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Abstract

In this study we propose and verify methods based on the slip-sp8pgni®del (Likhtman,
2005) for predicting the effect of any monodisperse, binary or ternary environment of
topological constraints on the relaxation of the emdnd vector of a linear probe chain. For

this purpose we first validate the ability of the mddedonsistently predict both the viscoelastic
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and dielectric response of monodisperse and binary mixtures of type-A polymers, based on
published experimental data. We also report the synthesis of new binary and ternary
Polybutadiene systemshe measurement of their linear viscoelastic response, and the
prediction of these data by tB&pmodel.We next clarify the relaxation mechanisms of probe
chains in these constraint release (CR) environments by analyzing d‘esgt’ddSp models

with simplified constraint release rates, by examining fluctuations of théoesrati vectorin

our analysis, the longest relaxation time of the probe chain is determined by a competition
between the longest relaxation times of the effective CR motions of the fat and thin tubes, and
the motion of the chain itself in the thin tube. This picture is tested by the analysis of four model
systems designed to separate and estimate every single contribution involved in the relaxation
of the probe’s end-to-end vector in polydisperse systems. We follow the CR picture of (Viovy

et al., 1991) and refine the effective chain friction in the thin and fat tubes based on (Read et
al., 2012) The derived analytical equations form a basis for generalizing the proposed
methodology to polydisperse mixtures of linear and branched polymers. The consistency
between the th8Spmodel and tube model predictions is a strong indicator of the compatibility

between these two distinct mesoscopic frameworks.

List of variables and functions
In order to help the reader we summarize and describe all variables and functions used in th

text in the table below.

Variable or function Description

Relaxation times

Longest relaxation time of the short cha
Tds in section 3 obtained by simulations wit
no constraint release

Longest relaxation time of the probe
Td,p chains in section 3 obtained by
simulations with no constraint release

Longest relaxation time of the probe
Td chains with no constraint release predic|
by eq.1




f(2)

Correction to the reptation time due to t
effect of contour length fluctuation

TCR

Lifetime of the slip-links in case when &
of them are blinking with same frequenc

TCR,TT

Lifetime of slip-links blinking with higher
frequency in the case when there are
least two distinct frequencies.

TCRFT

Lifetime of slip-links blinking with lower
frequency in the case when there are
least two distinct frequencies.

TCRR,TT

The longest relaxation time due to thR (
Rouse motion of the thin tube

Relaxation time of the probe chain due
the effective CR motion of the thin tubé

TFT

Relaxation time of the probe chain due
the Rouse CR motion of the fat tube

®

Longest relaxation time of the probe chg
having all slip-links blinking with the
same frequency

.

Longest relaxation time of the probe chg

having some slip-links blinking with

single frequency while others are
permanent

)

Longest relaxation time of the probe ch:
having slip-links blinking with two
distinct frequencies.

Friction coefficients

{erTT

Friction due to CR hopping of the thin
tube in 3D space (section 6.2) or along
tube (sections 6.3, 6.4)




{CRET

Friction due to CR hopping of the fat tuf
in 3D space

&

Total friction of the thin tube motion in
3D space

$rr

Total friction of the thin tube constraine
by a fraction of slip-links with infinite
constraint release time.

FT

Total friction of the fat tube motion in 3L
space

cm
0

Center of mass friction of the probe cha

CostL

Friction contribution to longitudinal chai
motion due to hopping slip-links.

Ceff

Effective friction of the chain in its
projected motion along the fat tube
contour

Cr

Additional friction contribution due to thg
blinking nature of the topological
constraints in the case when there are
least two distinct CR rates.

3)
p

Total friction coefficient of the probe
chain with some slip-links blinking with
constant frequency and others with
infinite constraint release time.

“4)

Total friction coefficient of the probe
chain with slip-links blinking with two
frequenciegcr 1 andzcrrT.

MSD
¢

Obtained from simulated MSD of chain’s
center of mass total friction coefficient ¢
the probe chain constrained by slip-link
blinking with the same frequency and
moving in 3D space.




1. Introduction.

The basic tube model initially proposed by Doi, Edwards and de Gethesscribes the
dynamics of a probe chain in a fixed environment of topological constraints. It is a “single

body” description, with the meaning that such an expression carries in physics and mechanics.
On the other hand, the real situation is clearly a simultaneous multibody relaxation, with
complex feedback effects. Not surprisingly, a correct description of the effect of multi-chain

environment on the probe chain relaxation still remains a challenging issue.

The first models implementing the effects of constraint release (CR) considered the tube as a
Rouse chain with segments having the size of the tube diafétdnbility of the segments

was considered to be inversely proportional to the lifetimes of the entanglements. We refer to
these models as tube rearrangement models. An alternative picture for modeling the effect of
constraint release (CR) on stress relaxation was introduced by Mafridairucci suggested

the previously relaxed fraction of the melt should be considered as an effective solvent for still
oriented chain segments. This so-called dynamic tube dilation (DTD) theory pictures an
effective tube diameter continuously widening in the course of stress relaxation and thereby
facilitating chain motion. Doi and co-workeirsref. ® proposed to combine both CR pictures

and defined the effective tube diameter as a crossover between mean squared displacement of
the free chain and motion of the tube described by Rouse dynamics. Finally, Viovy and co-
workerg? further extended the original tube rearrangement picture for the case of binary linear
melts. They proposed that CR motion of the tube should be effectively separated in two regimes:
() CR Rouse motion, which is only relevant in the diffusion scale limited by the fat tube
diameter and (i) further relaxation of the tube governed by CR reptation of a thin tube along

the fat tube contour.

Regardless of the CR picture used, most authors have adopted the assumption of independent
contributions from the tube and chain motions. Thus for computing the overall stress relaxation

function, the two contributions are then combined by a multiplicative mixing law.

The ability to experimentally separate the relaxation of a probe chain in its tube from the

relaxation of the environment is an important issue since it can help discriminate between CR
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models. Whereas linear rheology measurements conflate all relaxation mechanisms (reptation,
fluctuations and constraint release) in a single response, other techniques can distinguish
between different effects. Among those, dielectric spectroscopy measures the relaxation of
dielectric permittivitye(z) usually from the frequency response through Fourier analysis. This
technique is attractive as a complement to rheological measurements and is widely used to study
relaxation dynamics of polymers. Its limitation comes from the requirement that non canceling
electrical dipoles have to be present along the chain. For thalsd-ttype-A” polymers

having dipoles parallel to the chain backi@@melaxation of an induced polarization of the
chain is equivalent to the fluctuation of its etodend vector. As an alternative to this method
C.-Y. Liu and co-worker¥ proposed an experimental probe rheology method for studying
relaxation contributions due to the tube motion. In binary melts they suppressed the relaxation
contribution from the environment by diluting short probe chain in an excess of much longer
matrix chains. By assuming that relaxation spectra of the probe and matrix are uncoupled, they
subtracted the relaxation function of the probe and considered it as being unaffected by CR.
Despite its obvious theoretical value, application of this method is limited in terms of the probe
concentration. The concentration of the probe should be very low in order to avoid CR effect
from entanglements with chains of the same molecular weight. Moreover, the matrix should
not be affected by dynamics of the probe. This can be tested by comparing the terminal
relaxation time of the matrix with and without the probe. On the other hand the low

concentration of the probe is automatically reflected in the low intensity of the subtracted signal.

H. Watanabe and co-workers in various publications have extensively used a combination of
linear rheology and dielectric spectroscopy on Polyisoprene (Pl) (typical type-A polymer) for
understanding the effect of the environment on the viscoelastic relaxation of the polymer. As
opposed to viscoelastic relaxation, no dielectric relaxation of the chain is activated by the
motion of its environment, except for a contribution from chain fluctuations at the edge of the
dilated tube?® Hence, the tube survival fraction,(z), can be directly extracted from the
dielectric relaxation functiom(?). The authors find that viscoelastic relaxation is linked to
dielectric relaxation in a straightforward way for monodisperse lind2k
H()=G(t)/GP =¢ 1)**9 where GP - plateau modulus and d (=1..1.3) is the dilation exponent.

This confirms a direct relationship between two relaxation functions.



The effect of environment represented by constraint release (CR) on the relaxation of the end-
to-end vector in monodisperse star and linear polymers and binary blends of linear chains has
been addressed by many authors but a clear picture has yet to emerge. The most recent

publications include:

- In ref!® authors applied a discrete slip-link model (DSM) in order to predict
experimental data of the viscoelastic and dielectric relaxation functions in monodisperse
melts of linear and star polymers and binary mixtures of short and long linear chains. In
agreement with ref they concluded that the emakend vector autocorrelation function
of monodisperse linear chains is not affected by their CR dynamics. In contrast,
relaxation of the endb-end vector of monodisperse star polymers is drastically
influenced by constraint dynamics.

- Matsumiya et at® investigated the effect of CR on the dielectric relaxation of $hort
chains with number of entanglements ranging betwleserd 36, dilutedn an excess of
much longer chains. They concluded that the tereld vector relaxation time of all
the diluted short chains is significantly delayed by comparison with bulk probe systems

but is faster than expected from utilizing full dynamic tube dilation theory.

The main objective of this study is to understand the effect of various molecular constraint
dynamics on relaxation of the etmtend vector of long linear probe chains. In contrast with
Matsumiya et at®, we will focus primarily on situations in which a probe chain is placed in an
environment in which a fraction of the constraint release events are at a rate faster than the
reptation time of the probe chain (Matsumiya et al. focus on slower CR environments). We
approach this problem by utilizing tHekhtman’s slip-spring (SSp) modéf-?! This model
naturally includes stress relaxation mechanisms such as reptation, contour length fluctuations
(CLF) and constraint release (CR), which are also implemented in the tube-based models. The
advantage of this single-chain model is that it also allows for independent control of each of the
stress relaxation mechanisms. By using this convenient feature we progressively increase the
complexity of the constraint release environment for the probe chain by considering four model
systems which are specifically chosen in order to highlight the various CR contributions to

relaxation of the enth-end vector. We successively create experimental systems which



approximate these idealized model systems, and analyze SSp simulations of the idealized

models.

We first validate the SSp model by simultaneous comparison with experimental rheo-dielectric
relaxation data from the literature and with linear rheology data for specially prepared binary
and ternary mixtures of linear chains with well separated molecular weights. Next, from
simulations of the SSp model, we extract the longest relaxation times of theemdivector

of the probe chain in different constraint release environments and analyze the results in the
frame of the tube model. To succeed in this step we rely on methodology proposed 8y Read
and later utilized by Shivokhin et #ifor computing the total friction coefficient for motion
along the fat tube in star/linear blends. In this work we aim to further extend this approach and
compute longest eniib-end vector relaxation time of the probe chain in similar and even more

complex CR environments.

It should be emphasized from the outset that we are seeking in this work to relate the results
obtained from the SSp model, to the corresponding description in the framework of the tube
model. These two modelling frameworks are not identical, and it is not a priori obvious that
ideas based on the tube model (e.g. for motion along a “fat tube™) will apply to SSp simulations.

So, this work constitutes an interesting test of the correspondence between these two
mesoscopic approaches to describing the motion of entangled chains.

As this study is fundamentally an illustration of a methodology that can be extended to systems
with variable CR complexity, we allow some simplifications that do not influence the final
objective but significantly facilitate derivation of the final equations. In our analytical equations
we do not account for the distribution of CR times in every component of the mixture. Instead,
for every component of the blend, we only consider the largest possible constraint release time

represented by its reptation time.

This paper is arranged as follows: in the methodology section we introduce the four main model
systems characterized by dominant constraint release contributions. In the experimental section
we describe details of the synthesis and molecular structure of the materials. We also provide
details of the small angle oscillatory shear measurements and data processing. The theoretical
section describes the necessary details of the SSp model. In the results and discussion section,
we validate the SSp model by comparison with the dielectric and linear rheology data. Next,

individually for every model system we propose straightforward analytical equations predicting
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the corresponding longest relaxation times and validate them by stochastic simulations of the
accordingly modified SSp models. In the conclusion, we summarize the key results of this study

and highlight possible perspectives.

2. Methodology

For analyzing the effect afbinary CR environment formed by short and long chains, we adopt
the picture of thin and fat tubes constraining lateral motion of the chain. The thin tube is formed
by entanglements of a given probe chain with all chains, whereas the fat tube includes only

entanglements with longer life time.

