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Abstract 

In this study we propose and verify methods based on the slip-spring (SSp) model (Likhtman, 

2005) for predicting the effect of any monodisperse, binary or ternary environment of 

topological constraints on the relaxation of the end-to-end vector of a linear probe chain.  For 

this purpose we first validate the ability of the model to consistently predict both the viscoelastic 
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and dielectric response of monodisperse and binary mixtures of type-A polymers, based on 

published experimental data. We also report the synthesis of new binary and ternary 

Polybutadiene systems, the measurement of their linear viscoelastic response, and the 

prediction of these data by the SSp model. We next clarify the relaxation mechanisms of probe 

chains in these constraint release (CR) environments by analyzing a set of “toy” SSp  models 

with simplified constraint release rates, by examining fluctuations of the end-to-end vector. In 

our analysis, the longest relaxation time of the probe chain is determined by a competition 

between the longest relaxation times of the effective CR motions of the fat and thin tubes, and 

the motion of the chain itself in the thin tube. This picture is tested by the analysis of four model 

systems designed to separate and estimate every single contribution involved in the relaxation 

of the probe’s end-to-end vector in polydisperse systems. We follow the CR picture of (Viovy 

et al., 1991) and refine the effective chain friction in the thin and fat tubes based on (Read et 

al., 2012). The derived analytical equations form a basis for generalizing the proposed 

methodology to polydisperse mixtures of linear and branched polymers. The consistency 

between the the SSp model and tube model predictions is a strong indicator of the compatibility 

between these two distinct mesoscopic frameworks. 

 

List of variables and functions 
In order to help the reader we summarize and describe all variables and functions used in the 

text in the table below. 

Variable or function Description 

Relaxation times 

Ĳd,s 
Longest relaxation time of the short chains 
in section 3 obtained by simulations with 

no constraint release 

Ĳd,p 
Longest relaxation time of the probe 

chains in section 3 obtained by 
simulations with no constraint release 

Ĳd 
Longest relaxation time of the probe 

chains with no constraint release predicted 
by eq.1 
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f(Z) 
Correction to the reptation time due to the 

effect of contour length fluctuation 

ĲCR 
Lifetime of the slip-links in case when all 
of them are blinking with same frequency. 

ĲCR,TT 
Lifetime of slip-links blinking with higher 

frequency in the case when there are at 
least two distinct frequencies. 

ĲCR,FT 
Lifetime of slip-links blinking with lower 
frequency in the case when there are at 

least two distinct frequencies. 

ĲCRR,TT 
The longest relaxation time due to the CR 

Rouse motion of the thin tube 

ĲTT 
Relaxation time of the probe chain due to 
the effective CR motion of the thin tube 

ĲFT 
Relaxation time of the probe chain due to 

the Rouse CR motion of the fat tube 

 ሺ૛ሻ Longest relaxation time of the probe chain࢖࣎
having all slip-links blinking with the 

same frequency 

 ሺ૜ሻ Longest relaxation time of the probe chain࢖࣎
having some slip-links blinking with 

single frequency while others are 
permanent 

 ሺ૝ሻ Longest relaxation time of the probe chain࢖࣎
having slip-links blinking with two 

distinct frequencies. 

 

 

Friction coefficients 

ȗCR,TT 
Friction due to CR hopping of the thin 

tube in 3D space (section 6.2) or along fat 
tube (sections 6.3, 6.4) 
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ȗCR,FT 
Friction due to CR hopping of the fat tube 

in 3D space 

ȗTT 
Total friction of the thin tube motion in 

3D space 

ᇱࢀࢀࣀ   

Total friction of the thin tube constrained 
by a fraction of slip-links with infinite 

constraint release time. 

ȗFT 
Total friction of the fat tube motion in 3D 

space ࣀ૙࢓ࢉ Center of mass friction of the probe chain. 

 Friction contribution to longitudinal chain ࡸࡿ૙ǡࣀ
motion due to hopping slip-links. 

ȗeff 
Effective friction of the chain in its 
projected motion along the fat tube 

contour 

ȗ+ 

Additional friction contribution due to the 
blinking nature of the topological 

constraints in the case when there are at 
least two distinct CR rates. 

 ሺ૜ሻ Total friction coefficient of the probe࢖ࣀ
chain with some slip-links blinking with 

constant frequency and others with 
infinite constraint release time. 

 ሺ૝ሻ Total friction coefficient of the probe࢖ࣀ
chain with slip-links blinking with two 

frequencies ĲCR,TT and ĲCR,FT. 

 ࡰࡿࡹࣀ

Obtained from simulated MSD of chain’s 
center of mass total friction coefficient of 
the probe chain constrained by slip-links 

blinking with the same frequency and 
moving in 3D space. 
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1. Introduction. 

The basic tube model initially proposed by Doi, Edwards and de Gennes4,5,8 describes the 

dynamics of a probe chain in a fixed environment of topological constraints. It is a “single 

body” description, with the meaning that such an expression carries in physics and mechanics. 

On the other hand, the real situation is clearly a simultaneous multibody relaxation, with 

complex feedback effects.  Not surprisingly, a correct description of the effect of multi-chain 

environment on the probe chain relaxation still remains a challenging issue. 

The first models implementing the effects of constraint release (CR) considered the tube as a 

Rouse chain with segments having the size of the tube diameter.3,12 Mobility of the segments 

was considered to be inversely proportional to the lifetimes of the entanglements. We refer to 

these models as tube rearrangement models. An alternative picture for modeling the effect of 

constraint release (CR) on stress relaxation was introduced by Marrucci17. Marrucci suggested 

the previously relaxed fraction of the melt should be considered as an effective solvent for still 

oriented chain segments. This so-called dynamic tube dilation (DTD) theory pictures an 

effective tube diameter continuously widening in the course of stress relaxation and thereby 

facilitating chain motion. Doi and co-workers in ref. 9 proposed to combine both CR pictures 

and defined the effective tube diameter as a crossover between mean squared displacement of 

the free chain and motion of the tube described by Rouse dynamics. Finally, Viovy and co-

workers28 further extended the original tube rearrangement picture for the case of binary linear 

melts. They proposed that CR motion of the tube should be effectively separated in two regimes: 

(i) CR Rouse motion, which is only relevant in the diffusion scale limited by the fat tube 

diameter and (ii) further relaxation of the tube governed by CR reptation of a thin tube along 

the fat tube contour. 

 

Regardless of the CR picture used, most authors have adopted the assumption of independent 

contributions from the tube and chain motions. Thus for computing the overall stress relaxation 

function, the two contributions are then combined by a multiplicative mixing law. 

 

The ability to experimentally separate the relaxation of a probe chain in its tube from the 

relaxation of the environment is an important issue since it can help discriminate between CR 
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models. Whereas linear rheology measurements conflate all relaxation mechanisms (reptation, 

fluctuations and constraint release) in a single response, other techniques can distinguish 

between different effects. Among those, dielectric spectroscopy measures the relaxation of 

dielectric permittivity İ(t) usually from the frequency response through Fourier analysis. This 

technique is attractive as a complement to rheological measurements and is widely used to study 

relaxation dynamics of polymers. Its limitation comes from the requirement that non canceling 

electrical dipoles have to be present along the chain. For the so-called “type-A” polymers 

having dipoles parallel to the chain backbone25 relaxation of an induced polarization of the 

chain is equivalent to the fluctuation of its end-to-end vector. As an alternative to this method 

C.-Y. Liu and co-workers16 proposed an experimental probe rheology method for studying 

relaxation contributions due to the tube motion. In binary melts they suppressed the relaxation 

contribution from the environment by diluting short probe chain in an excess of much longer 

matrix chains. By assuming that relaxation spectra of the probe and matrix are uncoupled, they 

subtracted the relaxation function of the probe and considered it as being unaffected by CR. 

