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An integrated probabilistic framework

for robot perception, learning and memory

Uriel Martinez-Hernandez1, Andreas Damianou2, Daniel Camilleri1

Luke W. Boorman1, Neil Lawrence2 and Tony J. Prescott1

Abstract— Learning and perception from multiple sensory
modalities are crucial processes for the development of intelli-
gent systems capable of interacting with humans. We present
an integrated probabilistic framework for perception, learning
and memory in robotics. The core component of our framework
is a computational Synthetic Autobiographical Memory model
which uses Gaussian Processes as a foundation and mimics the
functionalities of human memory. Our memory model, that
operates via a principled Bayesian probabilistic framework, is
capable of receiving and integrating data flows from multiple
sensory modalities, which are combined to improve percep-
tion and understanding of the surrounding environment. To
validate the model, we implemented our framework in the
iCub humanoid robotic, which was able to learn and recognise
human faces, arm movements and touch gestures through
interaction with people. Results demonstrate the flexibility of
our method to successfully integrate multiple sensory inputs,
for accurate learning and recognition. Thus, our integrated
probabilistic framework offers a promising core technology for
robust intelligent systems, which are able to perceive, learn and
interact with people and their environments.

I. INTRODUCTION

The aim of social robotics is to better integrate robots into

society with the capability to autonomously communicate,

learn and assist people. Learning through interaction is

critical to social robotics as is the ability to remember past

interactions and to use information from what has happened

before to make sense of the here and now. The comprehen-

sive integration of data flows, provided by multiple sensory

modalities, arising from the environment is an essential

component in the design of robust perception and learning

algorithms [1]. Despite the advances in robot technology

and artificial intelligence methods, these requirements still

constitute a great challenge.

Biologically inspired models offer an approach for mod-

elling aspects of the human brain, such as information pro-

cessing and storage. Cognitive architectures with a learning

by observation approach have been implemented to perform

assembly tasks and games [2],[3]. These approaches, used in
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Fig. 1. Integrated probabilistic framework for robot perception, learning
and memory. Our framework, based on Synthetic Autobiographical Memory
model, allows robots to perceive and learn from multiple sensory inputs.

passive mode, do not allow the robotic systems to actively

perceive and learn from multiple sources of information.

Other approaches have proposed cognitive frameworks that

mimic features associated to human memory for attention,

learning and natural language processing [4], [5], [6]. The

main limitations of these works are their inability to handle

multiple sensing modalities, adaptability and lack of memory

functions, e.g., compression, chunking and consolidation.

In this work, we propose an integrated probabilistic frame-

work for robot perception, learning and memory processes.

The core of our method is a computational Synthetic Au-

tobiographical Memory (SAM) model, that is analogous to

human autobiographical memory and mimics compression,

chunking and consolidation functions. The key component

of our SAM framework is based on a family of Bayesian

latent variable models collectively referred to as a Deep

Gaussian process (DGP) [7], [8], [9]. The DGP offers

a probabilistic framework for modelling complex data in

(un/semi)supervised mode, which has been used as a plat-

form for perception and learning [10], [11].

Perception and learning from multiple sensory modalities,

e.g., vision, touch and hearing, are processes also offered by

our framework by the use of input driver modules. These

modules prepare the sensory information in the appropriate

format to be understandable by the SAM model. Driver mod-

ules are also used to handle the output from our framework.

This modular approach allows for a robust, adaptable and

scalable probabilistic framework, that can be implemented

in the context of biomimetic layered control architectures

for robot social cognition [12].



We implemented our probabilistic framework in the iCub

humanoid robot. Our method was validated through percep-

tion and learning processes with three human-robot inter-

action experiments: 1) face recognition, 2) arm movement-

based action recognition and 3) touch gesture recognition.

For these tasks, vision and touch datasets from human partic-

ipants, interacting with the iCub, were collected for training

and testing our method in off-line and real-time modes

respectively. Results show the ability of our method for inte-

gration of sensory data, adaptability and accurate perception

and learning during human-robot interaction. Furthermore,

the principled handling of uncertainty in the perception and

prediction stages (through the Bayesian probabilistic formu-

lation) constitutes a promising safety and robust mechanism

for real-world robotic applications.

Probabilistic frameworks for perception, learning and

memory, inspired by biological systems, offer a coherent path

to deploy safe, robust and intelligent systems into society.

In this sense, our computational method inspired by human

memory, reflects these benefits that are suitable for human-

robot interaction and social robotics.