We propose a picture where the longest relaxation time of the probe chametvector is
determined by a competition between the longest relaxation times of the effective CR motions
of the fat and thin tubes as well as the motion of the chain itself in the thin tube (see Figure 1).
In order to test this picture we define 4 model systems which are specifically selected in order
to separate and estimate every single contribution involved in the relaxation of the probe’s end-

to-end vector in the binary blend system (see Figure 2).

R(t)
—
Figure 1. Schematic representation of a probe chain ia binary CR environment (system #4). Topological
constraints respectively due to the mixed entanglements with short and probe chains vs. entangents
with probe chains only are illustrated by theblack thin tube, and thered fat tube. The endto-end vector
of the probe chain is shown by the solid black arrow.

Probe chain in fixed environment:

In the F'system we dilute probe chains in the sea of very long chains, which are not relaxing
at the time scale of the observatighslow referred to as “gel”). In this system probe chains
are not entangled with other probe chains,daly with the “gel”. Hence, CR is essentially

turned off for the probe chains. The only possible relaxation mechanism is by reptation motion
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of the chain in the thin tube, with contour length fluctuations. This mechanism is of course also

present in all other systems.
Probe chain inside single moving tube:

In the system #2 all entanglements of the chain are blinking with the same finite frequency.

Therefore constraint release dynamics is competing with chain reptation along the thin tube.

Probe chain in thin tube moving inside fixed fat tube

The 3% system is the mixture between first two systems, whafeetion1—f of entanglements

of the probe chain are created by the short chains and the rest are created by the ged. By doin
this, and assuming that long chains of the gel are effectively immobile at the timescale of
relaxation of the probe chains, we get a controlled amount of CR. This mobile fraction of
entanglements leads to CR motion of the thin tube, itself partially constrained by the fat tube

(entanglements with gel chains).

Probe chain in moving thin and fat tubes:

In the 4" system the probe chain is entangled with short and long chains having two distinct
CR rates. A fraction f of the probe chanentanglements is with longer chains. The
complementary fraction 4f with short chains is the same for thigahd 4" systems.
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Figure 2: The four model systems of the probe chain in th€éidealized” single and binary CR environments
schematically shown in tube and slip-link model representation. System 1rgbe chain in a “gel” (infinite
CR time); System 2: probe chain with varying CR time System 3: probe chain with varying and infiniteCR
times. System 4: probe chain with short and varying CR times. At the upper part of all pictures probe
chain is shown by the red solid lineslip-links with “infinite” CR time are shown by filled black squares.
Empty blue circles represent slip-links with short CR time and empty green trianglesarying CR time. At
the lower part of all pictures the respective tube model representation is shown. The thin tube is 8tuated
by solid black lines; fat tube is shown by solid red lines. Inset: (top rig) locating systems 1- 3 on a “Viovy
diagram”. Arrows indicate increasing rates of constraint release.

The first three systems may be located on the “Viovy diagram” for binary blend rheology as

shown in the inset of Figure?2.0n the horizontal axis is the number of entanglements in the
11



fat tube, and so to the left of the diagram no fat tube entanglements are important and there is a
single constraint release rate. The vertical axis, the “Graessley parameter” is a measure of the

rate of constraint release. Hence system 1 corresponds to just one (thin) tube and no constraint
release- the bottom left of the Viovy diagram. System 2 corresponds to one thin tube and
varying CR rate, which is equivalent to traveling up the left hand side of the diagram. We may
anticipate that one transition to be encountered involves a competition between reptation along
the thin tube and CR of the thin tube. System 3 corresponds to a situation where fat tube
entanglements are important, and we may anticipate at the least a competition between reptation

along the thin tube, and motion along the fat tube mediated by constraint release.

In this study, we use the single-ch&® model for simulations of equilibrium polymer
dynamics® This model allows the estimation of the stress relaxation andoesnti vector
autocorrelation function of every blend component individually without relying on any

subtraction procedure.

First, we validate the model by simultaneous comparison with published data of the stress
relaxation and dielectric relaxation in nearly monodisperse and binary mixtures of linear
polymers. Next, we use our own rheology data in order to estimate the-end-vector
autocorrelation function of the probe chain in different model systems by meansSfjthe
model. Since simulations of the etwend vector autocorrelation function can be conducted
for any type of polymer we are not restricted to type-A polymers traditionally ustu in

dielectric spectroscopy experiments.

In order to obtain the longest relaxation time of the relRd vector in every system we fit the
respective endis-end vector autocorrelation function to a set of Maxwell modes using RepTate
software and extract the relaxation time of the longest n8de.

3. Experimental section

3.1. Materials

The synthesis details for the linear Polybutadiene (PBd) samples wit6.9kg/mol
(PDI=1.08, §=-97°C) and M~50kg/mol (PDI=1.06, §=-95°C) with 90.3% and 90.6% of 1,4

addition, respectively, have been reported irftef.
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Linear PBd with M~305k (PDI=1.08, #&=-96°C) with 93.2% of 1,4 addition was purchased

from Polymer Source, Inc.

The glass transition temperatures are measured using Mettler Toledo DSC 821e at heating rate
10°C/min.

The 1,4 addition levels of the samples were measuréd-DMR, via spectra recorded on 300

MHz Bruker spectrometer at 25 °C.

All the experimental details including the NMR spectra, SEC chromatograms, and DSC

thermographes are provided in the supporting information.

Throughout the study, samples with molecular weigt@k, 50k and 305k will be referred to
as short, probe angel” chains, with molecular weightsWd Mw,, and My, and their longest
relaxation timescs, 7dp, 7d,G, respectively. In the second half of this paper (section 6 and
Appendices) we analyze the effect of the “simplified” CR environment imposed on the

dynamics of the probe chain by the short chains, “gel”, and other probe chains.

All blends analyzed in this study are fully miscible. They are prepared by mixing in an excess
of toluene. After complete dissolution of the polymer by continuous stirring during 1-2 days
the solvent is evaporated in a vacuum oven for at least 7-10 days until the sample has less than

0.1% of solvent left (as measured by weight)oss

3.2. Measurements

In this section we present results of experimental SAOS measurements for all model systems
introduced in the methodology section. All measurements are done using an ARES (TA
Instruments) rheometer equipped with a plate-plate fixture of 8 mm diaridtetinear range

of sample deformations was confirmed by conducting strain-sweep measurements.

After conducting frequency-sweep measurements at 25, 0, -25, -50 and -70°C under nitrogen
atmosphere, we apply thene-temperature superposition principle (TTS) for constructing

master curves covering a much broader range of frequencies as compared to the individual
master curve segments measured at constant temperature. Unlike many publications which

used adjustable shift factors for every measurement, we determine shift factors using the WLF
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equation logoar=-Cy(T-Tre)/(Co+ T-Trer), where parametersi€3.63, G=167.11 K at Te=25°C
are kept the same for all samples.

By introducing iso-free-volume correction to the horizontal shift-factors we account for
differences in componeritsTg due to their different molecular weight®gioar=-Ci(T-
Trert Crg/Mw)/(Co+ T-Tref +Crg/Mw), WhereCrg/My = (Tg"" — Tg) and Gg = 13 is an empirical

Flory—Fox parameter that is related to the free volume for a given polymer chemistry.*°

We also note, that while short and probe chains were made in the same lab and the same batch
as samples reported in réf.the “gel” chains were obtained from another source and have a
slightly different microstructure as demonstrated by the NMR data. As a result of this slight
difference the correspondent glass transition temperature of this sample, as measured by DSC,
is slightly lower than could be expected for its molecular weight. We disejdndse

differences in the TTS procedure used for the data presented in Figures 7-8.

Material density correction due to the temperature change is taken into account by introducing
vertical shift factors as G(Tre)=G(T)/br, where b=p(T)T/p(Tre) Trer= (0(Tren)+ T.C3.10
3(T+273.15)/( p(Tre)+ Tret.C3.10%)(Trert 273.15)), where T is ifiC, p(Tre)=930 kg.m™, and
Cs=0.69kg.nm®/ °C. The obtained results represented by frequency sweep data of storage and

loss moduli are compared with predictions of the SSp model in Figures 7-9.

4. The SSpmodel.

All numerical simulations in this study are conducted using Likhtman’s stochastic single chain
SSpmodel® This model is based on Rouse chains comprising N beads connected by N-
springs. The effect of entanglements is implemented by slip-links randomly distributed along
the chain. Every slip-link is connectdxry a virtual spring with parabolic potential to an
anchoring point. The positions of the anchoring points are distributed in a way to preserve

unperturbed Gaussian statistics of the chain conformations at all length scales.

Successful applications of this model for predicting stress relaxation in low polydispersity linear
and binary mixtures of star and linear entangled polymer melts were reported iv’tef

Besides, in ref!® the model has demonstrated quantitative prediction capability of polymer
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dynamics when simultaneously confronted with experimental data by three different

techniques: neutron spin-echo (NSE), linear rheology and molecular diffusion.

Most implementation details and description of the model parameters can be found
elsewherd??! In these earliest versions of tB&pmodel, the location of the slip-link was
allowed to slide continuously along the bond vector between adjacent beads. However, more
recent versions of the algorithfif* have constrained the “slip-links” so that they are always
attached to beads. Slip-link hopping between beads is permitted through Metropolis Monte
Carlo moves. Our simulations are based on this later methodology. We analyze in detail the
effect of this choice in section 6 below, finding that it results in an effective contribution to

chain sliding friction from the slip-links.

In this study we also utilize a number of simplified “toy models” based on this SSp
implementation in order to separate relaxation contributions. In particular, we can deactivate
reptation and CLF mechanisms by prohibiting slip-links from sliding over the chain ends. We
can also assign precise single engagement/disengagement frequencies for slip-links (as opposed
to self-consistently distributing constraint release by coupling slip-links from different chains).
In particular, in order to realize the different systems indicated in Figure 2 we are required
maintain up to two different populations of slip-springs with two different assigned CR rates
(slow and fast). In our simulations, this is achieved by separately controlling the reptation/CLF
and constraint release dynamics. For the CR dynamics, each slip-spring from@ogiviation

(e.g. the“slow” slip-springs) is assigned a lifetime randomly chosen from an exponential
distribution with mean equal to the CR time of that population. When a slip-spring exceeds its
lifetime, it is removed from the simulation, and a new slip-spring from the same population
(e.g. “slow”) is added to a randomly selected point on a randomly selected chain, and given a

new randomly chosen lifetime. On the other hand, if a slip-spring from a given population (e.g.
a “slow” slip-spring) is removed from a chain end by reptation and CLF, then another slip-
spring of the same type (e.g. “slow”) is added to the end of a randomly selected chain, and
assigned a random lifetime. This latter rule ensures that creation and destruction of slip-springs
from chain ends do not produce CR events in the middle of chains. The simulation rules, as
presented above, are in the spirit of the standard entanglement-pairing CR algorithm described
in ref® but decouple the CR dynamics from the reptation dynamics, whilst maintaining a
constant number of fast and slow slip-springs in the simulation. An alternative but valid

approach, not used in our simulations, would be (for constraint release) to randomly add and
15



delete slip-springs from the middle of chains using a detailed balance criterion with rates chosen
to ensure the correct slip-spring lifetimes, and similarly (for reptation/CLF) to add and delete
slip-springs from chain ends using a different detailed balance criterion. This alternative
approach would maintain the average number of fast and slow slip-links, while allowing both

to fluctuate.

Thus, by assigning infinite lifetime to the slip-linkve can completely “shut down” the
relaxation contribution from CR. In this way, we are able to separate, control andeanalyz
relaxation contributions due to sliding and CR dynamics of the chain. We note that by
introducing controlled CR rates we do not attempt to impose self-consistency of the CR events
e.g. by selecting CR rates consistent with the reptation time of the chains. However, this is not
important for the purpose of the second half of this paper which is focused on understanding
the effect made by variotsrtificial” CR environments on the dynamics of dilute probe chains.