Despite its obvious theoretical value, application of this method is limited in terms of the probe 

concentration. The concentration of the probe should be very low in order to avoid CR effect 

from entanglements with chains of the same molecular weight. Moreover, the matrix should 

not be affected by dynamics of the probe. This can be tested by comparing the terminal 

relaxation time of the matrix with and without the probe. On the other hand the low 

concentration of the probe is automatically reflected in the low intensity of the subtracted signal. 

 

H. Watanabe and co-workers in various publications have extensively used a combination of 

linear rheology and dielectric spectroscopy on Polyisoprene (PI) (typical type-A polymer) for 

understanding the effect of the environment on the viscoelastic relaxation of the polymer. As 

opposed to viscoelastic relaxation, no dielectric relaxation of the chain is activated by the 

motion of its environment, except for a contribution from chain fluctuations at the edge of the 

dilated tube.29 Hence, the tube survival fraction, ĳ’(t), can be directly extracted from the 

dielectric relaxation function Ɏ(t). The authors find that viscoelastic relaxation is linked to 

dielectric relaxation in a straightforward way for monodisperse linear PI: 

µ(t)=G(t)/GN
0=ĳ’(t)1+d, where GN

0 - plateau modulus and d (=1..1.3) is the dilation exponent. 

This confirms a direct relationship between two relaxation functions. 
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The effect of environment represented by constraint release (CR) on the relaxation of the end-

to-end vector in monodisperse star and linear polymers and binary blends of linear chains has 

been addressed by many authors but a clear picture has yet to emerge. The most recent 

publications include: 

- In ref.19 authors applied a discrete slip-link model (DSM) in order to predict 

experimental data of the viscoelastic and dielectric relaxation functions in monodisperse 

melts of linear and star polymers and binary mixtures of short and long linear chains. In 

agreement with ref.11 they concluded that the end-to-end vector autocorrelation function 

of monodisperse linear chains is not affected by their CR dynamics. In contrast, 

relaxation of the end-to-end vector of monodisperse star polymers is drastically 

influenced by constraint dynamics. 

- Matsumiya et al.18 investigated the effect of CR on the dielectric relaxation of short PI  

chains with number of entanglements ranging between 4 and 36, diluted in an excess of 

much longer chains. They concluded that the end-to-end vector relaxation time of all 

the diluted short chains is significantly delayed by comparison with bulk probe systems 

but is faster than expected from utilizing full dynamic tube dilation theory. 

The main objective of this study is to understand the effect of various molecular constraint 

dynamics on relaxation of the end-to-end vector of long linear probe chains. In contrast with 

Matsumiya et al.18, we will focus primarily on situations in which a probe chain is placed in an 

environment in which a fraction of the constraint release events are at a rate faster than the 

reptation time of the probe chain (Matsumiya et al. focus on slower CR environments).   We 

approach this problem by utilizing the Likhtman’s slip-spring (SSp) model.13,21 This model 

naturally includes stress relaxation mechanisms such as reptation, contour length fluctuations 

(CLF) and constraint release (CR), which are also implemented in the tube-based models. The 

advantage of this single-chain model is that it also allows for independent control of each of the 

stress relaxation mechanisms. By using this convenient feature we progressively increase the 

complexity of the constraint release environment for the probe chain by considering four model 

systems which are specifically chosen in order to highlight the various CR contributions to 

relaxation of the end-to-end vector. We successively create experimental systems which 
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approximate these idealized model systems, and analyze SSp simulations of the idealized 

models. 

We first validate the SSp model by simultaneous comparison with experimental rheo-dielectric 

relaxation data from the literature and with linear rheology data for specially prepared binary 

and ternary mixtures of linear chains with well separated molecular weights. Next, from 

simulations of the SSp model, we extract the longest relaxation times of the end-to-end vector 

of the probe chain in different constraint release environments and analyze the results in the 

frame of the tube model. To succeed in this step we rely on methodology proposed by Read22 

and later utilized by Shivokhin et al.24 for computing the total friction coefficient for motion 

along the fat tube in star/linear blends. In this work we aim to further extend this approach and 

compute longest end-to-end vector relaxation time of the probe chain in similar and even more 

complex CR environments. 

It should be emphasized from the outset that we are seeking in this work to relate the results 

obtained from the SSp model, to the corresponding description in the framework of the tube 

model. These two modelling frameworks are not identical, and it is not a priori obvious that 

ideas based on the tube model (e.g. for motion along a “fat tube”) will apply to SSp simulations. 

So, this work constitutes an interesting test of the correspondence between these two 

mesoscopic approaches to describing the motion of entangled chains. 

As this study is fundamentally an illustration of a methodology that can be extended to systems 

with variable CR complexity, we allow some simplifications that do not influence the final 

objective but significantly facilitate derivation of the final equations. In our analytical equations 

we do not account for the distribution of CR times in every component of the mixture. Instead, 

for every component of the blend, we only consider the largest possible constraint release time 

represented by its reptation time. 

This paper is arranged as follows: in the methodology section we introduce the four main model 

systems characterized by dominant constraint release contributions. In the experimental section 

we describe details of the synthesis and molecular structure of the materials. We also provide 

details of the small angle oscillatory shear measurements and data processing. The theoretical 

section describes the necessary details of the SSp model. In the results and discussion section, 

we validate the SSp model by comparison with the dielectric and linear rheology data. Next, 

individually for every model system we propose straightforward analytical equations predicting 
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the corresponding longest relaxation times and validate them by stochastic simulations of the 

accordingly modified SSp models. In the conclusion, we summarize the key results of this study 

and highlight possible perspectives.  

 

2. Methodology 

For analyzing the effect of a binary CR environment formed by short and long chains, we adopt 

the picture of thin and fat tubes constraining lateral motion of the chain. The thin tube is formed 

by entanglements of a given probe chain with all chains, whereas the fat tube includes only 

entanglements with longer life time.  

We propose a picture where the longest relaxation time of the probe chain end-to-end vector is 

determined by a competition between the longest relaxation times of the effective CR motions 

of the fat and thin tubes as well as the motion of the chain itself in the thin tube (see Figure 1). 

In order to test this picture we define 4 model systems which are specifically selected in order 

to separate and estimate every single contribution involved in the relaxation of the probe’s end-

to-end vector in the binary blend system (see Figure 2). 

 

Figure 1: Schematic representation of a probe chain in a binary CR environment (system #4). Topological 
constraints respectively due to the mixed entanglements with short and probe chains vs. entanglements 
with probe chains only are illustrated by the black thin tube, and the red fat tube. The end-to-end vector 
of the probe chain is shown by the solid black arrow. 
 

 

Probe chain in fixed environment: 

In the 1st system we dilute probe chains in the sea of very long chains, which are not relaxing 

at the time scale of the observations (below referred to as “gel”). In this system probe chains 

are not entangled with other probe chains, but only with the “gel”. Hence, CR is essentially 

turned off for the probe chains. The only possible relaxation mechanism is by reptation motion 

R (t) 
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of the chain in the thin tube, with contour length fluctuations. This mechanism is of course also 

present in all other systems. 

Probe chain inside single moving tube: 

In the system #2 all entanglements of the chain are blinking with the same finite frequency. 

Therefore constraint release dynamics is competing with chain reptation along the thin tube. 