II. METHODS

A. robotic platform

We used the iCub humanoid robot for the implementation

of our integrated probabilistic framework. The iCub is one

of the most advanced and open source platforms developed

for investigation of cognitive development and human-robot

interaction [13]. This robot, that resembles a four year old

child, is composed of 53 degrees of freedom and multiple

sensory modalities that permit control of robot movements

modulated by information from its surrounding environment.

The iCub humanoid robot is shown in Figure 1.

Visual data are provided by two RGB cameras with reso-

lution of 640×480 and frame rate of 30fps. These cameras

are mounted in the head of the robot, in positions similar to

where eyes are located on a human face. This configuration,

together with appropriate computer vision algorithms, en-

ables the recognition and tracking of regions of interests from

the scene [14]. Physical and safe interaction of the robot with

its environment is possible with the use of its tactile sensory

system that, built with a capacitive technology, provides

pressure measurements in [0 255] sampled at 50 Hz [15],

[16]. Previous works on intelligent perception and control

have shown that the tactile sensory system of the iCub robot,

located in its torso, arms and hands make it capable for

exploration, recognition and interaction [17], [18], [19].

Two omnidirectional microphones with noise cancellation

feature, from Andrea Electronics, were integrated with the

iCub humanoid robot. These microphones, together with

Kaldi speech recognition toolkit and text-to-speech modules,

allow for verbal communication with humans [20]. This

communication method provides a more natural and friendly

approach for human-robot interaction.
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Fig. 2. Integrated probabilistic framework for perception, learning and
memory. A Synthetic Autobiographical Memory (SAM) model is the core
of our method. Sensory data, from multiple modalities, is preprocessed by
driver modules. Knowledge acquired is store in a Long-Term Memory.

B. Integrated probabilistic framework

We propose an integrated probabilistic framework that

interfaces with a robotic platform to perform sensation, per-

ception, learning and memory processing. It has been shown

that these cognitive processes are highly integrated and

essential for behaviour control of biological systems [21].

In our framework, integration is achieved by using the same

memory system for learning (storing and recalling) events

from the different modalities.

The core component of the framework implements a com-

putational SAM model, that analogously to human autobio-

graphical memory, offers intelligent perception and learning

functions. In more detail, the modules that compose our in-

tegrated probabilistic framework are shown in Figure 2. The

incoming data flow from the multiple modalities and output

actions are handled by the drivers, which are responsible

for data preprocessing. Learned events are consolidated in a

long-term memory (LTM) that, developed with a PostgreSQL

database, make this information available for subsequent

human-robot interaction tasks [22]. The following sections

will describe in detail our probabilistic framework.

1) Synthetic autobiographical memory: Our SAM model

implements various human memory functionalities such as

chunking, compression and consolidation. This approach is

inspired by previous studies on hippocampal memory models

for navigation in simulated environments [10], [23]. The

SAM model is capable to process data flows from multiple

sensory modalities, and chunk them into episodes based on

the detection of a new event, to improve the understanding

of the changing surrounding environment.

Our model takes advantage of the Gaussian process latent

variable approach (DGP), which provides a robust probabilis-

tic framework for learning and perception by modelling data

at different levels of abstraction [8], [11]. The model repre-

sents each sensory stream as a collection of random variables

Y = {yn}Nn=1 where yn denotes the n−th observed instanti-



(a) Face driver (b) Action driver (c) Touch driver

Fig. 3. Driver modules developed for preprocessing of sensory data from multiple modalities, e.g., vision and touch, and sent them to the SAM model.
(a) Detection and segmentation of faces. (b) Detection and segmentation of arms for action recognition. (c) Processing of tactile data for recognition of
four touch gesture; (top-left) ‘hard’, (top-right) ‘soft’, (bottom-left) ‘caress’, (bottom-right) ‘pinch’.

ation. Each data-point yn is represented by D features. Real-

world perceptual data are very noisy and potentially very

high-dimensional, such as raw video signals. To cope with

this kind of data, the DGP assumes a simpler, latent, low-

dimensional (compression) generating space X ∈ ℜN×Q

which non-linearly maps to each observation space [24]. The

probabilistic construction then defines a density for p(Y|X)
and the learning objective is to learn the posterior for the

latent space p(X|Y) as well as the mapping f : X 7→ Y.