On the other hand, for simulations of the stress relaxation for the purpose of comparing it with
experimental data for monodisperse, binary and ternary mixtures in section 5 we use the
standard entanglement-pairing CR algorithm described it? wehich automatically gives a
self-consistent distribution of CR rates. The number of chains corresponding to every blend
component in simulations is computed in accordance with its respective weight fracion. W
first fit the elementary timep, and unit mass parameterg,Mepresented by one beadS8p

model for all monodisperse components. Next, all binary and ternary mixtures are predicted
without additional parameter fitting. The slight discrepancy between the valuebtdihed

for different blend components (see Table 1) is in the range of typical SEC measurements

experimental error.

The SSpsimulations results are presented in dimensionless units, with thermal egiBrdy k
statistical segment b=1 and friction coefficient of one segieit Regardless of molecular
topology and molecular weight we usesi4 as average number of beads between two slip-
links, Ns=0.5 as virtual spring strength, and time step dt=0.05. For the results in sedion 5,
discrete slip-link jump of size 1 is attempted on average once per bead at everygdimeaste
Metropolis Monte Carlo simulation as described in ¥&fn section 6, we increase this to 10
attempts per time-step. Finally, in this work we use a variant dd$penodel which imposes

the condition that the monomer distance between neighboring slip-links must be larger than 1

thereby preventing two slip-links from overlapping or occupying neighboring beads. This
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repulsive interaction has weak effects on both statics (making the slip-spring distribution more
uniform along the chain) and dynamics (e.g. on rates of slip-spring motion, and of creation and
destruction rates at chain ends).

From these simulations we extract stress relaxation functions ando-end- vector
autocorrelation functions for every compon&mtFor computing stress relaxation we take into
account non-negligible cross-correlation contributions from the virtual springs along the
chain?! For simulating blends both auto- and cross-correlation terms of stress relaxation are
weighed in accordance with weight fractions of the respective blend component. The cross-

correlation term is not considered for computing relaxation oftesatd vector.

For mapping the time and stress of the model to those of the experimental data, we multiply

them by and G or &o, respectively (see Table 1).

Table 1: Fitted values of theSSpmodel parameters.

Tret °C Mo, kg/mol 70, US Go, MPa
Pl 40 1 6.83 2.85
Pl 25 1 12.1 2.71
PBd 25 0.38 0.45 7.0

The obtained parameters for PBd are consistent with those of previously analyzed star and linear

polymers?

It should be noted that the stress of the model is calculated in unigs@® GMo with p, R and

T being the polymer density, universal gas constant and absolute temperature, respectively. By
usingp(PBd, P)=930 and 913kign® T(P)=313K, T(PBd)=298K, R=8.31 fiPa.K.mor* and

by substituting the fitted values ofove can compute @PBd)=6.06MPa and P1)=2.37

MPa. The obtained values are slightly different from the fittedL@and 17% for PBd and P,
respectively. The value ofg®f Pl at Te=25°C is computed in accordance with the temperature
change assuming its fitted value at@@s a reference. This level of discrepancies is consistent
with data variations reported in different papers. The model stiesedald not be confused

with the plateau modulusn&
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5. Comparison between thésSpmodel simulations and experimental data
on binary and ternary blends

5.1. Comparison with literature data.

Dielectric relaxation of type-A polymers reveals the éménd vector autocorrelation function.
According to our knowledge, the simulation results of 8%p model have never been
confronted in published literature with experimental dielectric relaxation data. In this section
we validate th&Spmodel by comparison with published data of Watanabe et al. in refetfénces

on dielectric and viscoelastic relaxation of the s&imelts at the same reference temperature.

The model parametersolVio and G are calibrated by fitting small angle oscillatory shear
(SAOS) data for monodisperse linear chains @£®1 kg/mol, 94 kg/mol and 308 kg/mol. The
stress relaxation and emolend vector autocorrelation function are predicted from the same
simulations. Therefore, after we have fitted material parameters on SAOS data for both
monodisperse components, the stress and dielectric relaxations in all blend compositions are
predicted without additional adjustment of the parameters. On the other hand, in section 6,
where we compare simulation results with predictions of the equivalent tube model, we need to

introduce additional parameters which will be discussed later in the text.

In Figure 3 we show a comparison between experimental (rheological and dielectric) data and

the SSpmodel predictions with the same set of parameters.

10°

linear PI:
o M,=308k
o M, =94k
& M =21k

10° 10° 10° 10* 10°
oa, [rad/s]
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Figure 3: Comparison of simulation results with experimental dynamic rheological (a) &), G”’(w), and
(b) dielectric &’(0)-¢’(w), &”’(w) data of monodisperse lineaPl with Mw=21 kg/mol, 94 kg/mol and 308
kg/mol. Symbols represent experimental data and lines indicate the B®redictions. All simulations are
made with material parameters M=1 kg/mol, G=2.85 MPa; £=0.1; 70=6.83 ps. The experimental data are
measured at Ter=40°C. Color code in (dand (b) is the same.

Besides some small discrepancy (in the range of 15%) observed between the experiments and
simulations in Figure 3 all simulation results demonstrate quantitative prediction of both

rheological and dielectric data using the same values of the parameters.

Next, in Figure 4 and Figure 5 we analyze #i8pprediction for binary mixtures of linear PI.
For this purpose, we superimpose predictions oS@model with the experimental data of
complex dielectric permittivity and complex viscoelastic relaxation modulus of different ratios
0/100, 5/95, 10/90, 20/80, 50/50 and 100/0 of 308k/21k.

Binary blends
of linear PI:

O Pure 308k E
50/50: 308k/21k

¥ 20/80: 308k/21k
10/90: 308k/21k

5/95: 308k/21k

A Pure 21k
T T

10-4 -2 ﬁ' ’ 0 ' ’ 2 4
10 10 10 10
oa, [rad/s]
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Figure 4: Comparison between simulation results and experimental (a) decrease dyfnamics dielectric
constant &’(0)-¢’(w), and (b) dielectric lossg’’(w), of monodisperse and binary mixtures of lineaPl with
Mw=21 kg/mol and 308 kg/mol. Symbols represent experimental data and lines indie&sSppredictions. All
simulations are obtained with material parameters M=1 kg/mol, £6=0.1; 70=6.83 us. The experimental data
is measured at Tet=40°C. Color code in (dand (b) is the same.

101 2 " T T 0 T T 2 T T 4 T 6
10 10 10 10 10
wa, [rad/s]
10° S ——
(b)
10°
g
?104-/ # blends of |
n Binar n inear PI:
O 0 Pure 08k
3 50/50: 308k/21k
107+ A 20/80: 308k/21k 4
IS 10/90: 308k/21k
A 5/95: 308k/21k
) - # Pure 21k
10 P P P - ]
10 10 10 10 10
woa, [rad/s]

Figure 5: Comparison between simulation results and experimental (a) dynamic staye, G (), and (b) loss,
G’’(w), moduli of monodisperse and binary mixtures of linearPl with Mw=21 kg/mol and 308 kg/mol.
Symbols represent experimental data and lines indicat8Sppredictions. All simulations are obtained with
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material parameters Mo=1 kg/mol, 70=6.83 ps, G=2.71MPa. The experimental data is measured at
Tef=40°C. Color code in (a) and (b) is the same.

Comparing dielectric and viscoelastic relaxation data presented in Figure 4 and Figure 5,
respectively, reveals a qualitatively good match over the whole frequency rangeblendll

compositions. In particular, the model captures the speeding up of the long species on dilution
with the short species, and also the slowing down of the short species on mixing with the long

species. This latter observation is very similar to previous results of Matsumiy4 et al.

However, a few discrepancies can be observed. The relatively high polydispersity of the long
component (PDI=1.08) not taken into account in the simulations, is resultiadprioader
experimentalG "’ peak at low frequency as compared to the simulation data. There are also
small discrepancies with the rheological data in the vertical direction, visible (for example) in
Figure 3a especially for the two lower molecular weight samples. We consider these
discrepancies to be within experimental uncertainty, and that the parameterization is reasonable.
We can test this by illustrating the model predictions with the same model pararseter M
kg/mol confronted with LVE data of linear Pl measured by Auhl and co-wotkEcs.
consistency with the other Pl data measured & 4@ adjust parametero@ccording to its
temperature dependence from 2.85 MPa to 2.71MPa. The comparison presented in Figure 6

shows the quantitative agreement of the model prediction.

J Linear PI (Auhl et al., 2008)
| O 336k
o 94.9k
A 2259k

oa, [rad/s]

Figure 6: Comparison between simulation results and experimental dynamic complex modsl of
monodisperse linear PI with  Mw=33.6 kg/mol, 94.9 kg/mol and 225.9 kg/mol. Symbols represent
experimental data and lines indicate the SSp predictions. All simulations are obtainedith material
parameters Mo=1 kg/mol, Go=2.71 MPa; 70=12.1 ps. The experimental data are measured by Auhl and co-
workers (Auhl et al., 2008) at Ter=25°C.
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In addition to the small discrepancies in the vertical direction, we also comment on the quality
of predictions in the horizontal direction. The model adequately predicts the location of the
low frequency peak in the dielectric spectra for all blend compositions. Predictions are excellent
for the smaller degrees of dilution, though even at dilutions of 10% and below the agreement
in peak position in Figure 4b is within an acceptable factor of 2. The speeding up of terminal
relaxation time upon dilution with a faster species is captured. This fact is of some importance
for the second part of this study in which we analyze only the longest relaxation times of the

endto-end vector, which approximately correspond to the frequency of this peak.

Simultaneous comparison by two different technigues is a very strong test for the model.
Therefore, the overall quality of tHf@Spmodel prediction for the viscoelastic and dielectric

data can certainly be considered satisfactory.

5.2. Comparison with new LVE data: monodisperse, binary and ternary mixtures of linear

chains.
In this section, simulation results of the standa&bmodel are compared with our new linear
viscoelasticity data. As discussed in the methodology section, we analyze CR of linear probe
chains in experimental blends which correspond approximately to the four simplified systems
shown in Figure 2, allowing us to separate and analyze the main relaxation contributions. It
should be noted that in this section we present PBd data as opposed to the previoys section

which presente@I data.

First, we analyze the relatively simple system consisting of a very small fraction of short and/or
probe chains diluted in a sea of unrelaxing chains, called “gel chains” (represented by linear

PBd chains with M=305k). Gel chains are effectively immobile in the relaxation timeframe of
short and probe chains.

In Figure 7 we compare experimental viscoelastic relaxation data of pure gel chains and their
binary mixtures with 20% of short chains (#6.9k) or 3% of probe chains (¥50k). The

concentrations are selected in a way that the short or probe chains are only entangldd with ge
chains. Simulations of all mixtures containing the long gel chains (hnumber of beads equal 804)
were made to run for 21 days but the terminal zone for most of the cases was still not reached.

However, the covered frequency rangéroad enough to include both loss modulus peaks
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corresponding to the relaxation of the short and probe chains. The position of these peaks appear

to be predicted within factor of 2 in terms of timescale.

10° . . . . . . .
A pure 305k
o 3/97 (50k/305k)
20/80 (6.9k/305k)
T £
.D_'. DD e
Q'— 105' DDOOO
= 0o
o DDOO ‘:'.‘
A,
oo Apppd
o]
104 > T T 0 T T 2 T T 4 T 6
10 10 10 10 10

wa_ [rad/s]

Figure 7: Linear shear loss modulus of low polydispersity and binary mixtures of Bd linear chains with
Mw=6.9k, 50k and 305k. Comparison between simulation predictions (solid lineand experimental SAOS
data (markers). All simulation data obtained using parameters: M=0.38 kg/mol, G=7.0 MPa andzc=0.45

ps. All measurements are conducted atf=25°C.

Next, in the system with a small fraction of probe chains diluted in an excess of gel chains, we
introduce various fractions of short chains. We expect that short chains will impose CR

dynamics on the probe chains and thus we can analyze their effect on relaxation oftthe end-

end vector of the probe.

In Figure 8 we present experimental loss modulus data for two ternary mixtures containing 3%

probe chains diluted in 20/77 and 80/17 short/gel chains mixtures, respectively.

o pure 305k
o & (0.03)50k/(0.2)6.9k/(0.77)305k
o o (0.03)50k/(0.8)6.9k/(0.17)305k
2
10 - T T 0 T T N T T 4 T 6
10 10 10 10 10

oa, [rad/s]

Figure 8: Linear shear loss modulus of ternary mixtures of PBd linear chains ith 20 and 80wt.% of
Mw=6.9k, 3wt.% of 50k, and 77 and 17wt.% of 305k. The comparisorhews simulation predictions (solid
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lines) and experimental SAOS data (markers). All simulation data are obtained using paraaters: Mo=0.38
kg/mol; Go=7.0 MPa andro=0.45 ps. All measurements are conducted atefE25°C.