 

Probe chain in thin tube moving inside fixed fat tube:  

The 3rd system is the mixture between first two systems, where a fraction 1 – f  of entanglements 

of the probe chain are created by the short chains and the rest are created by the gel. By doing 

this, and assuming that long chains of the gel are effectively immobile at the timescale of 

relaxation of the probe chains, we get a controlled amount of CR. This mobile fraction of 

entanglements leads to CR motion of the thin tube, itself partially constrained by the fat tube 

(entanglements with gel chains). 

Probe chain in moving thin and fat tubes: 

In the 4th system the probe chain is entangled with short and long chains having two distinct 

CR rates. A fraction f of the probe chain’s entanglements is with longer chains. The 

complementary fraction 1 – f  with short chains is the same for the 3rd and 4th systems.



11 

 

  

Figure 2: The four model systems of the probe chain in the “idealized” single and binary CR environments 
schematically shown in tube and slip-link model representation. System 1: probe chain in a “gel” (infinite 
CR time); System 2: probe chain with varying CR time. System 3: probe chain with varying and infinite CR 
times. System 4: probe chain with short and varying CR times. At the upper part of all pictures a probe 
chain is shown by the red solid line, slip-links with “infinite” CR time are shown by filled black squares. 
Empty blue circles represent slip-links with short CR time and empty green triangles-varying CR time. At 
the lower part of all pictures the respective tube model representation is shown. The thin tube is illustrated 
by solid black lines; fat tube is shown by solid red lines. Inset: (top right) locating systems 1 – 3 on a “Viovy 
diagram”. Arrows indicate increasing rates of constraint release. 
 

The first three systems may be located on the “Viovy diagram” for binary blend rheology as 

shown in the inset of Figure 2.22  On the horizontal axis is the number of entanglements in the 

short short 
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fat tube, and so to the left of the diagram no fat tube entanglements are important and there is a 

single constraint release rate. The vertical axis, the “Graessley parameter” is a measure of the 

rate of constraint release.  Hence system 1 corresponds to just one (thin) tube and no constraint 

release – the bottom left of the Viovy diagram.  System 2 corresponds to one thin tube and 

varying CR rate, which is equivalent to traveling up the left hand side of the diagram. We may 

anticipate that one transition to be encountered involves a competition between reptation along 

the thin tube and CR of the thin tube.  System 3 corresponds to a situation where fat tube 

entanglements are important, and we may anticipate at the least a competition between reptation 

along the thin tube, and motion along the fat tube mediated by constraint release. 

In this study, we use the single-chain SSp model for simulations of equilibrium polymer 

dynamics.13 This model allows the estimation of the stress relaxation and end-to-end vector 

autocorrelation function of every blend component individually without relying on any 

subtraction procedure. 

First, we validate the model by simultaneous comparison with published data of the stress 

relaxation and dielectric relaxation in nearly monodisperse and binary mixtures of linear 

polymers. Next, we use our own rheology data in order to estimate the end-to-end vector 

autocorrelation function of the probe chain in different model systems by means of the SSp 

model. Since simulations of the end-to-end vector autocorrelation function can be conducted 

for any type of polymer we are not restricted to type-A polymers traditionally used in the 

dielectric spectroscopy experiments. 

In order to obtain the longest relaxation time of the end-to-end vector in every system we fit the 

respective end-to-end vector autocorrelation function to a set of Maxwell modes using RepTate 

software and extract the relaxation time of the longest mode. 20 

3. Experimental section 

3.1. Materials 

The synthesis details for the linear Polybutadiene (PBd) samples with Mw~6.9kg/mol 

(PDI=1.08, Tg=-97oC) and Mw~50kg/mol (PDI=1.06, Tg=-95oC) with 90.3% and 90.6% of 1,4 

addition, respectively, have been reported in ref.24 
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Linear PBd with Mw~305k (PDI=1.08, Tg=-96oC) with 93.2% of 1,4 addition was purchased 

from Polymer Source, Inc. 

The glass transition temperatures are measured using Mettler Toledo DSC 821e at heating rate 

10oC/min. 

The 1,4 addition levels of the samples were measured by 1H-NMR, via spectra recorded on 300 

MHz Bruker spectrometer at 25 °C. 

All the experimental details including the NMR spectra, SEC chromatograms, and DSC 

thermographes  are provided in the supporting information. 

 

Throughout the study, samples with molecular weights 6.9k, 50k and 305k will be referred to 

as short, probe and “gel” chains, with molecular weights Mw,s, Mw,p and Mw,G, and their longest 

relaxation times Ĳd,s, Ĳd,p, Ĳd,G, respectively. In the second half of this paper (section 6 and 

Appendices) we analyze the effect of the “simplified” CR environment imposed on the 

dynamics of the probe chain by the short chains, “gel”, and other probe chains. 

All blends analyzed in this study are fully miscible. They are prepared by mixing in an excess 

of toluene. After complete dissolution of the polymer by continuous stirring during 1-2 days 

the solvent is evaporated in a vacuum oven for at least 7-10 days until the sample has less than 

0.1% of solvent left (as measured by weight loss). 

3.2. Measurements 

In this section we present results of experimental SAOS measurements for all model systems 

introduced in the methodology section. All measurements are done using an ARES (TA 

Instruments) rheometer equipped with a plate-plate fixture of 8 mm diameter.  The linear range 

of sample deformations was confirmed by conducting strain-sweep measurements. 

After conducting frequency-sweep measurements at 25, 0, -25, -50 and -70°C under nitrogen 

atmosphere, we apply the time-temperature superposition principle (TTS) for constructing 

master curves covering a much broader range of frequencies as compared to the individual 

master curve segments  measured at constant temperature. Unlike many publications which 

used adjustable shift factors for every measurement, we determine shift factors using the WLF 
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equation log10aT=-C1(T-Tref)/(C2+T-Tref), where parameters C1=3.63, C2=167.11 K at Tref=25°C 

are kept the same for all samples. 

 

By introducing iso-free-volume correction to the horizontal shift-factors we account for 

differences in components’ Tg due to their different molecular weights: log10aT=-C1(T-

Tref+CTg/Mw)/(C2+ T-Tref +CTg/Mw), where CTg/Mw = (Tg
inf − Tg) and CTg = 13 is an empirical 

Flory−Fox parameter that is related to the free volume for a given polymer chemistry.10 

We also note, that while short and probe chains were made in the same lab and the same batch 

as samples reported in ref.24, the “gel” chains were obtained from another source and have a 

slightly different microstructure as demonstrated by the NMR data. As a result of this slight 

difference the correspondent glass transition temperature of this sample, as measured by DSC, 

is slightly lower than could be expected for its molecular weight. We disregarded these 

differences in the TTS procedure used for the data presented in Figures 7-8.  

Material density correction due to the temperature change is taken into account by introducing 

vertical shift factors as G(Tref)=G(T)/bT, where bT=ȡ(T)T/ȡ(Tref)Tref=(ȡ(Tref)+T.C3.10-

3)(T+273.15)/( (ȡ(Tref)+Tref.C3.10-3)(Tref+273.15)), where T is in oC, ȡ(Tref)=930 kg.m-3, and 

C3=0.69 kg.m-3/ oC. The obtained results represented by frequency sweep data of storage and 

loss moduli are compared with predictions of the SSp model in Figures 7-9. 

 

4. The SSp model. 

All numerical simulations in this study are conducted using Likhtman’s stochastic single chain 

SSp model.13 This model is based on Rouse chains comprising N beads connected by N-1 

springs. The effect of entanglements is implemented by slip-links randomly distributed along 

the chain. Every slip-link is connected by a virtual spring with parabolic potential to an 

anchoring point. The positions of the anchoring points are distributed in a way to preserve 

unperturbed Gaussian statistics of the chain conformations at all length scales. 

