA. 2010. Dzud national report 2009-2010.
- 625 Varmuza, K., and P. Filzmoser. 2009. Introduction to multivariate statistical analysis Δ
- *in chemometrics*. Taylor & Francis. 626
- 627
- 628

629 Author professional/contact information

|--|

- 631 Global Environmental Studies at Kyoto University, Yoshida-honmachi, Sakyo, Kyoto,
- JP 606-8501. E-mail: naru@kais.kyoto-u.ac.jp. His research interests include the
- 633 application of geographical information in the field of environmental studies.
- 634 PAUL HARRIS is a Senior Research Scientist at Rothamsted Research, North Wyke,
- 635 Okehampton, Devon, UK EX20 2SB, Email: paul.harris@rothamsted.ac.uk. His
- 636 research focuses on the development and application of spatial statistics to
- 637 agricultural, ecological and environmental data.
- 638 ALEXIS COMBER holds a chair in Spatial Data Analytics in the School of Geography
- at University of Leeds, Leeds, UK LS2 9JT, Email: a.comber@leeds.ac.uk. His
- research develops methods to integrate and analyse high volumes of spatial data to
- 641 uncover hidden patterns with applications in environmental, socio-economic and
- 642 public health areas.
- 643

644

647 Figure captions

Figure 1. Change in livestock populations across Mongolia during 1990–2012.

- Figure 2. Correlation matrix of annual goat population data (1990-2012), with the plot
- 651 size proportional to the correlation.
- 652
- Figure 3. GW correlation maps between PC1-3 scores of the global PCA and the raw
- data of the corresponding most influential years (see also Table 2).
- 655
- 656 Figure 4. GWPCA calibration: (i) GoF (via LOOR CoV) versus NCR values; and (ii)
- 657 scree plots for local cumulative PTVs versus NCR values. The grey lines have a
- transparency term added to them. In (i) they represent bandwidths in a range of 5 to
- 659 341 and (ii) in a range of 10 to 341. The black line in (i) represents the optimal
- bandwidth of 247 with NCR = 5, at the minimum GoF. Black line in (ii) represents the
- 661 90% threshold of the cumulative PTV.
- 662

- 663 Figure 5. PC1 and PC2 scores maps for GWPCA-A (top row), GWPCA-B (middle
- row), and the global PCA (bottom row).
- 665
- 666 Figure 6. GWPCA-A and GWPCA-B PTV maps for PC1 (top row), PC2 (middle row)
- and PC1/PC2 combined (bottom row).
- 668
- 669 Figure 7. GWPCA-A and GWPCA-B 'winning year' maps (by highest loadings) for
- 670 PC1 and PC2. Years when dzud occurred are highlighted in grey and black.
- 671
- Figure 8. GWPCA-A and GWPCA-B loadings for PC1 and PC2, displayed over the 23
- 673 study years. The grey lines have a transparency term and represent the loading score
- at every soum. The black lines represent the loadings from the global PCA. Dark grey
- rectangles represent dzud periods 2001-2 and 2009-10.
- 676
- 677 Figure 9. Maps for PC2 loadings from GWPCA-A over dzud periods of 2001-3 (top
- 678 row) and 2009-11 (bottom row).
- 679

 \circ Camel \blacktriangle Horse \Box Cattle \bullet Goat \times Sheep

Change in livestock populations across Mongolia during 1990–2012. Figure 1 152x101mm (300 x 300 DPI)

Correlation matrix of annual goat population data (1990-2012), with the plot size proportional to the correlation. Figure 2

228x228mm (300 x 300 DPI)

GW correlation maps between PC1-3 scores of the global PCA and the raw data of the corresponding most influential years (see also Table 2). Figure 3 127x105mm (600 x 600 DPI)

GWPCA calibration: (i) GoF (via LOOR CoV) versus NCR values; and (ii) scree plots for local cumulative PTVs versus NCR values. The grey lines have a transparency term added to them. In (i) they represent bandwidths in a range of 5 to 341 and (ii) in a range of 10 to 341. The black line in (i) represents the optimal bandwidth of 247 with NCR = 5, at the minimum GoF. Black line in (ii) represents the 90% threshold of the cumulative PTV. Figure 4

76x38mm (600 x 600 DPI)

PC1 and PC2 scores maps for GWPCA-A (top row), GWPCA-B (middle row), and the global PCA (bottom row). Figure 5 127x158mm (600 x 600 DPI)

GWPCA-A and GWPCA-B PTV maps for PC1 (top row), PC2 (middle row) and PC1/PC2 combined (bottom row). Figure 6 101x67mm (600 x 600 DPI)

GWPCA-A and GWPCA-B 'winning year' maps (by highest loadings) for PC1 and PC2. Years when dzud occurred are highlighted in grey and black. Figure 7 152x101mm (300 x 300 DPI)

GWPCA-A and GWPCA-B loadings for PC1 and PC2, displayed over the 23 study years. The grey lines have a transparency term and represent the loading score at every soum. The black lines represent the loadings from the global PCA. Dark grey rectangles represent dzud periods 2001-2 and 2009-10. Figure 8

101x67mm (300 x 300 DPI)

Maps for PC2 loadings from GWPCA-A over dzud periods of 2001-3 (top row) and 2009-11 (bottom row). Figure 9 76x38mm (600 x 600 DPI)

Tables

Table 1. Eigenvalues, PTV, and cumulative PTV for the global PCA. Only the first 5 PCs are shown.

	PC1	PC2	PC3	PC4	PC5
Eigenvalues	4.39	1.36	0.90	0.56	0.46
PTV (%)	83.86	8.09	3.56	1.37	0.91
Cumulative PTV (%)	83.86	91.95	95.51	96.88	97.78

	PC1	PC2	PC3	PC4	PC5
1st	1999 (-0.220)	2010 (0.371)	2002 (-0.446)	2008 (0.446)	1990 (0.495)
2nd	2001 (-0.218)	2011 (0.334)	2003 (-0.388)	2007 (0.396)	2000 (-0.383)
3rd	1996 (-0.217)	2012 (0.283)	2010 (0.352)	2002 (-0.354)	1999 (-0.346)
4th	1998 (-0.217)	1991 (-0.237)	2004 (-0.341)	2006 (0.351)	2001 (-0.337)
5th	1997 (-0.216)	1990 (-0.234)	2012 (0.371)	2009 (0.269)	1991 (0.327)
		~			

Table 2. Loadings for the first five PCs of the global PCA ordered by contribution.

Table 3. GWPCA calibration: optimum adaptive bandwidths for different values of										
NCR.										
NCR	1 2	3	4	5	6	7	8	9	10	
Bandwidth 3	341 34	1 284	277	341	341	341	341	341	341	