Finally, we completely substitute gel chains by other probe chains but keeping the same fraction
of short chains as in previous systems. By comparison with the previous system, we anticipate

to seethe effect of other probe chains on the dneend vector longest relaxation time.

107 T T T T T T

G'b, [Pa]

10’ . : : : : :
(b)
10°-
T
L. 10°4
_QI—
5 % 50k
10* A 20(6.9k)/80(50k)]
o 80(6.9k)/20(50k)
, o 98(6.9k)/2(50k)
10° o 6.9k

10° 10° 10* 10°
oa, [rad/s]

Figure 9: Comparison of simulations (solid lines) and experimental SAOS data (markerd)inear shear
(a) storage and (b) loss moduli of monodisperse and binary mixtures of PBd lineghains with
Mw=6.9kg/mol and 50kg/mol. All simulation data obtained using parameters: b40.38 kg/mol; Go=7.0
MPa and 70=0.45 ps. Color code in (a) is the same as in (b).

The comparison between linear shear rheology data and simulation resultsS&ptmedel
presented in Figures-79 revealsa satisfactory overlap through the whole covered frequency
range for all studied mixtures. However, small discrepancies can be observed. The mismatch in

the medium-frequency rander mixtures containing “gel” chains of M=305kg/mol (Figures
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7, 8) can be patrtially attributed to small differences in 1,4-addition content with respect to that
of the short and probe chains which were made in a different lab. As noted in section 3.2, these
differences led to small irregularities in glass transition temperature, with the glass transition
temperature of thégel” chains being slightly lower than expected for its molecular weight.
This may have, to some extent, affected the time-temperature superposition used to create the
mastercurves, affecting most strongly the data shifted to higher frequencies (i.e. measured at
lower temperatures). Hence, while we can claim satisfactory agreement between the model and
data, the remaining discrepancies suggest the need for further experiments, with samples all of
identical microstructure made in the same lab. Discrepancies in the high-frequency range can

also be attributed to a relatively small average number of beads (4) per slip-link.

Considering the satisfactory simultaneous predictions of viscoelastic and dielectric relaxation
data for a set oPI-PI binary blends (section 5.1) and the quantitative prediction of PBd
viscoelastic data shown in the present section, we can consider t8&phmdel is adequate

for analysis of the entb-end vector relaxation of probe chain affected by CR. We now turn to

a detailed analysis of the different relaxation mechanisms present i8Spenodel, by
comparing tube model predictions with a large set of idealized model simulations.

6. Dynamics of probe chains in thesSpmodel
In this section, we use ti&Spmodel for simulating dynamics in simplified systems containing

probe chains diluted in matrix chains. Here we consider the probe chains to be sufficiently dilute
as to be unentangled with other probe chains, but entangled with matrix chains represented by
the slip-links. We make a simplifying assumption that these matrix chains give only one, or at
most two, constraint release times, so that slipsliake ‘blinking’ at a single or two precise
frequencies, which will be varied over a broad range. These idealized systems reprgsent ver
simplified cases of monodisperse, binary and ternary blends analyzed in section 5 and will be

used to improve our theoretical understanding of the CR effect on the relaxation of probe chains.

In the following sections of this study we will derive equations for predicting the longest end-
to-end vector relaxation times in the frame of advanced tube theory and confronting them with
theSSpsimulation dataFor the analysis in the frame of tube theory, we utilize a methodology
allowing us to calculate the effective friction in the fat tube, recently proposed HyaRéao-

workers in ref? The central idea of this theory is to separate two independent modes of chain
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motion. The first mode is related to longitudinal (i.e. sliding) dynamics of the chain constrained
by all types of entanglements. This motion is not affected by the environment, therefore in
principle the corresponding friction is just the total chain frictio=N(o, where N is the total
number of chain beads (Kuhn segments) @nd is the friction of a single bead (however, as

we will discuss below, slip-links make a contribution to this friction).

The second mode is activated by the blinking nature of entanglements and allows the chain to
explore new conformations by tube hopping motions in the transverse direction. This second
mode depends upon the blinking frequency of entanglements and is further affected by the
motion of the chain entrapped inside the tube. Thus for instance for the system #1 shown in
Figure 2 this second mechanism is effectively deactivated due to infinitely long CR times of
the “gel” chains. In this study, we further investigate a mixing rule proposed in ¥efor

combining chain friction with friction from CR events.

6.1. Relaxation of the probe chain in a single tube without CR.

In this section we analyze the dynamics of probe chains dilutedrynlong “gel” chains
(system#1), where CR is essentially turned off during relaxation of the probe chains. The only
active relaxation modes are therefore reptation and contour length fluctuations (CLF) related to
longitudinal (i.e. sliding) dynamics of the chain constrained by all entanglements with
corresponding friction expected to be the total chain frictighfi=N{o, where N is the total
number of chain beads (Kuhn segments) @=d is the friction of a single bead-ollowing

ref.1> we therefore expect the terminal reptation time for the chains to be:

74 =327,1(2) (1)
, : 2xC, C, G
wherer=N?b?(o/(37%ksT) is the Rouse tinfeand f(Z)=1- Z +?+ ar represents the

correction due to the effect of CLF on chain reptatiadowever, this expression assumes two
things: (1) that we are able to calculate the effective number of entanglements along the “tube”
represented by the slip-links, and (ii) that slip-links do not contribute to the effective sliding
friction. It turns out that both of these factors are important as we proceed through section 6, in
which we attempt to map as closely as possible the correspondence betv&Sgnntioelel and

the tube model. The discussion in Appendix A justifies that the number of entanglements along
the tube, defined as Z=NiNs not equivalent to the average number of slip-springs per chain
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in the SSp model. For the “standard” SSp model parameters (see section 4), i.e. Nss&=4 and

Ns=0.5, we use equation Al to estimate tha4\B9. Also, we find that upon reducing the
number of slip-links the dilution factaf for the equivalent tube model is almost, but not
exactly, the same as the dilution factor f for number of slip-links in the SSp model. This is
because of the finite stiffness of the virtual springs, which allows for extra freedom of the
respective entanglement segment as explained in Appendix A. We define this relation between
the dilution factors in both models using equation A2 and demonstrate its validity in Figure
10(a).

In addition, we have found that for the implementation of the SSp model used in this paper,
with slip-link motion along the chain mediated by Monte Carlo hops between beads, there is a
non-negligible contribution to friction for along-tube motion from the slip-links. Appendix B

discusses these effects, and the effects of dilution on this friction. The net result is a

renormalization of the friction constant per bead for along-tube motidn,tQ as given in

equationBl.

In Figure 10(a) we present SSp simulation results of linear chains with varying total number of
beadsN, and different average number of beads between two nearest slip-lénk3/VH fit

the data using equatid®, with only one parametefy s, the effective friction per bead from
slip-links in equationB1, which takes a value of 0.55 in the fits shown. Figure 10(a)
demonstrates that (i) after normalizing the longest relaxation timedo§z3kwhere k. is the

factor, defined in Appendix B, by which the along-the-tube motion is slowed down by slip-link
friction, the data from a wide range of slip-link dilutiong,s&4, 5, 8, and 20 corresponding to

=1, 0.8, 0.5 and 0.2, can be collapsed essentially to a single curve. This collapse makes use of
the dilution factors and adjustments to slip-link friction indicated in equations ABand
respectively. Figure 10(a) also demonstrates that (ii) the simulations are consistent with the
Likhtman and McLeish resulf, equationB2, with the inclusion of slip-link friction. The
theoretical predictions shown in Figure A¢ the black solid line correspond to f(Z) with all
prefactors fron? (C1=1.69, G=4.19, G=-1.55), which differ only by the last prefactorstc

1.4) from fit shown by black dashed line. We introduce this latter correction in order to better
fit data points at small Z. This degree of consistency provides confirmation of our derived value

of Ne and the arguments for the behavior upon dilution.
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Figure 10: (a) Longest relaxation timersa normalized by pure reptation theory prediction obtained by SSp
simulation for linear chains with various number of beads, N, and different average number of beads
between two nearest slip-links, Nssshown by symbols. Black dashed and solid lines show the predictiby
the tube model differing by the value of parameter €=-1.4 or -1.55, with the latter used in Likhtman and
McLeish, 2002; (b) Comparison of dimensionles6*(w) obtained by the SSp simulations (N=20, 40, 80, 160
and Ness=4) and fitted using the Likhtman-McLeish tube model (N=4.89, e =1.25 and G 0=0.2). The
constraint dynamics is deactivated in all simulations and neglected in the tube model perditions.

In all our theoretical predictions using tube theory for fitting SSp simulation data we will always

use the parameters€1.4 and N=4.89 obtained in this section.
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In Figure 10(b) we show that LVE predictions of the Likhtman-McLeish tube model
guantitatively agree with the SSp simulation data over almost the whole frequency range, for a
range of chain lengths. These predictions use both plateau modulus and stress equilibration time
of a single entanglement strand consistent witb=4M9, i.e. Go=1/Ne=0.2 and
1e=Ne?b?(0,wbe/(37°keT)=1.25, where b=1, =1, {o.we1.55. This degree of consistency
provides confirmation of our derived value of. NFits of similar quality can be obtained at

other dilutions, by scaling the parameters appropriately.

There is arguably a small discrepancy at high frequencies in Figure 10(b), where Rooise mot
within the tube dominates the viscoelastic response. This local Rouse motion is subject to the
bead friction of the chain only, whereas the rest of the viscoelastic response from along-the-
tube motion and is slowed (by a factor approximately 1.55) by the slip-link friction. Hence, if
we apply the Likhtman-McLeish theory to match the whole frequency spectrum and use a single
value ofze which includes the slip-link friction, the high frequency Rouse motion predicted by
the theory is marginally slosv compared to the simulations. This discrepancy is masked
because the simulations do not exhibit a well-developed Rouse spectrum at high frequencies,

since there are only a small number of chain beads per slip-link.

6.2. Relaxation of the probe chain in a single tube with single CR rate.

We now turn to system#2, which includes, in addition to the reptation sliding motion, constraint
release dynamics represented by the “blinking” of the slip-links. In ref.2%it was shown that in

the general case where all entanglements have the same constant CR time, the friction
coefficient per bead due toistrsecond mode of motion can be adequately, albeit empirically,

represented as follows:

err = (o #4257 @

where {cr1T represents the friction due to the constraint release event&,aisdthe bead
friction. The form of equation 2 is a little surprising: one might expect a simple addition of
friction factors from the monomers and from the constraint release “hopping” events. In
Appendix E we rationalize this crossover formula by considering carefully how the hop length

depends upon the constraint release timescale.
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The CR friction coefficientcr1r per bead for blinking tube segments in equation 2 and

Appendix E is derived from a simple model of particle hopping over a constant distance
2tk T 1
= 3
é,CR,TI' h2 N ( )

e
where h is an effective hop amplitude per tube segment, the thermal egiertyydndccr is
the time between the hops. Although, in 8&pmodel it is actually the moving slip-links
which provide the CR motion, we write all theory in this and the following sections in terms

of the tube model picture, hence we use the tube parametér the limit of slow constraint
release, we anticipate thiat = a2,N_b> whereacr is a yet unknown prefactor. However, as

detailed in Appendix E, for fast constraint release, the chain does not have time to reconfigure
between CR events, and the effective hop size is smaller. A detailed analysis of this gives rise
to a relation of the form of equation 2, whilst retaining linear addition of friction

contributions.

By assuming that the two relaxation modes (motion along the tube and CR motion of the tube)
are independent we can now compute the longest relaxation time of the chain diluted in the sea
of other chains, all having the same molar mass

1 1 1

— =+, 4

Rl (4)
where in case of all entanglements blinking with same frequancgpresentgffective CR
Rouse time of the thin tube. This equation represents the competition between reptation and
constraint release of the thin tube which is expected as CR rate is varied, as indicated in the
Viovy diagram (inset of Figure 2).