Successful applications of this model for predicting stress relaxation in low polydispersity linear 

and binary mixtures of star and linear entangled polymer melts were reported in refs.13,24 

Besides, in ref. 13 the model has demonstrated quantitative prediction capability of polymer 
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dynamics when simultaneously confronted with experimental data by three different 

techniques: neutron spin-echo (NSE), linear rheology and molecular diffusion. 

Most implementation details and description of the model parameters can be found 

elsewhere.13,21 In these earliest versions of the SSp model, the location of the slip-link was 

allowed to slide continuously along the bond vector between adjacent beads. However, more 

recent versions of the algorithm14,24  have constrained the “slip-links” so that they are always 

attached to beads. Slip-link hopping between beads is permitted through Metropolis Monte 

Carlo moves. Our simulations are based on this later methodology. We analyze in detail the 

effect of this choice in section 6 below, finding that it results in an effective contribution to 

chain sliding friction from the slip-links. 

In this study we also utilize a number of simplified “toy models” based on this SSp 

implementation in order to separate relaxation contributions. In particular, we can deactivate 

reptation and CLF mechanisms by prohibiting slip-links from sliding over the chain ends. We 

can also assign precise single engagement/disengagement frequencies for slip-links (as opposed 

to self-consistently distributing constraint release by coupling slip-links from different chains). 

In particular, in order to realize the different systems indicated in Figure 2 we are required to 

maintain up to two different populations of slip-springs with two different assigned CR rates 

(slow and fast). In our simulations, this is achieved by separately controlling the reptation/CLF 

and constraint release dynamics. For the CR dynamics, each slip-spring from a given population 

(e.g. the “slow” slip-springs) is assigned a lifetime randomly chosen from an exponential 

distribution with mean equal to the CR time of that population. When a slip-spring exceeds its 

lifetime, it is removed from the simulation, and a new slip-spring from the same population 

(e.g. “slow”) is added to a randomly selected point on a randomly selected chain, and given a 

new randomly chosen lifetime.  On the other hand, if a slip-spring from a given population (e.g. 

a “slow” slip-spring) is removed from a chain end by reptation and CLF, then another slip-

spring of the same type (e.g. “slow”) is added to the end of a randomly selected chain, and 

assigned a random lifetime. This latter rule ensures that creation and destruction of slip-springs 

from chain ends do not produce CR events in the middle of chains. The simulation rules, as 

presented above, are in the spirit of the standard entanglement-pairing CR algorithm described 

in ref.13 but decouple the CR dynamics from the reptation dynamics, whilst maintaining a 

constant number of fast and slow slip-springs in the simulation.  An alternative but valid 

approach, not used in our simulations, would be (for constraint release) to randomly add and 
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delete slip-springs from the middle of chains using a detailed balance criterion with rates chosen 

to ensure the correct slip-spring lifetimes, and similarly (for reptation/CLF) to add and delete 

slip-springs from chain ends using a different detailed balance criterion. This alternative 

approach would maintain the average number of fast and slow slip-links, while allowing both 

to fluctuate. 

Thus, by assigning infinite lifetime to the slip-links we can completely “shut down” the 

relaxation contribution from CR. In this way, we are able to separate, control and analyze 

relaxation contributions due to sliding and CR dynamics of the chain. We note that by 

introducing controlled CR rates we do not attempt to impose self-consistency of the CR events, 

e.g. by selecting CR rates consistent with the reptation time of the chains. However, this is not 

important for the purpose of the second half of this paper which is focused on understanding 

the effect made by various “artificial” CR environments on the dynamics of dilute probe chains.  

On the other hand, for simulations of the stress relaxation for the purpose of comparing it with 

experimental data for monodisperse, binary and ternary mixtures in section 5 we use the 

standard entanglement-pairing CR algorithm described in ref.13 which automatically gives a 

self-consistent distribution of CR rates. The number of chains corresponding to every blend 

component in simulations is computed in accordance with its respective weight fraction. We 

first fit the elementary time, Ĳ0, and unit mass parameter, M0, represented by one bead in SSp 

model for all monodisperse components. Next, all binary and ternary mixtures are predicted 

without additional parameter fitting. The slight discrepancy between the values of M0 obtained 

for different blend components (see Table 1) is in the range of typical SEC measurements 

experimental error. 

The SSp simulations results are presented in dimensionless units, with thermal energy kBT=1, 

statistical segment b=1 and friction coefficient of one segment ȗ0=1. Regardless of molecular 

topology and molecular weight we use Ne,ss=4 as average number of beads between two slip-

links, Ns=0.5 as virtual spring strength, and time step dt=0.05. For the results in section 5, a 

discrete slip-link jump of size 1 is attempted on average once per bead at every time step in a 

Metropolis Monte Carlo simulation as described in ref. 14 In section 6, we increase this to 10 

attempts per time-step. Finally, in this work we use a variant of the SSp model which imposes 

the condition that the monomer distance between neighboring slip-links must be larger than 1 

thereby preventing two slip-links from overlapping or occupying neighboring beads. This 
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repulsive interaction has weak effects on both statics (making the slip-spring distribution more 

uniform along the chain) and dynamics (e.g. on rates of slip-spring motion, and of creation and 

destruction rates at chain ends). 

From these simulations we extract stress relaxation functions and end-to-end vector 

autocorrelation functions for every component.14,21 For computing stress relaxation we take into 

account non-negligible cross-correlation contributions from the virtual springs along the 

chain.21 For simulating blends both auto- and cross-correlation terms of stress relaxation are 

weighed in accordance with weight fractions of the respective blend component. The cross-

correlation term is not considered for computing relaxation of end-to-end vector. 

For mapping the time and stress of the model to those of the experimental data, we multiply 

them by Ĳ0 and G0 or İ0, respectively (see Table 1). 

Table 1: Fitted values of the SSp model parameters. 

 Tref, 
oC M0, kg/mol Ĳ0, µs G0, MPa 

PI 40 1 6.83 2.85 

PI 25 1 12.1 2.71 

PBd 25 0.38 0.45 7.0 

 

The obtained parameters for PBd are consistent with those of previously analyzed star and linear 

polymers.6 

It should be noted that the stress of the model is calculated in units of G0=ȡRT/M0 with ȡ, R and 

T being the polymer density, universal gas constant and absolute temperature, respectively. By 

using ȡ(PBd, PI)=930 and 913kg/m3 
, T(PI)=313K, T(PBd)=298K, R=8.31 m3.Pa.K-1.mol-1 and 

by substituting the fitted values of M0 we can compute G0(PBd)=6.06MPa and G0(PI)=2.37 

MPa. The obtained values are slightly different from the fitted G0: 13 and 17% for PBd and PI, 

respectively. The value of G0 of PI at Tref=25oC is computed in accordance with the temperature 

change assuming its fitted value at 40oC as a reference. This level of discrepancies is consistent 

with data variations reported in different papers. The model stress G0 should not be confused 

with the plateau modulus GN0. 
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5. Comparison between the SSp model simulations and experimental data 
on binary and ternary blends 

5.1. Comparison with literature data. 

Dielectric relaxation of type-A polymers reveals the end-to-end vector autocorrelation function. 

According to our knowledge, the simulation results of the SSp model have never been 

confronted in published literature with experimental dielectric relaxation data. In this section 

we validate the SSp model by comparison with published data of Watanabe et al. in references30 

on dielectric and viscoelastic relaxation of the same PI melts at the same reference temperature. 