The generating procedure takes the form:

yn = f(xn) + ǫn, where ǫn ∼ N (0, I) (1)

xn ∼ N (0, I) (2)

where we assume a Gaussian process prior [25] for f , i.e.

f ∼ GP and p(F|X) ∼ N . We denoted by F = {f(xn)}Nn=1

the instantiations of the function f corresponding to ob-

served data. Notice that we have also assumed normally

distributed noise which is corrupting our observations, so

that p(Y|F) ∼ N . By integrating over f one can obtain the

desired likelihood density p(Y|X). The posterior density of

the latent space is found through Bayes’ rule: p(X|Y) =
p(Y|X)p(X)∫
p(Y|X)p(X)dX

. The prior latent distribution required in

the Bayes’ rule can be a fairly uninformative prior (e.g.

as in eq. (2)). Alternatively, the DGP framework allows

us to use another Gaussian process as a latent prior, to

increase expressiveness. This results in a nested definition

of the generative model, where equation (2) is now replaced

with xn = g(zn), g ∼ GP . Although we described the

construction for a two-layer DGP, this nested definition

can be recursively applied to obtain a deeper model. The

motivation for this construction is that deep architectures are

able to capture richer statistical relationships in the data by

learning more and more abstraction in each latent layer [26].

The manifestation of functionality analogous to memory is

attributed to two elements of the DGP SAM core: firstly, the

latent space X which compresses the observed signal into

a non-linear manifold of, typically, reduced dimensionality

(Q ≪ D). Secondly, the inclusion of M anchors U ∈ ℜM×D

which are optimized to further compress the signal into a

smaller set of variables (M ≪ N ) by being sufficient statis-

tics for the Gaussian process mapping function: p(F|X) =

∫
p(F|U,X)p(U)dU. These anchor points are also referred

to as “inducing points” [27] and their role in the memory

model is further explained in [10].

Generation of ‘fantasy’ data, e.g., imagination of novel

faces and touch sensations, is also a feature provided by our

probabilistic framework. This is implemented by sampling

new latent points X∗ and projecting to the observation space

through the Gaussian process mapping. This feature offers

a tremendous potential for the development of intelligent

systems capable of ‘imagining’ new events, using data stored

in memory as humans do. Another advantage stemming from

this feature is that it renders the compressed robotic memory

fully interactive, rather than being a ‘black box’.

C. Vision sensing

Vision allows robots to visually explore their environment.

Here, vision is used for human face and action recognition.

1) Face recognition: Detection of humans in front of the

robot is needed to initiate the human-robot interaction. For

that reason, the SAM model performs both face recognition

and face tracking processes using data from the iCub eyes.

Before sending the sensory data to the SAM model, the

vision driver shown in Figure 2 performs the following pro-

cesses using OpenCV: face detection with the Haar Cascade

classifier, background subtraction and image resize. This

driver is also responsible for the real-time tracking of human

faces, which provides a more natural human-robot interaction

process and aids face recognition by framing the face within

the image area. Figure 3a shows output examples of faces

preprocesses and ready for the SAM model.

Preprocessed faces are sent to the SAM model which can

be configured for either learning or recognition mode. In

learning mode, a model from the set of faces is generated and

stored in the LTM. In recognition mode, the test input faces

are compared to the already learned faces in the memory (i.e.

compressed) space. The process of receiving vision data for

learning and recognition tasks is depicted in Figure 4a.

2) Action recognition: Recognition of human actions,

based on arm movements, allows the robot to reduce am-

biguity and have a better understanding during a human-

robot interaction. The action driver, shown in Figure 2, is



(a) (b)
Fig. 4. (a) Integrated probabilistic framework implemented in the iCub humanoid robot for perception, learning and memory processes. The robot receives
stimuli from multiple sensory modalities through the interaction with humans and its surrounding environment. Sensory data are analysed by the SAM
model and resultant actions are sent back for robot control. (b) Memory inspector module that allows to observe the current state of the SAM model. Thus,
it is possible to know what human face is being remembered or ‘imagined’ by the robot.

responsible for detection of human arms and their move-

ments captured by the iCub eyes. This driver uses a colour-

based filter for detection and segmentation of human arms.

Changes in x−, y−, and z−positions of human arms are

used to detect their movements. Here, we defined five human

actions: waving, lift up, put down, push and pull. Figure 3b

shows examples of human actions with our SAM model.

Then, the action driver sends the sequence of processed

actions (arm movements) to our probabilistic framework,

which allows the iCub to learn and recognise different actions

through the observation of human participants.