As a first guess, we deriver by substitutingTr from equation E5 instead of the bead friction
%o in the Doi-Edwards equation for Rouse times N°b?Co/(37°keT).”

N 2b?
T. =
T 3%k, T

Crr - ()

However, equation 4 would then involve a small overcounting of relaxation pathways, which
becomes apparent in the limit of small (zero) constraint releaser¢ini Appendix F we

propose a simple correction appliedteto account for this effect.
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For validating the analytical equations derived in this section and Appendices E antuR, we
simulations of probe chain dynamics with slip-links blinking at frequeneyk 1wherezcr
varies over a broad range of values. This is a simplified model for the probe chains diluted in

an excess of ideal monodisperse melt.

For validating the total friction coefficient corresponding to the relaxation of the chain due to
constraint release only, we prohibit the chain to release its ends from the slip-links. Thus,
reptation is deactivated, but the sliding motion of the slip-links along the rest of the chain allows
longitudinal stress equilibration. Apart from that, the only possible relaxation mechanism is the
effective CR tube motion. In the following discussion we will refer to the systems where slip-
links are not allowed to pass through the chain ends as non-reptating, whereas the standard

system will be referred to a$ree chain ends”.

From these simulations we extract the mean square displacement of the center of mass (MSD),
R.. Assuming that in the non-reptating system-aft, tube relaxation is dominated by CR

motion, we can thus compute the total thin tube friction coefficient as follows:

keT
lim .. (R?(t)) /(6t)

é/MSD —

(6)

Results of these simulations are plotted in Figure 11(a).
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Figure 11: Comparison between theoretical tube predictions (dashed and solid lines) a®Sp simulation
results (filled and empty circles). All entanglements of the probe chain with number of beads=lI32 have
the same lifetime,zcr. (a) Effective friction coefficient of the thin tube with probe chainnot allowed to
reptate. Dashed lines represendc®™ and {cr 1T, corresponding to two extreme cases atr —0 and zcr —inf,
respectively. Filled red circles show obtained by simulationg’sP. In the inset we show zoomed-in crossover
region of {rr normalized by zcr. The theoretical predictions are made using equatio5 with Ne=4.89,
acr=1.2 and K=0.36. (b) Longest relaxation time of the entb-end vector of the probe chain in the same
systems. Filled red circles and red solid line represent simulation data and thedical prediction of “non-
reptating” chain, zrr. Black empty circles and black solid line represent simulation data and theoretical
prediction of the chain with “free” chain ends 7,®. Dashed black line shows longest relaxation time
dominated by CR Rouse motion of the thin tubezcrr1r. InClined parallel black thick lines demonstrate
longest relaxation times normalized bytcr for relaxation dominated by Rouse motion (on the left) and for
reptation of the chain in the thin tube shortened by CLF (on the right) Arrows show stress equilibration
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time of a single entanglement strandre, and longest relaxation time of the probe chain in no CR caseip
=36280.

By fitting the data on the right-hand side of Figure 11(a) using equation E5 we have extracted
the best fit value for parametetr=1.2 which defines the jump amplitude of the chain upon

disappearance of a single slip-link.

In Figure 11 (b) we plot the longest relaxation times of thetesshd vector autocorrelation

function for the systems with no reptation (red solid line) and chains with free ends (black solid

line): @(t) =(R(t)RO)) /< F§> , where R is the enim-end vector of the chain.

The two inclined black solid lines show theoretical values of Rouse and reptation time of the
chain normalized bycr. The exact value at,;=36280 is obtained from simulating dynamics
of the probe chain (of chain length N=132) in the no CR case.

The dashed black line in Figure 11(b) represents longest relaxation time dominated by the CR
Rouse motion of the thin tube. The tube segment hoping amplitude deperdéser eq. E3)

which prevents this line from being horizontal. It is obtained by substitikig (equation 3)

into Doi-Edwards equation for Rouse time:

N %b?
TerRRTT = 32k T SerrT - (7)
B

Based on Figure 11(b), two dominant scenarios for terminal relaxation can be highlighted
depending on the lifetime of the entanglements with respect to relaxation time of the probe
chain:

1. Lifetime of entanglementsgr, is significantly below the Rouse stress equilibration time
of a single entanglement strand of the probe chairn this case the probe chain is
effectively not feeling the presence of the tube and thus completely relaxes by free
Rouse motion. This is illustrated by the alignment of the data points with the leftmost

inclined black solid line.

2. Lifetime of the entanglements is significantly longer than reptation time of the chain,
hence the tube is effectively fixed at this time scale and the terminal relaxation is due to

chain diffusing along the fixed thin tube.
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Between thesewo regimes, we have a transition zone:

a. Lifetime of entanglements is longer than entanglement stress equilibration time
(zcr>7e) as indicated by the first inflection point. In this case terminal relaxation
is due to CR Rouse tube motion, where the effect of monomer friction on CR
hopping amplitude is defined by CR timescale.
b. In case offcr<1d,p) chain reptation contribution becomes important manifesting
itself by the second inflection point. The etodend vector relaxation terminates
by combination of effective CR tube motion and chain reptation in the thin tube
If we now deactivate the chain longitudinal motion the terminal relaxation time
will be dominated byCR Rouse tube motion with its hopping amplitude
determined by equatidal. Alternatively, by increasing-r> 7q4,, We effectively
deactivate CR and chain relaxes in the same way as in system #1 (Figure 2).
The second transition (b) corresponds to the horizontal line usually drawn on the Viovy diagram
(Figure 2, inset) for competition between reptation and constraint release. The first transition
(a) would give rise to a second boundary, further up the Viovy diagram, but not necessarily
giving a fixed line within the Viovy diagram, which is a two dimensional projection of a larger

parameter space.

6.3. Two-tube system with a fraction of never relaxing entanglements.

In order to further increase the complexity with respect to the systems discussed in the previous
section, we now consider probe chains constrained by a combination of two types of slip-links

(i) a fraction fthat cannot be deleted due to CR, but only by sliding dynamics of thepeaaie

(i) a remaining fraction 1-f of g)-links blinking at a constant frequency, which is varied over

the same range as in the previous section. This is equivalent to the probe chain being entangled
with a mixture of gel and short chains, at different compositions. In terms of the tube model,
this can be interpreted as a probe chain constrained by both the thin and fat tubes, formed by
entanglements with all chains and by entanglements with never relaxing chains, respectively.
The thin tube is moving due to CR of short chains, whereas fat tube is fixed. This type of system

is shown in Figure 2 (as system)#3

In this system, within the tube picture the chain can be transported along the “fat” tube via two

different processes: (i) CR motion of the thin tube, which also involves a contribution from
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chain friction as indicated in the previous section, and (ii) motion of the chain along the thin
tube contour, which may be projected to give an effective motion along the fat tube. An analysis
of this was presented in réf.puilding on the earlier work of Viov§# This analysis assued
independence between diffusive transport processes along thin and fat tubes, giving an equation
for the friction coefficient per bead of the chain constrained by blinking and permanent

entanglements:

1_1 1
& ol

where (o :(1— f){CRTr +¢ ., represents the total friction for hopping of the thin tube

(8)

consisting of a fraction 1-f of blinking entanglements, and wiierepresents the contribution
of chain friction to the hopping motion. The frictigs represents chain motion along the thin

tube, but rescaled to give the effective friction for the projected motion along the fat tube.

Equation 8 sets the effective friction constant for all chain motion projected along the fat tube
contour. This includes (of course) reptation, but also contour length fluctuations and (if it is
considered) the tension re-equilibration process between adjacent fat tube séfnidmts.

competition between the two terms in equation 8 gives rise to the line usually drawn on the
Viovy diagram (figure 2, inset) representing competition between motion along thin and fat

tubes.

For the present SSp simulations, the analysis is made more complicated by the two specific
issues identified above in section 6.1 and detailed in Appendices A and B: (i) the fact that the
dilution factor f for the number of slip-links is not the same as the dilution fadtr tube
diameter, and (ii) the contribution of slip-links to the sliding friction. We detail the corrections
which must be made to the analysis by R&ddr the SSp simulations in Appendix C. The
resulting final expressions for the separate frictions contributions to motion along thin and fat

tubes are given in equations C638 (of Appendix C).

Since both thin tube and chain are relaxing via reptation motion along fat tube coatmam w

now compute longest relaxation time of the chain as:

L2 N 3 . 3b2 ?3) .
(9= f(z)= T g(2), ©
KT N 7z°KgT
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In the limit of sufficiently slow constraint release, such &iat>> . , we show in equation

C8 (of Appendix C) thaf\” = (o +&os)/# - In this limit, the factors of cancel in equation

9, so that it represents reptation purely along the thin tube, including slip-link friction, but
written in terms of effective motion along the fat tube coordinates. As constraint release
becomes faster, equation 9 includes the faster reptation along the fat tube due to constraint
release of the thin tube. In the absence of CLF, this is consistent with the theory of®Viovy.

The term f(Z*), determined in equation D4 (of Appendix D), represents correction of the chain
reptation time due to CLF motion, whete is the number of entanglements along the tube in
which the dominant CLF motion takes place. Depending on the blend composition and on the
constraint release time, this term can represent either CLF in the thin or in the fat talzen or
effective tube at intermediate length scale. So, the quagtitgould equal Z=N/Y or
Za=Ng/Ne, or some intermediate value. The details on blend compositions and valygsrof

associated with different regimes of CLF enhancement are discussed in Appendix D.

For validating these theoretical conclusions, we run simulations of the chain dynamics with a
fraction 1-f of slip-links blinking with characteristic timer Tt varying over a broad range of
values, while others are permanent but can slip along the backbone and thus can only disappear

if the probe chain releases its end from the corresponding slip-link by sliding motion.

In Figure 12 for a broad range afrtr values, we plot simulation results of the longest
relaxation time of the entb-end vector of the probe chains. Theoretical predictions plotted as

coloredlines are computed using equation 9.
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Figure 12: Comparison between theoretical predictions (color lines) and simulation results (markersjy the
end4o-end vector of a probe linear chain with N=132 constrained by blinking and permanent
entanglements. Fraction 1-f of blinking entanglements have the same lifetimeacr r. The lowest horizontal
black solid line represents terminal relaxation dominated by free Rouse motion tifie chain; the uppermost
— shortened by CLF reptation of the probe chain. Arrows show stress equilibration tim of an entanglement
strand, ze,and longest relaxation time of the probe chain in no CR casei;=36280.

In Figure 12 the two horizontal black solid lines show theoretical valugsantizqin the thin

tube. At intermediate values afrtr, we observa transition zone with two inflection points
reflecting the dominant contribution of CR Rouse tube motion to the terminal relaxation time.
After the second inflgtion point, all curves representing different compositions of blinking and
permanent entanglements match the uppermost black solid line representing terminal relaxation

dominated by chain diffusing along the fixed thin tube.

With respect to the regimes described in equdlidnmost of the presented simulation data,
except for¢g=0, where no effective fat tube exists, are consistent with the first case, where
Z*=Ztat.

The observed discrepancies@ati<te are consistent with those in Figure 10(a), where systems
diluted to the effective Z<10 demonstrate slower longest relaxation time with respect to the

theory.

By analyzing the data shown in Figure 12, we can now summarize the results of this section.
There are several distinct scenarios for terminal relaxation of this system. However, in practice,

the lines between these regimes are not sharp, and all transitions are smooth.
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1. At crT1<te, Chain relaxation terminates by chain diffusing in the fat tube with little or
no effect from the blinking slip-links;

2. AtzcrTr>7e terminal relaxation is due to effective CR motion of the thin tube controlling
both reptation and CLF within a permanent fat tube.

3. At larger values ofcrrthe second term on the right hand side of equation 8, becomes
the dominant contribution, so that chain transport along the thin tube begins to dominate
over CR motion of the thin tube. Yet, there remains freedom for CLF along the fat tube
contour.

4. At yet slowercr1Tthe thin tube does not even have time to explore locally the fat tube
within the CLF timescale, and (according to the regimes noted in equjothe
system transitions to CLF in the thin tube.z8% > 74, terminal relaxation is due to
chain reptating and performing CLF in the thin tube only.