The model parameters M0, Ĳ0 and G0 are calibrated by fitting small angle oscillatory shear 

(SAOS) data for monodisperse linear chains of Mw=21 kg/mol, 94 kg/mol and 308 kg/mol. The 

stress relaxation and end-to-end vector autocorrelation function are predicted from the same 

simulations. Therefore, after we have fitted material parameters on SAOS data for both 

monodisperse components, the stress and dielectric relaxations in all blend compositions are 

predicted without additional adjustment of the parameters. On the other hand, in section 6, 

where we compare simulation results with predictions of the equivalent tube model, we need to 

introduce additional parameters which will be discussed later in the text.  

In Figure 3 we show a comparison between experimental (rheological and dielectric) data and 

the SSp model predictions with the same set of parameters. 
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Figure 3: Comparison of simulation results with experimental dynamic rheological (a) G‘(Ȧ), G’’(Ȧ), and 
(b) dielectric İ’(0)-İ’(Ȧ),  İ’’(Ȧ) data of monodisperse linear PI  with  Mw=21 kg/mol, 94 kg/mol and 308 
kg/mol. Symbols represent experimental data and lines indicate the SSp predictions. All simulations are 
made with material parameters M0=1 kg/mol, G0=2.85 MPa; İ0=0.1; Ĳ0=6.83 µs. The experimental data are 
measured at Tref=40°C. Color code in (a) and (b) is the same. 
 

Besides some small discrepancy (in the range of 15%) observed between the experiments and 

simulations in Figure 3 all simulation results demonstrate quantitative prediction of both 

rheological and dielectric data using the same values of the parameters.  

Next, in Figure 4 and Figure 5 we analyze the SSp prediction for binary mixtures of linear PI. 

For this purpose, we superimpose predictions of the SSp model with the experimental data of 

complex dielectric permittivity and complex viscoelastic relaxation modulus of different ratios 

0/100, 5/95, 10/90, 20/80, 50/50 and 100/0 of 308k/21k.  
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Figure 4: Comparison between simulation results and experimental (a) decrease of dynamics dielectric 
constant, İ’(0)-İ’(Ȧ), and (b) dielectric loss, İ’’(Ȧ), of monodisperse and binary mixtures of linear PI with  
Mw=21 kg/mol and 308 kg/mol. Symbols represent experimental data and lines indicate SSp predictions. All 
simulations are obtained with material parameters M0=1 kg/mol, İ0=0.1; Ĳ0=6.83 µs. The experimental data 
is measured at Tref=40°C. Color code in (a) and (b) is the same. 
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Figure 5: Comparison between simulation results and experimental (a) dynamic storage, G’(Ȧ), and (b) loss, 
G’’(Ȧ), moduli of monodisperse and binary mixtures of linear PI  with  Mw=21 kg/mol and 308 kg/mol. 
Symbols represent experimental data and lines indicate SSp predictions. All simulations are obtained with 
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material parameters M0=1 kg/mol, Ĳ0=6.83 µs, G0=2.71MPa. The experimental data is measured at 
Tref=40°C. Color code in (a) and (b) is the same. 
 

Comparing dielectric and viscoelastic relaxation data presented in Figure 4 and Figure 5, 

respectively, reveals a qualitatively good match over the whole frequency range for all blend 

compositions. In particular, the model captures the speeding up of the long species on dilution 

with the short species, and also the slowing down of the short species on mixing with the long 

species. This latter observation is very similar to previous results of Matsumiya et al.18 

However, a few discrepancies can be observed. The relatively high polydispersity of the long 

component (PDI=1.08) not taken into account in the simulations, is resulting in a broader 

experimental G’’ peak at low frequency as compared to the simulation data. There are also 

small discrepancies with the rheological data in the vertical direction, visible (for example) in 

Figure 3a especially for the two lower molecular weight samples. We consider these 

discrepancies to be within experimental uncertainty, and that the parameterization is reasonable.   

We can test this by illustrating the model predictions with the same model parameter M0=1 

kg/mol confronted with LVE data of linear PI measured by Auhl and co-workers.2 For 

consistency with the other PI data measured at 40oC we adjust parameter G0 according to its 

temperature dependence from 2.85 MPa to 2.71MPa. The comparison presented in Figure 6 

shows the quantitative agreement of the model prediction. 
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Figure 6: Comparison between simulation results and experimental dynamic complex modulus of 
monodisperse linear PI with  Mw=33.6 kg/mol, 94.9 kg/mol and 225.9 kg/mol. Symbols represent 
experimental data and lines indicate the SSp predictions. All simulations are obtained with material 
parameters M0=1 kg/mol, G0=2.71 MPa; Ĳ0=12.1 µs. The experimental data are measured by Auhl and co-
workers (Auhl et al., 2008) at Tref=25°C. 
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In addition to the small discrepancies in the vertical direction, we also comment on the quality 

of predictions in the horizontal direction.  The model adequately predicts the location of the 

low frequency peak in the dielectric spectra for all blend compositions. Predictions are excellent 

for the smaller degrees of dilution, though even at dilutions of 10% and below the agreement 

in peak position in Figure 4b is within an acceptable factor of 2. The speeding up of terminal 

relaxation time upon dilution with a faster species is captured. This fact is of some importance 

for the second part of this study in which we analyze only the longest relaxation times of the 

end-to-end vector, which approximately correspond to the frequency of this peak. 

Simultaneous comparison by two different techniques is a very strong test for the model. 

Therefore, the overall quality of the SSp model prediction for the viscoelastic and dielectric 

data can certainly be considered satisfactory. 

 

5.2. Comparison with new LVE data: monodisperse, binary and ternary mixtures of linear 

chains. 

In this section, simulation results of the standard SSp model are compared with our new linear 

viscoelasticity data. As discussed in the methodology section, we analyze CR of linear probe 

chains in experimental blends which correspond approximately to the four simplified systems 

shown in Figure 2, allowing us to separate and analyze the main relaxation contributions. It 

should be noted that in this section we present PBd data as opposed to the previous section, 

which presented PI data.  

First, we analyze the relatively simple system consisting of a very small fraction of short and/or 

probe chains diluted in a sea of unrelaxing chains, called “gel chains” (represented by linear 

PBd chains with Mw=305k). Gel chains are effectively immobile in the relaxation timeframe of 

short and probe chains. 

In Figure 7 we compare experimental viscoelastic relaxation data of pure gel chains and their 

binary mixtures with 20% of short chains (Mw=6.9k) or 3% of probe chains (Mw=50k). The 

concentrations are selected in a way that the short or probe chains are only entangled with gel 

chains. Simulations of all mixtures containing the long gel chains (number of beads equal 804) 

were made to run for 21 days but the terminal zone for most of the cases was still not reached. 

However, the covered frequency range is broad enough to include both loss modulus peaks 



23 

 

corresponding to the relaxation of the short and probe chains. The position of these peaks appear 

to be predicted within factor of 2 in terms of timescale. 
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Figure 7: Linear shear loss modulus of low polydispersity and binary mixtures of PBd linear chains with 
Mw=6.9k, 50k and 305k. Comparison between simulation predictions (solid lines) and experimental SAOS 
data (markers). All simulation data obtained using parameters: M0=0.38 kg/mol, G0=7.0 MPa and Ĳ0=0.45 
µs. All measurements are conducted at Tref=25°C.  
 

Next, in the system with a small fraction of probe chains diluted in an excess of gel chains, we 

introduce various fractions of short chains. We expect that short chains will impose CR 

dynamics on the probe chains and thus we can analyze their effect on relaxation of the end-to-

end vector of the probe. 