D. Touch sensing

Touch is an important sensing modality that, together with

intelligent perception and control methods, allows robots

to safely and autonomously explore and build a physical

representation of their surrounding environment [28], [29].

For that reason, we developed a touch driver for handling

tactile data and send them to our probabilistic framework

for learning and recognition of touch gestures (Figure 2).

This driver captures the raw pressure measurements from

the tactile sensors of the iCub based on a human-robot

interaction. Tactile interactions are detected and segmented

into contact events, using a thresholding approach configured

with the minimum pressure detected by the skin of the iCub.

Here, we used four types of tactile gestures, labelled as

“hard”, “soft”, “caress” and “pinch”, based on the pressure

value and duration of touch employed by humans on the

iCub humanoid robot. Examples of these tactile gestures are

shown in the Graphical User Interface (GUI) in Figure 3c.

The output from the touch driver is sent to our SAM model

for learning and recognition of touch gestures. In learning

mode, touch gesture models are generated by our framework

and stored in the LTM. In recognition mode, the data from

touch gestures are compared with previously learned models,

obtaining the most probable label for the applied touch.

E. Memory inspector

We have implemented a memory inspector module in our

integrated probabilistic framework. This module is aimed

at visually displaying the content of the robot memory, to

observe what the robot is ‘imagining’ or ‘remembering’ at

a specific time during a human-robot interaction. This func-

tionality highlights the advantage of the generative Bayesian

formulation upon which the SAM core is built. Currently,

the memory inspector is capable of describing a memory

and creating a decomposed representation of an action and

agent, displaying them within a simulation environment,

which mimics a memory playback. Figure 4b shows an

example of a ‘fantasy’ face, remembered by the SAM model

and displayed by the memory inspector, within the virtual

environment embodied by a virtual agent. Generation of

human arm movements and touch gestures are also features

to be included in the virtual agent in future work.

III. RESULTS

Validation of our integrated probabilistic framework was

based on experiments for learning and recognition of faces,

arm movements and touch gestures. These experiments were

performed in real-time through human-robot interaction.

To train our proposed framework we collected multiple

datasets from vision and touch sensing. Visual data were

collected for the detection of faces and arms from three

human participants located in front of the iCub humanoid

robot. Faces and arm movements at different orientations and

positions inside the visual scene of the robot were captured

to improve the learning process. Tactile data were collected

by applying multiple touch gestures to the arms of the iCub

humanoid robot by human participants. The sensory data

were processed by their corresponding drivers and sent to

the SAM model, initially configured in learning mode, to

build models for faces, actions and touch, and store them

in the LTM built with a PostgreSQL database. Figure 5

shows an example of the faces memory model built from

the training data. Real-time experiments, described in the

following sections, were performed to test our probabilistic

framework both quantitatively (accuracy in recognition) and

qualitatively (functional properties of the framework, seam-

less embodiment and interaction with the iCub robot).

A. Multisensory human-robot interaction

We tested the accuracy and multisensory capability of our

integrated probabilistic framework for learning and recogni-

tion of faces, action and touch gestures. This process was

performed using multisensory data, obtained in real-time

mode, from humans interacting with the iCub robot.
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Fig. 5. Example of memory space for learning and recognition of
human faces. Each point in the 2D point space represents the compressed
representation of the high-dimensional facial image (shown on the right)
perceived during training. The memory space is forming three clusters
(coloured distinctively), which signifies successful learning, since three
different individuals were presented to the robot. The background gray
shading quantifies the uncertainty of recalling a face from each respective
point in the continuous 2D memory space. Recalling a face from in-
between the training points results in the generation of a ‘fantasy’ face,
as demonstrated with the dotted line.

1) Face perception: Real-time recognition of human faces

was performed to validate our integrated probabilistic frame-

work with data from vision sensing. For this experiment,

we asked human participants to stand in front of the robot,

one at the time. The robot was able to detect, segment

and track human faces with the vision driver. Then, the

processed vision data were sent to the SAM model for

face recognition in real-time mode. The recognition accuracy

of our method was tested with faces from various human

participants (see Figure 3a), that were tracked and captured

at various orientations, not only looking straight to the robot.

The confusion matrix in Figure 6a shows the results for

face recognition of three human participants. These results

were obtained from 20 repetitions of the experiment for each

participant, while 150 face samples were used for training

our method. A total accuracy of 99.33% was obtained by our

framework, where individual accuracies of 100%, 98% and

100% were achieved by each participant.