The third transition corresponds to the line usually drawn on the Viovy diagram for system 3
(figure 2, inset) representing competition between motion along thin and fat tubes. The other
transitions would be represented as different boundaries as constraint release rate is varied, but
not necessarily giving fixed lines within the Viovy diagram, which is a two dimensional
projection of a larger parameter space.

The fourth transition listed above raises an intriguing but speculative possibility. In a
monodisperse melt, as terminal relaxation is approached, some constraint release does occur, at
a broad range of CR rates coming from fast relaxing chain ends to slower reptation modes.
Presumably these CR events lead to a small enhancement of CLF, which can occur in a
marginally diluted tube. In contrast, if the same chains are placed in an environment of longer
chains, the CR is suppressed, and the CLF will occur only in the narrowest possible tube.
Therefore we would anticipate an increase in the terminal relaxation time for short chains placed
in a long chain matrix, especially for short chains of only a few entanglements where CLF
effects strongly affect the terminal time. This may give a qualitative explanation of the
observations of Matsumiya et ‘&lwho measured such a retardation, though more work is
needed to investigate this. In particular, due to constraints on time and resources, the
simulations we present in this paper do not cover the required range of parameters to investigate

this point.
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In the next section we will further increase complexity of the constraint release environment by
permitting motion of previously fixed entanglements. We thereby converge to the case of probe

chains relaxing in a binary mixture with two distinct rates of constraint release.

6.4. Systems with two moving tubes.

In this section we discuss the relaxation of probe chains constrained by entanglements with
two finite lifetimes. As a representative case of these systems, we analyze probe chains
dispersed in a binary blend with shorter chains having fixed CR time and with long chains. The
constraint release time of long chains is varied over the broad range of values (see system#4 in
Figure 3. Thus, by increasing constraint release time of long chains the system discussed in

this section is evolving from the equivalent to system #2 to the system #3 (in Figure 2).

In section 6.3 we have concluded that the total friction of the thin tube constrained by the

permanent fat tubéyr’, is determined by a combined contributions frégmandd:.

In order to determine all contributions to the total fat tube friction coefficientwe consider

two extreme cases with respect to ratio between constraint release rates. In the first scenario
lifetimes of the fat tube entanglements are the same as those of the thin tube. In this case we
only have a single thin tube and should obtainequal tolTr derived in equatioi4. On the

other hand if lifetime of the “slow” slip-links, zcr 7, is much larger than those of the fast slip-

links, zcr 1T, the total friction coefficient of the fat tube should be dominated by the slower CR
motion of the fat tube constraints.

In order to interpolate between these limits, we follow a similar reasoning to the derivation of
equationE4. The fraction of slow slip-links per chainfiand by analogy with equation 3 these

provide a friction per chain bead of:

f
é/CR,FT :TN_' (10)

where Rt is the typical hop amplitude from the fat tube CR event. In Appendix E we

demonstrate howrh depends on timescale of the fat tube hopping and on blend composition.

The fraction of fast slip-links is 1-f and so the total friction per monomer from both chain

friction and thin tube CR events can be estimated using eqiGias:
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The friction for the fat tube motion can then be found by combining equation 10 (which gives
friction from slow CR events), where-his estimated in equation E10 (of Appendix E), and
equation 11 (which gives combined friction per monomer from both fast CR events and chain

friction). Hence, the total friction per bead due to fat tube motion is:

é/FT :CCRFT +§O,TI" (12)

For validation of the derived analytical equations, we run simulations of the probe chain
entangled with slip-links having two distinct lifetimess 7(=60)>>re, and a wide range of

tcrFE crTT- IN order to highlight terminal relaxation dominated purely by CR events in the fat
tube, we do not allow slip-links to diffuse out of the chain ends thereby prohibiting relaxation

by sliding motion of the chain (see Figure 14).

As a first stepwe verify the scaling of the jumping amplitude of fat tube segments at different
polymer concentrations. For this purpose we run simulations of the probe“dhaiad’ at
different concentrations, having slip-links with lifetimerFr, varying over a broad range,

whereaszcr 1=0.

In Figure 13 we demonstrate theoretical predictions of equation 12 compared with friction
coefficients obtained from simulating MSD of chain’s center of mass at the limit of t—oo (see
equation § The simulations are conducted with good statistics (1000 chains) and long

computation time (21 days

N —
Theory Nelube/f: OyCR:]"Z
106 i O simulations (N, ;=4)

—— theory (f=1)
O simulations (N, ;=8)
— 105A —theory (_f:0.5)
< simulations (N, . =20)
—— theory (f=0.2)

TCR,FT

Figure 13: Total friction coefficient of the fat tube in the binary CR environment. Comparison & the
theoretical predictions (solid lines) and the simulation results (markers). In the simulans, Ness=4, 8 and
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20 as shown by the red, black and blue symbols, respectively. Lifetime of fraction of slip-links rcrr = 0
for all the mixtures. Lifetimes of other slip-links, zcrFt, Vary over a broad range of values.

Comparison between theoretical predictions (equation 12 at the limi¢raf— 0) and
simulations in Figure 13 is quantitatively good over the entire range of ptobketl These
results demonstrate that the jumping amplitude of fat tube segments scaleg &SstHNilar

to the assumption of the tube dilation thedry.

Theoretical predictions of the terminal relaxation for freely reptating chains entangled with two
types of finite lifetime obstacles can be computed by assuming independence of Rouse motion

of the fat tube, with respect to reptation of the thin tube and chain along the fat tube:

1 1 1
@ L e (13)
ry)  Ter T,

where longest relaxation timeff) representing the reptative motion of the thin tube and the

chain along the fat tube is computed using equation 9 with friction coeffigiéhtwhich
includes the effects oflip-link friction as shown in equatio@8. We note that the above
mentioned reptative motion of the thin tube can only be considered when thin and fat tube exist:

TCRTT> Te, @aNdrcr e 7cr,7T AN NUMber of slw entanglements is sufficient to form fat tube.

The longest relaxation time due to CR Rouse motion of the fat tube is computed in analogy

with equation 5 as

N ?b?

Ter = m Crrs (14)

where the friction is computed in Equation 12. In appendix F we propose a simple correction

of the termrr to avoid double counting of the relaxation mechanisms.

In order to validate equatieri2 and 14, we run simulations of probe chains constrained by
different ratios of slip-links with two distinct lifetimegr =74, {=60) andwcrrt. AS in the
simulations presented in Figure 11(a), the slip-links are not allowed to slip through the chain
ends and thus chain relaxation is only due to CR motion of the thin and fat tubes.

In Figure 14(a,b) we compare the simulation results and the theoretical predictions. Here, upon

increasingcrFt, termination by effective thin tube motion combined with Rouse chain motions
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at .crrT1crTT IS taken over by the effective fat tube motion with a broad transition zone in

between.
10° . . (a) . .
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Figure 14: Comparison of the theoretical predictions (solid lines) and the simulation results (marks}.

(a) Total friction coefficient of the fat tube in the binary CR environment with zcr r=14,5(=60) and various
zcrrFT. (D) Longest endto-end vector relaxation time due to CR motion of the fat tube (equatiori4),

normalized by zcrrt. Inclined black solid line corresponds to extreme case when all entanglements héve

same lifetimezcr1r. Arrows show longest relaxation time of the shottrcr m=7qs (=60), and probe chains,
7dp =36280, in no CR cas€l he fractions of the slow slip-links, f=0.2, 0.5 and 0.8 as indicated bjack, blue

and green symbols, respectively. Color code in (a) and (b) is the same.

In order to validate equation 13 we run simulations of the probe chains constrained by different
ratios of slip-links with two distinct lifetimesgr rrandzcr Fr. In these simulations the slip-links

can freely diffuse out of the chain ends thus permitting chain relaxation by reptation and CLF.
In Figure 15 we compare simulation results of this model with the theoretical predictions of

equation 13.
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Figure 15: Longest relaxation time of the endto-end vector of the probe chain with free chain ends in binary
CR environment of different compositions. The theoretical predictions (equatiod3) shown by solid color
lines are superimposed with the simulation data (markers). In all mixtures lifethe of entanglements with
short chains zcr77=60, whereas all entanglements with long chains have lifetimegcrrFr>7zcr1r. The
lowermost horizontal black solid line corresponds to extreme case when all entanglemehts/e the same
lifetime and relax by the effective thin tube motionzp?; the uppermost— affected by CLF reptation of the
probe chain in the fixed thin tube. Arrows show longest relaxation times ohe short chains,zcr 7=74,s=60,
and probe chain in no CR casezgdp =36280.

In Figure 15, all possible longest relaxation times depending on characteristic times and
fractions of the fast and slow entanglements are localized between two horizontal black solid
lines designating theoretically predicted terminal relaxation due to CR motion of the thin tube

and chain reptation along the thin tube shortened by CLF, respectively.

Unlike the systems discussed in sections 6.2 and 6.3 the data points show a very broad shoulder
spanning the ranger T<tcrr<tdp. This can be explained by a more complex correlation
between all involved relaxation mechanisms, that significantly blurs separatmisingle

dominant relaxation mechanism from the analyzed combinationrs of zcrrrandzd,p.

Comparison between the simulations and the theory can be characterized as quantitatively good
at all probedcr . However, the quality of prediction varies depending on composition of the
CR environment. The observed slight discrepancies at the right-hand side in Figure 15 are
consistent with those observed in the transition zone in Figure 12, which, in turn, are consistent

with slight discrepancies in Figure 10(a).

To summarize, in this system with probe chains constrained by two types of entanglements,
appearing and disappearing at constant frequenciestiE 1/60 and Xtrpi<l/tcr T, the
terminal relaxation of the chain can be determined by one of the following scenarios:

43



() If zcrET ~ cr1T then relaxation terminates by effective CR motion of the single thin
tube. In this case depending on the ratio betweesndzq p terminal relaxation can also
be dominated by chain reptation along the thin tube;

(2) If Zap>>1 andecr T<tcr F1<td,p the relaxation terminates by combination of the effective
CR maotion of the fat and thin tubes;

(3) If zcrFT>74,p the relaxation terminates by the correlated reptative motion of the chain
along the thin tube and CR motion of thin tube along the fat tube. This scenario is
equivalent to the transition zone in Figure 12, described by scenario 2 at the end of

previous section.

7. Conclusions
In this paper we have solved a set of simple problems for understanding the effect of CR on the

relaxation dynamics of entangled chains. We have proposed and verified a method for
predicting the effect of several CR environments on the relaxation of the-end-vector of

probe chains in well controlled “model systems” containing slow chains and/or fast relaxing
chains. Experimental data have been confronted with simulations 8gthmodel, which was

later used as a benchmark for validating predictions by a detailed tube model. For the latter, we
have folloned the CR picture reported by Viovy et &f.and implemergd and refined the
effective fat tube friction and the CLF contribution in the analyzed CR environments based on

ideas of Read et &.The main results are as follows:

- The SSpmodel is capable to simultanebugpredict the viscoelastic and dielectric
relaxations of monodisperse and binary melts of linear polymers using the same set of
parameters consistent with those used in previous works. It is thus a valid benchmark

for testing higher level (in the sense of coarser description) tube theories.

- The proposed theoretical framework, based on refined tube theory, quantitatively
captures results &Spsimulations of chain dynamics in various CR environments. This
good agreement between tube theory and the SSp model predictions gives some hope
that these seemingly different approaches can be reconciled and unified. Specifically,
in Appendix G, we summarize some key results in terms of the tube model parameters

to aid comparison with the experiments.

44



- Our theoretical predictions in line with experimental observations of Matsumiya and
co-workers® demonstrate that CR does contribute to dielectric relaxation of linear probe
chains. We have also shown that the longest relaxation time of thte-end-vector of
the probe chain is in fact affected by dynamics of all topological constraints with a

lifetime shorter than thehain’s own bare reptation time shortened by CLF.

Finally, the SSp model can serve as a versatile research tael, idealized numerical
experiment”’, providing detailed information on individual relaxation mechanisms which can
be turned on and off at will, and suitable for further developing current understanding of multi-
chain effects in tube models, applied to systems with complex constraint release environments,
i.e. polydisperse in chain length and even architecture. The methodology developed in this

work can be easily extended to include a larger number of constraint release rates.

Appendix A: Mapping dilution effects in tube and SSp models.