In Figure 8 we present experimental loss modulus data for two ternary mixtures containing 3% 

probe chains diluted in 20/77 and 80/17 short/gel chains mixtures, respectively. 
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Figure 8: Linear shear loss modulus of ternary mixtures of PBd linear chains with 20 and 80wt.% of 
Mw=6.9k, 3wt.% of 50k, and 77 and 17wt.% of 305k. The comparison shows simulation predictions (solid 
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lines) and experimental SAOS data (markers). All simulation data are obtained using parameters: M0=0.38 
kg/mol; G0=7.0 MPa and Ĳ0=0.45 µs. All measurements are conducted at Tref=25°C. 
 

Finally, we completely substitute gel chains by other probe chains but keeping the same fraction 

of short chains as in previous systems. By comparison with the previous system, we anticipate 

to see the effect of other probe chains on the end-to-end vector longest relaxation time. 
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Figure 9: Comparison of simulations (solid lines) and experimental SAOS data (markers). Linear shear 
(a) storage and (b) loss moduli of monodisperse and binary mixtures of PBd linear chains with 
Mw=6.9kg/mol and 50kg/mol. All simulation data obtained using parameters: M0=0.38 kg/mol; G0=7.0 
MPa and Ĳ0=0.45 µs. Color code in (a) is the same as in (b). 
 

The comparison between linear shear rheology data and simulation results of the SSp model 

presented in Figures 7 – 9 reveals a satisfactory overlap through the whole covered frequency 

range for all studied mixtures. However, small discrepancies can be observed. The mismatch in 

the medium-frequency range for mixtures containing “gel” chains of Mw=305kg/mol (Figures 
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7, 8) can be partially attributed to small differences in 1,4-addition content with respect to that 

of the short and probe chains which were made in a different lab. As noted in section 3.2, these 

differences led to small irregularities in glass transition temperature, with the glass transition 

temperature of the “gel” chains being slightly lower than expected for its molecular weight. 

This may have, to some extent, affected the time-temperature superposition used to create the 

mastercurves, affecting most strongly the data shifted to higher frequencies (i.e. measured at 

lower temperatures). Hence, while we can claim satisfactory agreement between the model and 

data, the remaining discrepancies suggest the need for further experiments, with samples all of 

identical microstructure made in the same lab.  Discrepancies in the high-frequency range can 

also be attributed to a relatively small average number of beads (4) per slip-link. 

Considering the satisfactory simultaneous predictions of viscoelastic and dielectric relaxation 

data for a set of PI-PI binary blends (section 5.1) and the quantitative prediction of PBd 

viscoelastic data shown in the present section, we can consider that the SSp model is adequate 

for analysis of the end-to-end vector relaxation of probe chain affected by CR. We now turn to 

a detailed analysis of the different relaxation mechanisms present in the SSp model, by 

comparing tube model predictions with a large set of idealized model simulations. 

 

6. Dynamics of probe chains in the SSp model 
In this section, we use the SSp model for simulating dynamics in simplified systems containing 

probe chains diluted in matrix chains. Here we consider the probe chains to be sufficiently dilute 

as to be unentangled with other probe chains, but entangled with matrix chains represented by 

the slip-links. We make a simplifying assumption that these matrix chains give only one, or at 

most two, constraint release times, so that slip-links  are ‘blinking’ at a single or two precise 

frequencies, which will be varied over a broad range.  These idealized systems represent very 

simplified cases of monodisperse, binary and ternary blends analyzed in section 5 and will be 

used to improve our theoretical understanding of the CR effect on the relaxation of probe chains. 

In the following sections of this study we will derive equations for predicting the longest end-

to-end vector relaxation times in the frame of advanced tube theory and confronting them with 

the SSp simulation data.  For the analysis in the frame of tube theory, we utilize a methodology 

allowing us to calculate the effective friction in the fat tube, recently proposed by Read and co-

workers in ref.22 The central idea of this theory is to separate two independent modes of chain 



26 

 

motion. The first mode is related to longitudinal (i.e. sliding) dynamics of the chain constrained 

by all types of entanglements. This motion is not affected by the environment, therefore in 

principle the corresponding friction is just the total chain friction, ȗ0
cm=Nȗ0, where N is the total 

number of chain beads (Kuhn segments) and ȗ0=1 is the friction of a single bead (however, as 

we will discuss below, slip-links make a contribution to this friction).  

The second mode is activated by the blinking nature of entanglements and allows the chain to 

explore new conformations by tube hopping motions in the transverse direction. This second 

mode depends upon the blinking frequency of entanglements and is further affected by the 

motion of the chain entrapped inside the tube. Thus for instance for the system #1 shown in 

Figure 2 this second mechanism is effectively deactivated due to infinitely long CR times of 

the “gel” chains. In this study, we further investigate a mixing rule proposed in ref.24 for 

combining chain friction with friction from CR events. 

6.1. Relaxation of the probe chain in a single tube without CR. 

In this section we analyze the dynamics of probe chains diluted in very long “gel” chains 

(system#1), where CR is essentially turned off during relaxation of the probe chains. The only 

active relaxation modes are therefore reptation and contour length fluctuations (CLF) related to 

longitudinal (i.e. sliding) dynamics of the chain constrained by all entanglements with 

corresponding friction expected to be the total chain friction, ȗ0
cm=Nȗ0, where N is the total 

number of chain beads (Kuhn segments) and ȗ0=1 is the friction of a single bead.  Following 

ref.15 we therefore expect the terminal reptation time for the chains to be: 

 ZfZ Rd  3            (1) 

where ĲR=N2b2ȗ0/(3ʌ2kBT) is the Rouse time7 and 31 2
3/2

2
( ) 1

CC C
f Z

Z ZZ


     represents the 

correction due to the effect of CLF on chain reptation.15 However, this expression assumes two 

things: (i) that we are able to calculate the effective number of entanglements along the “tube” 

represented by the slip-links, and (ii) that slip-links do not contribute to the effective sliding 

friction. It turns out that both of these factors are important as we proceed through section 6, in 

which we attempt to map as closely as possible the correspondence between the SSp model and 

the tube model.  The discussion in Appendix A justifies that the number of entanglements along 

the tube, defined as Z=N/Ne, is not equivalent to the average number of slip-springs per chain 
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in the SSp model. For the “standard” SSp model parameters (see section 4), i.e. Ne,ss=4 and, 

Ns=0.5, we use equation A1 to estimate that Ne=4.89. Also, we find that upon reducing the 

number of slip-links the dilution factor ׋ for the equivalent tube model is almost, but not 

exactly, the same as the dilution factor f for number of slip-links in the SSp model. This is 

because of the finite stiffness of the virtual springs, which allows for extra freedom of the 

respective entanglement segment as explained in Appendix A. We define this relation between 

the dilution factors in both models using equation A2 and demonstrate its validity in Figure 

10(a). 

In addition, we have found that for the implementation of the SSp model used in this paper, 

with slip-link motion along the chain mediated by Monte Carlo hops between beads, there is a 

non-negligible contribution to friction for along-tube motion from the slip-links. Appendix B 

discusses these effects, and the effects of dilution on this friction. The net result is a 

renormalization of the friction constant per bead for along-tube motion to tube,0  as given in 

equation B1. 