2) Action perception: For testing of human actions, based

on arm movements, we asked human participants to stand in

front of the robot and do the following set of actions: ‘wav-

ing’, ‘push’, ‘pull’, ‘lift up’ and ‘put down’. These actions

were performed multiple times in a random order. Similar to

recognition of faces, data from human actions were captured

with different backgrounds and light conditions to test the

robustness of our probabilistic framework.

The action driver allowed the iCub humanoid robot to

detect, segment and track arms from human participants

in real-time mode. Processed data were sent to the SAM

model, configured in recognition mode. This experiment was

repeated 20 times by each participant. We used 150 samples

for training our method. Results from these experiments

are shown in the confusion matrix of Figure 6b, where a

total accuracy of 98.40% was obtained by our integrated

probabilistic framework. Recognition accuracies of 100%,

97%, 100%, 98% and 97% were achieved for ‘waving’, ‘lift

up’, ‘put down’, ‘push’ and ‘pull’ arm movements.

Fig. 6. Confusion matrices for face, action and touch recognition. (top-
left) Human face recognition from three participants, achieving an accuracy
of 99.0%. (top-right) Five arm-based human actions were performed with
recognition accuracy of 98.0%. (bottom) Four types of touch gesture were
recognised with an accuracy of 95.0%.

3) Touch perception: We tested the capability of the iCub

robot for recognition of different touch gestures during a

human-robot interaction process. For this purpose, multiple

touch gestures labelled as ‘hard’, ‘soft’, ‘caress’ and ‘pinch’,

were applied by human participants on the skin located in

the arms of the iCub humanoid robot.

For each tactile interaction, the touch driver detected the

pressure applied, by human participants, on the skin of the

robot, segmented the contact detected, and sent the prepared

data to the SAM model, configured in recognition mode.

The robot was able to accurately recognise the different

touch gestures and provide a label (learned in training phase).

The test process was repeated 20 times by each participant,

while 150 touch samples were used for training our method.

Recognition accuracy for touch gesture is shown by the

confusion matrix in Figure 6c. High accuracies of 97.0%,

97.0% and 96.0% were achieved by ‘soft’, ‘caress’ and

‘pinch’ gestures respectively, while ‘hard’ gesture achieved

an accuracy of 90.0%. Overall, an accuracy of 95% was

achieved, allowing the robot to accurately perceive different

touch gestures during a human-robot interaction process.

Recognition results from face, action and touch, not only

demonstrate the accuracy and robustness of our integrated

probabilistic framework, but also its ability to process mul-

tisensory data from human-robot interaction in real-time.

IV. CONCLUSION

We have presented an integrated probabilistic framework

for robot perception, learning and memory processes through

the interaction with humans. Our multicomponent framework

offers a robust and scalable approach that integrates multiple

modality information for better learning in robotics.

A biologically inspired computational Synthetic Autobio-

graphical Memory (SAM) model, that implements compres-



sion, chunking and consolidation human memory functional-

ities, was developed as the core of our framework. The SAM

model uses a Bayesian formulation based on a Gaussian

process latent variable framework, which offers intelligent

perception and learning at different level of abstractions.

Integration and processing of vision, touch and hearing

sensing modalities, which are highly unified and essential

for robust perception and learning, are available in our

implemented framework. Scalability of our approach is based

on the implementation of driver modules, which preprocess

and prepare the sensory data in appropriate formats, making

the sensory input a transparent process for the SAM model.

Scalability with regards to handling larger amounts of data

is a promising research direction which we wish to pursue in

the future, and is expected to open up new ways of human-

robot interaction, e.g. learning with millions of video frames.

We used the iCub robot for validation of our integrated

probabilistic framework. For training, we collected multiple

datasets from vision and touch using the eyes and skin of

the robot. For testing our method in real-time mode, human

participants were asked to interact with the robot, performing

different human arm movements and applying different touch

gestures on the skin of the robot. Results showed the ability

of the robot to recognise and ‘imagine’ human faces, arm

movements and touch gestures with high accuracy.

Deployment of intelligent robots capable of perceive, learn

and safely interacting with humans remains a challenge for

scientists and engineers. However, relevant progress in robot

perception and learning achieved by biologically inspired

probabilistic models, like our method proposed in this work,

give a promising route for development and integration of

safe and intelligent robots in society.
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