In the limit of point-like slip-springs (in which the restraining spring is infinitely stiff) we might
expect the number of beads per entanglement in the tube model representationtoNasN

(the average number of beads between slip-springs). However, since the restraining springs in
SSp model have a finite spring constant, the slip-links explore a finite volume and this
effectively smooths the mean path of the tube, so that chain beads need to travel a shorter
curvilinear distance to relax by reptation. It also reduces the plateau modulus, because the
chains are less constrained overall. Both of these effects can be interpreted as an increase in
the effective number of beads per (tube) entanglemeniTh¢ analysis leading to Eq 28 of

ref23, for springs uniformly distributed along the chain, indicates the effective enhancement
factor with respect to the modulus {8+ 4n_ , where N, = N,/ N, . is the ratio of number of

beads in the virtual spring to the beads between slip-springs. In what follevehall take this to be

the correct enhancement factor in the present SSp simulations, i.e.

N, = Ng ey 1+4ng (A1)

The number of entanglements along the tube is defined as Za3MiN\the “standard” SSp

model parameters (see section 4), usingead and, N=0.5, this gives N=4.89.
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One corollary to this discussion, particularly relevant to the blend calculations, concerns the
effect of dilution of slip-springs on the effective tube dilution. As the number of constraining
slip-springs decreases, they become more “point-like” with respect to the length scale of the
tube diameter. If the slip-springs are diluted by a factor f, so thaf)NNe 4f , then we can
define a tube dilution factog, such that Mf)=Né/¢. In general it is not true for the SSp model

thaty =fexactly. Instead, using the previous equation, we find:

1+ 4
b= N, ()N, ()= f_v1++4;s, (A2)

S

where we assumesNepresenting stiffness of virtual springs, to remain constant at different

concentrations.

In our simulations of experimental systems, constraint release is always modeled by a pairwise
connection between slip-links. This may be expected to give an effective dilution exponent of
d=1 in the equivalent tube theory. This dilution, however, applies to the slip-link dilution factor

f. Hence, the tube diameter dilution of the varigbimplied by equation A2 is very marginally
weaker than implied by an exponent of d=1, though it approaches exponent of d=1 f@r small

when the slip-links become equivalent to point-like slip-links.

Appendix B : Slip-link friction.
When comparing the predictions of equation 1 to our data for the terminal relaxation time of

chains within the SSp model, we found evidence that the slip-springs themselves provide a non-
negligible contribution to the effective friction for along-the-tube motions, i.e. to both reptation
and CLF. This effect could be reduced by increasing the number of Monte Carlo hopping
attempts per time step. In all results preseimtezkction 6 we use 10 attempts per slip-spring,

per time step (this accelerates the terminal relaxation, but increasing further had no significant
effect). We believe, however, that there remains a slip-link contribution to the friction which is
intrinsic to the simulations, most likely arising from the use of Monte Carlo hops between beads
in the limit where the stiffness for the virtual springs is significantly greater than the stiffness
of the spring between beads. In this limit, slip-link hops to adjacent beads are relatively unlikely

events in the Monte Carlo scheme, because adjacent beads are usually further away than the
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typical fluctuation volume of a virtual spring. As a result, a successful, permanent hop to an
adjacent bead typically needs to wait for a favorable local rearrangement of the chain, bringing
adjacent beads into the locality of the sifping. Hence the “hopping time” for the beads is

slaved to the chain motion, and this gives rise to larger than anticipated slip-link friction.

In this Appendix we present a simple analysis of the slip-link friction, obtaining the (perhaps
surprising) result that the slip-link friction per chain-bead, for along-the-tube motion, is almost
independent of dilution. The anticipated reduction in friction from fewer slip-springs is
compensated, almost exactly, by the increased number of hops between monomers required to
allow motion along the fatter tube. As a result, the effective friction per bead for along-the- tube

motion in a diluted tube can be written as:

f

;O,tube = ¢

;0,SL + é/O (Bl)

where ¢ is a constant governing the effective friction per bead from slip-links, in the

undiluted tube and is the monomeric friction. We then replace equation 1 with:
7y =3Kg Z7xf (Z) (B2

where Kg = {0/ ¢ is the factor by which the along-the-tube motion is slowed down by

slip-link friction.

Below we derive a simple expression for slip-link friction contributions to along-the-tube
motion and its behavior in dilution. We suppose a Bifip-makes a “successful” and
uncorrelated hop to an adjacent bead on average every time Ats.. We note that Ats. may be
expected to be significantly larger than the hopping attempt time, since in the SSp model the
virtual spring stiffness is larger than the bead-bead spring stiffness. Thus, typically adjacent
beads are further away than the typical fluctuation volume of a slip-link, and even if a hop is
occasionally “allowed” to a high energy state on an adjacent bead, it will quickly be followed

by a correlated hop back. Thus, successful, uncorrelated hops require significant local

rearrangement of the chain.

Hops to adjacent beads allow the slip-link to diffuse back and forth along the chain. In time t

the mean square number of beads from its initial position will therefore be:
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n° = (B3)
So, the time required to hop Monomers (equivalent to motion of one diameter along the tube)
is:
t = NZAt,, (B4)
Hence, the effective diffusion constant along the tube contour is

2 N 2 2
p-&_ N _ b g
2 2NZAt, 2N Atg

This corresponds to a friction constant, per slip-link, of

kIBDT _ NZK% (B6)

Since there aredNsbeads per slip-spring, the friction constant per bead is therefore:

N, 2k TAtg
N bz

e,ss

é/O,SL = (B7)

Upon dilution of slip-links, Nssis increased by a factor 1/f, whilst Mcreases by a different
factor 1, as detailed in Appendix A. fand ¢ are almost, but not exactly, the same, so
consequently the effective friction per chain bead from slip-links is almost unchanged by

dilution, giving the factor £o,s/¢ in equation B1.

Appendix C: Friction for “fat tube” motion in SSp model.
We first reproduce the derivation of the effective friction coefficient for fat tube motion
proposed by Read and co-workéfs.

In the limit of smalltwcrr ({crT—0) the chain friction per bead must always remain
regardless of f. This condition is satisfied by introducing the additional chain friction

contribution,s:
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. 1 1 1
lim + =5
fer7T 0 (1— f )é,CRTI' + é,+ é/eff é/O

In this equatioicr 1T is defined for the fraction of blinking entanglements 1-f using equation

(€Y

3. {erris the effective friction coefficient due to the sliding motion of the chain projected on the
fat tube contour, &=¢Y2L. The theoretical expression for this projected motion can be derived
by recognizing that, in a system where reptation is the only relaxation mechanism, the escape
times of the chain from the thin tube and the fat tube are the same. Therefore, in the absence of

slip-link friction:
Cen LZFT = CoLz-

Thus, the effective friction per beddr the chain’s sliding motion projected on the fat tube

contour can be computed as:

_%o
¢

Next, by substituting equation C2 in equation C1 we can derive an expression for the additional

C:eff (C 2)

chain friction contribution per bead which ensures that at the limit of very fast CR events total

chain frictions remains equal {&:

_ %o
1-¢

It is possible to follow the same line of reasoning with the addition of slip-link friction and

- C3

careful consideration of dilution effects. We first note, from equation B1, that we expect the

effective friction for motion along the (diluted) fat tube to take the form:

A
¢

in which the first term £,s/¢ represents the friction from the fractibof slip-springs with

§é3) = go,SL + gfat (C4)

“slow” constraint release which define the fat tube. Any motion along the “fat tube” must
involve chain motion through these slip-springs, and so they contribute directly to the friction.
The extra friction{at represents all other friction contributions. In the limit when constraint
release from the “fast” slip-springs is extremely fast i.ecr—0 then these slip-springs

contribute no friction, and the only friction comes from the chain{i«eLo. In all other cases,
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we need to combine friction contributions from chain motion, constraint release and slip-link

friction in an appropriate way.

Following presented above arguments, we assume independence of transport processes for
motion of the chain along the thin tube and constraint release of the thin tube along the fat tube.

Hence

1 1 1
=—+
é,fat é/'l'l' é’eff

(C5)

where (o =(1— f){mTr +¢, represents the total friction for hopping of the thin tube

constrained by a fraction 1-f of blinking entanglements, and wljereepresents the
contribution of chain friction to the hopping motion. The frictim represents chain motion

along the thin tube, but rescaled to give the effective friction for the projected motion along the
fat tube in an analogous manner to the derivation of equation C2. The simple crossover formula
employed in eq.C5 provides a smooth transition between two regimes. The physics captured by
this formula is identical to that described eq.17 in Viovy et%in section 3n Read et al??

and eq.19 in van Ruymbeke e€&However, the latter one makes use of a more sharp transition

between different regimes implemented throu¢imax” function.

However, we must also include the contribution of slip-link friction to this motion, from a

fraction 1-f of slip-links, and so:

. §o+(1_ f) 0,SL
) ¢

where the slip-link frictiono,s.does not carry the extra factard because we are examining

Cer (C6)

motion along the undiluted tube. Finally, insisting tat (o in the limitzcr—0 allows us

to obtain:

_ é/o( 0 +(1_ f)go,SL)
(1_ ¢)é/o +(1_ f)é/O,SL .

- (C7)

These equations guarantee two important limits. When constraint release is fast, we obtain
equation Bl as the friction for motion along the fat tube. Conversely, in the limit of slow

constraint release such tliatr>> (er, we note thaftat ~ et and so:
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F()3,) _ %;0&_’_ §0 +(1; f) 0,SL
Cove (C8)

¢

This gives the friction for motion along the (undiluted) thin tube, including slip-link friction,
but rescaled to give the effective friction along the fat tube.

Appendix D: Determination of the effective tube for contour length fluctuations.

In this appendix we demonstrate how the effective tube diameter in which CLF motion takes
place is determined by the blend composition and CR timescale.

We first consider the timescale for CLF along the fat tube. Recognizing‘,“ﬁﬂad)btained in

equation 8 is the effective friction constant for chain motion projected onto the fat tube

coordinate, the timescale for CLF in the fat tube is obtained as the Rouse time calculated using

55,3) as the chain friction. This gige

N ?b?

T =
CLF, fat
37K, 1

¥ (D1)

In the limit of slow constraint release such t§4 = (&, +os)/# , We find 7oy o, = K 7o/ 6

where Kg, = ({0 +§O,5L)/§O is the factor by which the along-tube motion is slowed down by

SSp friction. This is exactly in line with the enhanced stretch relaxation time identified by Auhl
et al., (2009). Since both reptation and CLF along the fat tube are governed by the same friction

®

factor ¢;”, the whole dynamics is consistent with projection of the chain motion along the fat

tube, i.e. taking*= Zq: with CLF in the fat tube.

This conclusion remains valid unless constraint release of the thin tube is so slow that the thin
tube does not have chance to explore, locally, the fat tube within this CLF timescale. If this is
the case then there is not sufficient freedom for CLF to occur fully in the fat tube. The timescale
for local equilibration of these monomers is the CR Rouse time of their subsection of thin tube,

i.e.
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N. )’
= e |, D2
2-e, fat T ( N¢J ( )

wherelrris as given in equation 5. W ¢ <7¢r i then we expect CLF in the fat tube, i.e.
Z*= Za. This condition usually only breaks down in the limit of slow constraint release such

that To,r o = Ks 7r /¢ and wherel 1t ® {crpr in equation 2 so that:
2T crmr
Z-e,fat = 372'20[3R¢2 . (D3)

In this case, the conditiofy i, < 7¢ r 1y DECOMES a condition on the constraint release timescale:

. . 3rla?
Z =27, Terr < TCRKSLWR-

The other limiting case occurs where constraint release is so slodcfiat>> T so that no

significant constraint release occurs during the timesEglor CLF in the thin tube. Then,

CLF occurs dominantly in the thin tube afft= Z.