In Figure 10(a) we present SSp simulation results of linear chains with varying total number of 

beads, N, and different average number of beads between two nearest slip-links, Ne,ss. We fit 

the data using equation B2, with only one parameter, ȗ0,SL,  the effective friction per bead from 

slip-links in equation B1, which takes a value of 0.55 in the fits shown. Figure 10(a) 

demonstrates that (i) after normalizing the longest relaxation time by 3kSLZĲR, where kSL is the 

factor, defined in Appendix B, by which the along-the-tube motion is slowed down by slip-link 

friction, the data from a wide range of slip-link dilutions, Ne,ss=4, 5, 8, and 20 corresponding to 

f=1, 0.8, 0.5 and 0.2, can be collapsed essentially to a single curve. This collapse makes use of 

the dilution factors and adjustments to slip-link friction indicated in equations A2 and B1, 

respectively. Figure 10(a) also demonstrates that (ii) the simulations are consistent with the 

Likhtman and McLeish result,15 equation B2, with the inclusion of slip-link friction. The 

theoretical predictions shown in Figure A1 by the black solid line correspond to f(Z) with all 

prefactors from15  (C1=1.69, C2=4.19, C3=-1.55), which differ only by the last prefactor (C3=-

1.4) from fit shown by black dashed line. We introduce this latter correction in order to better 

fit data points at small Z. This degree of consistency provides confirmation of our derived value 

of Ne and the arguments for the behavior upon dilution. 
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Figure 10: (a) Longest relaxation time Ĳd normalized by pure reptation theory prediction obtained by SSp 
simulation for linear chains with various number of beads, N, and different average number of beads 
between two nearest slip-links, Ne,ss shown by symbols. Black dashed and solid lines show the prediction by 
the tube model differing by the value of parameter C3=-1.4 or -1.55, with the latter used in Likhtman and 
McLeish, 2002; (b) Comparison of dimensionless G*(Ȧ) obtained by the SSp simulations (N=20, 40, 80, 160 
and Ne,ss=4) and fitted using the Likhtman-McLeish tube model (Ne=4.89, Ĳe =1.25 and GN,0=0.2). The 
constraint dynamics is deactivated in all simulations and neglected in the tube model perditions. 

 

In all our theoretical predictions using tube theory for fitting SSp simulation data we will always 

use the parameters C3=-1.4 and Ne=4.89 obtained in this section.  
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In Figure 10(b) we show that LVE predictions of the Likhtman-McLeish tube model 

quantitatively agree with the SSp simulation data over almost the whole frequency range, for a 

range of chain lengths. These predictions use both plateau modulus and stress equilibration time 

of a single entanglement strand consistent with Ne=4.89, i.e. GN,0=1/Ne=0.2 and 

Ĳe=Ne
2b2ȗ0,tube/(3ʌ2kBT)=1.25, where b=1, kBT=1, ȗ0,tube=1.55. This degree of consistency 

provides confirmation of our derived value of Ne.  Fits of similar quality can be obtained at 

other dilutions, by scaling the parameters appropriately. 

There is arguably a small discrepancy at high frequencies in Figure 10(b), where Rouse motion 

within the tube dominates the viscoelastic response. This local Rouse motion is subject to the 

bead friction of the chain only, whereas the rest of the viscoelastic response from along-the-

tube motion and is slowed (by a factor approximately 1.55) by the slip-link friction. Hence, if 

we apply the Likhtman-McLeish theory to match the whole frequency spectrum and use a single 

value of Ĳe which includes the slip-link friction, the high frequency Rouse motion predicted by 

the theory is marginally slower compared to the simulations. This discrepancy is masked 

because the simulations do not exhibit a well-developed Rouse spectrum at high frequencies, 

since there are only a small number of chain beads per slip-link. 

 

6.2. Relaxation of the probe chain in a single tube with single CR rate. 

We now turn to system#2, which includes, in addition to the reptation sliding motion, constraint 

release dynamics represented by the “blinking” of the slip-links.  In ref. 24 it was shown that in 

the general case where all entanglements have the same constant CR time, the friction 

coefficient per bead due to this second mode of motion can be adequately, albeit empirically, 

represented as follows: 

 ,  (2) 

where ȗCR,TT represents the friction due to the constraint release events and ȗ0, is the bead 

friction. The form of equation 2 is a little surprising: one might expect a simple addition of 

friction factors from the monomers and from the constraint release “hopping” events. In 

Appendix E we rationalize this crossover formula by considering carefully how the hop length 

depends upon the constraint release timescale. 

 2

, 0
cm

TT CR TT   
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The CR friction coefficient ȗCR,TT per bead for blinking tube segments in equation 2 and 

Appendix E is derived from a simple model of particle hopping over a constant distance 

 
e

BCR
TTCR Nh

Tk 12
2,


  ,  (3) 

where h is an effective hop amplitude per tube segment, the thermal energy kBT=1, and ĲCR is 

the time between the hops.  Although, in the SSp model it is actually the moving slip-links 

which provide the CR motion, we write all theory in this and the following sections in terms 

of the tube model picture, hence we use the tube parameter Ne . In the limit of slow constraint 

release, we anticipate that 222 bNh eCR  where ĮCR  is a yet unknown prefactor. However, as 

detailed in Appendix E, for fast constraint release, the chain does not have time to reconfigure 

between CR events, and the effective hop size is smaller. A detailed analysis of this gives rise 

to a relation of the form of equation 2, whilst retaining linear addition of friction 

contributions. 

By assuming that the two relaxation modes (motion along the tube and CR motion of the tube) 

are independent we can now compute the longest relaxation time of the chain diluted in the sea 

of other chains, all having the same molar mass  

(2)

1 1 1

p TT d  
  ,            (4) 

where in case of all entanglements blinking with same frequency ĲTT represents effective CR 

Rouse time of the thin tube. This equation represents the competition between reptation and 

constraint release of the thin tube which is expected as CR rate is varied, as indicated in the 

Viovy diagram (inset of Figure 2).  

As a first guess, we derive ĲTT by substituting ȗTT from equation E5 instead of the bead friction 

ȗ0 in the Doi-Edwards equation for Rouse time: ĲR=N2b2ȗ0/(3ʌ2kBT).7 

  TT
B

TT
Tk

bN 



2

22

3
 . (5) 

However, equation 4 would then involve a small overcounting of relaxation pathways, which 

becomes apparent in the limit of small (zero) constraint release time ĲCR. In Appendix F we 

propose a simple correction applied to ȗTT to account for this effect. 
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For validating the analytical equations derived in this section and Appendices E and F, we run 

simulations of probe chain dynamics with slip-links blinking at frequency 1/ĲCR, where ĲCR 

varies over a broad range of values. This is a simplified model for the probe chains diluted in 

an excess of ideal monodisperse melt. 

For validating the total friction coefficient corresponding to the relaxation of the chain due to 

constraint release only, we prohibit the chain to release its ends from the slip-links. Thus, 

reptation is deactivated, but the sliding motion of the slip-links along the rest of the chain allows 

longitudinal stress equilibration. Apart from that, the only possible relaxation mechanism is the 

effective CR tube motion. In the following discussion we will refer to the systems where slip-

links are not allowed to pass through the chain ends as non-reptating, whereas the standard 

system will be referred to as “free chain ends”. 