Intermediate between these two limiting cases is a regime in which contour length fluctuations

occur whilst the thin tube simultaneously undergoes constraint release Rouse motion. In this

case, CLF effectively occurs in an intermediate “supertube” defined by dilution factor ¢*,

which we obtain by equating, i; = 7cr iy With the replacememt = ¢ In this intermediate

regime,Z = Ng | N,. Putting all three regimes together:

2 2
3t atsk

z =Ly TerTT <TSL¢TR
. . 2 T 3rlalk 3r’al k
Z =2 T S S g < <t - (D)
CR™SL R
. 3r%al k
Z =Z TerTr >—2CR L1

For validating these theoretical conclusions, we run simulations of the chain dynamics with a
fraction 1-f of slip-links blinking with characteristic timerTr varying over a broad range of
values, while others are permanent but can slip along the backbone and thus can only disappear

if the probe chain releases its end from the corresponding slip-link by sliding motion.
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In Figure D1 for a broad range ofcrtr values, we plot simulation results of the longest
relaxation time of the entb-end vector of the probe chains. Theoretical predictions plotted as

solid color lines are computed using equation 9.

105 . chain reptation| : :chain reptation
along fat tube ) T yalong skinny tube
1 d\ 1
]
1
4
10 E : la: .
,Simulations &
8, | ——————"- itube theory:
e : : v f=0; ¢=0
X . A =0.2; ¢=0.23
103_ : TR\ 1 O =0.5; $=0.55
: : O f=0.8; $=0.83
I 1
TT Td,p
2
10 61 -|4| 121'-|O| 121 14‘-|
10° 10 10" 10" 10" 10

Figure D1: Comparison between theoretical predictions (lines) and simulation results (markers¥ the end-
to-end vector of a probe linear chain with N=132 constrained by blinking and permanent esmglements.
The lines show prediction of equatior® with different CLF regimes described in equation D4. The crossover
between different regimes is fitted using eq. D5 with parametef=0.25 (color solid lines) angs=1 (dashed
black lines). Fraction 1-f of blinking entanglements have the same lifetimecr1r. The lowest horizontal
black solid line represents terminal relaxation dominated by free Rouse motion tifie chain; the uppermost
— shortened by CLF reptation of the probe chain. Arrows show Rouse entanglement relaxatidime ze=
7r/Z? and longest relaxation time of the probe chainra;=36280.

To implement a continuous transition between various regimes derived in equation D4 we use
a simple crossover formula which in the limite&>>7 converges to f(Z*)=f(Z) but when

tcr<<t leads to f(Z*)=f(%) and at intermediate values we get f(Z*)=§2):

f(z) = f (AZ), (D5)
where
1 1 1
A + ] 5 g (D6)
CR _
"I | )
with the characteristic time
3r%a’ K T
T* — CR™SL*R D7
) (O7)



The theoretical predictions demonstrated in Figure D1 by color solid lines are obtained with
£=0.25. We also plot predictions wilt¥1 (black dashed lines) to demonstrate the effect of
fitting parametep.

We note that the crossover formula D6 is purely empirical and is solely used to capture the
onset of tube dilation from constraint release Rouse motion in an SSp model, and then arrest of
tube dilation as the fat tube diameter is approached. The exact physics of this transition is not
clear to us and th is one of the reasons why we demonstrate predictions with different
parametep in Figure D1.

Appendix E: Tube hop amplitude due to CR event.
Thin tube.

The analysis presented here below rationalizes the empirical mixing law (equation 2), which

was usedy Shivokhin et af*

When the constraint release time is long, the hop length, h, is expected to be proportional to the
typical tube diameter, hence:

h* =ageNb’, (E1)
where b=1 is the size of the Kuhn segment, @asidis a yet unknown prefactor. A previous
publication?* did not include the natural scaling witla iN either equation 3 or E1, and so

used a different variablech related taxcras Ar=acrNe. We determine value ofcr(=1.2)

by fitting simulation data in Figure 11(a).

Significantly, equation 2 is obtained under the assumption that equation E1 gives the hop size
independently of the constraint release timescale. However, if the constraint release timescale
is short, such that the local Rouse motion of the chain does not permit a significant change in
local chain configuration between CR events, then the expected hop length must be smaller,
limited by how far a monomer on the chain can move during the constraint release timescale.
This can be estimated by equating the constraint release timescale with the Rouse time of a

subsection of chain containinggamonomers, giving:

372k Tr
Neg = /—szé’o CR | (E2)
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The hop length is then expected to be of orbler CnCRb2 wherec is an, as yet unknown,

constant. In order to interpolate the hop length between the limits of short and long constraint

release time, we might use a simple crossover formula:

Cler

Now, using equations 3, E2 and E3 together, and adding in the direct contribution of monomer

1
hZ:b2£i+ 1 J . (E3)
crNe

friction, we find the friction per bead for the second mode of chain motion, through constraint

release hops:

Crr =Cerrr TS0
_2tkgT 1| 1 1| b o (E4)
b>  N.| N, ¢\ 37k Treg °

Because of the square root dependence:fmequation E2, the form of this equation E4 is

remarkably similar to that of equation 2. In fact, for the very specific choice

2
2 _ %cr
2

6r

equation E4 becomes exactly identical to equation 2 (where in equation 2, we use equation E1

C

for the hop size). It may be noted that the monomer friction contributes at two levels in equation
E4. Firstly there is the direct contribution frggmSecondly, the monomer friction can limit the
scale of the hopping during CR events. It is this second contribution which gives rise to the type
of crossover function captured in equation 2, rationalized in equation E4. More generally, we
can treat c as a fitting parameter, which we parameterize as:

2
Acr
2

c’=K
or

so that equation E4 becomes:

S =Gcrr TS0

27 k. T 202N 2b? . E5
:% 1+£ {O‘CR—ego +&, (ES)
atgNeb K KsT7cr

We find the best fit in the crossover region(ef (in the inset of Figure 11(a) by introducing

prefactor K(=0.36).
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Fat tube.

In the limit of extremely slow constraint release, such that the chain, and the thin tube have a
great deal of time for local rearrangement between fat tube CR events, we anticipate the typical
hop amplitude should follow the dilation of the fat tube diameter, i.e.

océRNeb2
¢

However, if the fat tube constraint release timescale is shorter, then the effective hop length

2 _
hFT =

(E6)

may be smaller, being limited by both chain friction and the friction from CR hops of the thin
tube. These prevent the chain and thin tube from moving a large distance during a slow CR

event.

The hop length for slow CR events can be estimated by equating the slow GBxfimeavith
the Rouse time (including total friction as given by equation 11) of a subsection of chain

containing &r,Frmonomers, so that:

’37[2k Tz,
Nerer = # . (E7)

The hop length is then expected to be of oftfgr~ CnCRFTbZ. In order to interpolate between

this and the limit of equation E6, we use a crossover formula:

1
1
hr :bz( + ¢N ] : (E8)

Cleger  Ar
If timescale of the slow constraint release is allowed to approach that of the fast constraint
release, then it is expected that the hopping length for “slow” CR events must be the same as

that for “fast” CR events, i.e. it would approach the equivalent of equation E3:

5 -1
M =b? L |- D0, 1 | (E9)
c\37%KgTrerer @irNg

In fact, settingrcrF=rcr 7T iN €quation E8 always underpredictscompared to equation E9,

but the discrepancy is within a of 2. This indicates that equation E8 captures the correct physics,

but with just a small discrepancy due to the fact that equations 11 and E7 assume that a
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continuous chain Rouse model is appropriate. This assumption breaks dowaras
approachescr 1t since only a few fast CR hops occur for each slow CR event. A very simple
interpolation formula, provides the correct scaling for laxge-T and guarantees the correct

result whencr r=rcr 1!

hIET = max(h§T o hIET(Z) ) (E10)

Appendix F.

In this appendix we propose a simple method to eliminate overcounting of relaxation

pathways which can ultimately cause overprediction of the longest relaxation times.
Thin tube:

A small overcounting of relaxation pathwaysbecomes apparent in the limit of small (zero)
constraint release timer in equation 4. In this limit, we require that the relaxation th‘rézé

from equation 4 should equal the Rouse tigeout there is a danger that the combination of
Rouse relaxation and reptation implied by equation 4 predicts a faster terminal time. Hence, w

use:

N%0® =
=—— (., F1
T 37Z2kBT§Tr (F1)

where the monomer friction ig; is marginally modified from equatid®s:

_ 2 N 2h2 -1
g‘l‘l’ zzszg’TZ 1+i M +§O(1_;J . (F2)
aleNZb K\ KkeTren 3k, Zf(2)

-1
1
The extra factof 1-———=| in this equation removes the overcounting of relaxation
3K, Zf (Z)

pathways and ensures that equation 4 reduces to the Rouss:twlgen constraint release is

fast. This correction factor is in some ways equivalent tc(iltheﬁ)_l correction factor present

for ¢+ in equation C3, as derived in rét .
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Fat tube:

The longest relaxation time due to CR Rouse motion of the fat tube is computed as

N 2b2 —
Ter = Wgﬁ ’ (F3)

where the friction is computed in a manner similar to Equation 12, but with a correction to
avoid, at an approximate level, the overcounting in Equation 13 of relaxation pathways between

motion along the fat tube, and constraint release motion:

]
~ ~ 1
é/FT = é’CR,FT + go,w‘r (]—_ 3kSLZfatf 7 j : (F4)

-1
1
The correction facto l—ﬁ—)* is similar to the factor from equati®i2, but now
3kSLZfatf Z

applied at the level of the fat tube.

Since there are fewer fat tube segments than thin tube segments, the correction inleduation
is more substantial than that applied in equd&2n There are evidently problems with this
approach for small volume fractions when the facterZ3f(Z*) approaches unity, but in this
limit the number of entanglements along the fat tube is less than one, and it ceases to be
appropriate to consider the existence of a fat tube at all.

Appendix G. Recast of key results in “tube model parameters”.

Most of the results presented in section 6, and in the Appendices, relate to comparison between
the tube model and the SSp model, and so all results are presented in simulation units. There
are also several specific complications arising from the SSp model itself, namely the issues of
slip-link friction, and effects of dilution, which might not be relevant in real polymer systems
(though there is certainly the possibility of equivalents, such as extra friction from
entanglements). One reviewer of this paper made a (very reasonable) request that some of the
rather complicated results be presented in “tube model parameters” to aid comparison with

experiments. We show this in two specific cases.

The “system #2” case, dealt with in section 6.2, corresponds to a dilute long chain in a matrix

of short chains, and it may be anticipated that the terminal relaxation crosses from reptation and
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contour length fluctuations, for long “short chains” and large values of zcr, towards terminal

relaxation via constraint release Rouse motion. In our theory, this crossover is handled by

equation 4 giving the terminal time :

1 1 1
W=—+—. Gl)
A S 5

This crossover function was sufficient for our simulated systems, in which the long chains have
rather few entanglements. More complicated crossover functions may be needed for the general
case of longer chains. In entanglement units, the reptation time for the long chains with number

of entanglement&, is given by equation 1:

Ty ZBZLTRf(ZL):‘?’ZiTef(ZL) (G2

The constraint release Rouse timedepends on the valuesmk, which depends on the length

of the short chain. In a real blend, there is in fact a spectrum of constraint release times, so we
can only make an approximation. Let us suppose that the terminal reptation time of the short

chains determined the constraint release time, and parameterize this a

_ SEZaER,B
Ter= —2 Tys, (G3

wheref is a parameter to be determined dnd is the terminal time of the short chains, with

Z entanglements, given by:

Z-d,s = ‘?’Zgre f (ZS) (G4)

Substituting from G3 into equations 5 and F2, and then rearranging gives:

(G
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The later terms in this expression handle the case where there is a crossover for very,small

towards unentangled chain Rouse motion. For largewe simply get the standard constraint

_ 2
release Rouse resufiyr —ﬂfd,SZL.

The results of section 6.3 for “system #3” may be considered to be relevant to long chains
entangled with other long chains (giving a fat tube) and with short chains (giving the thin tube).
The main result for the terminal time, equation 9, may be written as:

4(3)
* ) p

Tés) = 3¢ZET€ f (ZL , (GG)

0

*

where the functionf (ZL) switches between CLF in fat and thin tubes (see equation D4) and

the friction constant ratio determines whether chain motion along the thin tube or fat tube is

fastest, and is given by:

So 1
d
é/p (1_ ¢)§2R1T +(1_¢)71

0

gcm‘r ﬁfd,s 2 | 1,
= 1+~ (G8)
é/o Z-e K ﬂTd,s .

The first term in equation G7 gives diffusion along the fat tube, mediated by constraint release,

to (G7)

and

whilst the second term gives motion along the thin tube.
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