From these simulations we extract the mean square displacement of the center of mass (MSD), 

Rc. Assuming that in the non-reptating system at tืλ, tube relaxation is dominated by CR 

motion, we can thus compute the total thin tube friction coefficient as follows: 

 
   ttR

Tk

ct

BMSD

6/lim 2


  (6) 

 

Results of these simulations are plotted in Figure 11(a). 
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Figure 11: Comparison between theoretical tube predictions (dashed and solid lines) and SSp simulation 
results (filled and empty circles). All entanglements of the probe chain with number of beads N=132 have 
the same lifetime, ĲCR. (a) Effective friction coefficient of the thin tube with probe chain not allowed to 
reptate. Dashed lines represent ȗ0

cm and ȗCR,TT, corresponding to two extreme cases at ĲCR ĺ0 and ĲCR ĺinf, 
respectively. Filled red circles show obtained by simulations ȗMSD. In the inset we show zoomed-in crossover 
region of ȗTT normalized by ĲCR. The theoretical predictions are made using equation E5 with Ne=4.89, 
ĮCR=1.2 and K=0.36. (b) Longest relaxation time of the end-to-end vector of the probe chain in the same 
systems. Filled red circles and red solid line represent simulation data and theoretical prediction of “non-
reptating” chain, ĲTT. Black empty circles and black solid line represent simulation data and theoretical 
prediction of the chain with “free” chain ends, Ĳp

(2). Dashed black line shows longest relaxation time 
dominated by CR Rouse motion of the thin tube, ĲCRR,TT. Inclined parallel black thick lines demonstrate 
longest relaxation times normalized by ĲCR for relaxation dominated by Rouse motion (on the left) and for 
reptation of the chain in the thin tube shortened by CLF (on the right). Arrows show stress equilibration 
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time of a single entanglement strand, Ĳe, and longest relaxation time of the probe chain in no CR case, Ĳd,p 

=36280. 
 

By fitting the data on the right-hand side of Figure 11(a) using equation E5 we have extracted 

the best fit value for parameter ĮCR=1.2 which defines the jump amplitude of the chain upon 

disappearance of a single slip-link.  

In Figure 11 (b) we plot the longest relaxation times of the end-to-end vector autocorrelation 

function for the systems with no reptation (red solid line) and chains with free ends (black solid 

line): , where R is the end-to-end vector of the chain. 

The two inclined black solid lines show theoretical values of Rouse and reptation time of the 

chain normalized by ĲCR. The exact value of Ĳd,p=36280 is obtained from simulating dynamics 

of the probe chain (of chain length N=132) in the no CR case. 

The dashed black line in Figure 11(b) represents longest relaxation time dominated by the CR 

Rouse motion of the thin tube. The tube segment hoping amplitude depends on ĲCR (see eq. E3) 

which prevents this line from being horizontal. It is obtained by substituting ȗCR,TT (equation 3) 

into Doi-Edwards equation for Rouse time: 7  

TTCR
B

TTCRR Tk

bN
,2

22

, 3



  .  (7) 

Based on Figure 11(b), two dominant scenarios for terminal relaxation can be highlighted 

depending on the lifetime of the entanglements with respect to relaxation time of the probe 

chain: 

1. Lifetime of entanglements, ĲCR, is significantly below the Rouse stress equilibration time 

of a single entanglement strand of the probe chain, Ĳe. In this case the probe chain is 

effectively not feeling the presence of the tube and thus completely relaxes by free 

Rouse motion. This is illustrated by the alignment of the data points with the leftmost 

inclined black solid line. 

 

2. Lifetime of the entanglements is significantly longer than reptation time of the chain, 

hence the tube is effectively fixed at this time scale and the terminal relaxation is due to 

chain diffusing along the fixed thin tube. 

2
0( ) ( ) (0) /t R t R R 
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Between these two regimes, we have a transition zone: 

a. Lifetime of entanglements is longer than entanglement stress equilibration time 

(ĲCR > Ĳe) as indicated by the first inflection point. In this case terminal relaxation 

is due to CR Rouse tube motion, where the effect of monomer friction on CR 

hopping amplitude is defined by CR timescale.  

b. In case of (ĲCR < Ĳd,p) chain reptation contribution becomes important manifesting 

itself by the second inflection point. The end-to-end vector relaxation terminates 

by combination of effective CR tube motion and chain reptation in the thin tube. 

If we now deactivate the chain longitudinal motion the terminal relaxation time 

will be dominated by CR Rouse tube motion with its hopping amplitude 

determined by equation E1. Alternatively, by increasing ĲCR > Ĳd,p we effectively 

deactivate CR and chain relaxes in the same way as in system #1 (Figure 2). 

The second transition (b) corresponds to the horizontal line usually drawn on the Viovy diagram 

(Figure 2, inset) for competition between reptation and constraint release. The first transition 

(a) would give rise to a second boundary, further up the Viovy diagram, but not necessarily 

giving a fixed line within the Viovy diagram, which is a two dimensional projection of a larger 

parameter space. 

6.3. Two-tube system with a fraction of never relaxing entanglements. 

In order to further increase the complexity with respect to the systems discussed in the previous 

section, we now consider probe chains constrained by a combination of two types of slip-links: 

(i) a fraction f that cannot be deleted due to CR, but only by sliding dynamics of the probe chain, 

(ii) a remaining fraction 1-f of slip-links blinking at a constant frequency, which is varied over 

the same range as in the previous section. This is equivalent to the probe chain being entangled 

with a mixture of gel and short chains, at different compositions. In terms of the tube model, 

this can be interpreted as a probe chain constrained by both the thin and fat tubes, formed by 

entanglements with all chains and by entanglements with never relaxing chains, respectively. 

The thin tube is moving due to CR of short chains, whereas fat tube is fixed. This type of system 

is shown in Figure 2 (as system #3). 

In this system, within the tube picture the chain can be transported along the “fat” tube via two 

different processes: (i) CR motion of the thin tube, which also involves a contribution from 
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chain friction as indicated in the previous section, and (ii) motion of the chain along the thin 

tube contour, which may be projected to give an effective motion along the fat tube. An analysis 

of this was presented in ref.,22 building on the earlier work of Viovy.28  This analysis assumed 

independence between diffusive transport processes along thin and fat tubes, giving an equation 

for the friction coefficient per bead of the chain constrained by blinking and permanent 

entanglements: 

 (3) '

1 1 1

p TT eff  
  , (8) 

where     TTCRTT f ,
' 1 , represents the total friction for hopping of the thin tube 

consisting of a fraction 1-f of blinking entanglements, and where ȗ+ represents the contribution 

of chain friction to the hopping motion. The friction ȗeff represents chain motion along the thin 

tube, but rescaled to give the effective friction for the projected motion along the fat tube.   

Equation 8 sets the effective friction constant for all chain motion projected along the fat tube 

contour. This includes (of course) reptation, but also contour length fluctuations and (if it is 

considered) the tension re-equilibration process between adjacent fat tube segments.27  The 

competition between the two terms in equation 8 gives rise to the line usually drawn on the 

Viovy diagram (figure 2, inset) representing competition between motion along thin and fat 

tubes. 

For the present SSp simulations, the analysis is made more complicated by the two specific 

issues identified above in section 6.1 and detailed in Appendices A and B: (i) the fact that the 

dilution factor f for the number of slip-links is not the same as the dilution factor ׋ for tube 

diameter, and (ii) the contribution of slip-links to the sliding friction.  We detail the corrections 

which must be made to the analysis by Read 22 for the SSp simulations in Appendix C. The 

resulting final expressions for the separate frictions contributions to motion along thin and fat 

tubes are given in equations C6 to C8 (of Appendix C). 

Since both thin tube and chain are relaxing via reptation motion along fat tube contour we can 

now compute longest relaxation time of the chain as: 

    *
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)3(23
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In the limit of sufficiently slow constraint release, such that effTT   , we show in equation 

C8 (of Appendix C) that    SLp ,00
)3(  . In this limit, the factors of  cancel in equation 

9, so that it represents reptation purely along the thin tube, including slip-link friction, but 

written in terms of effective motion along the fat tube coordinates. As constraint release 

becomes faster, equation 9 includes the faster reptation along the fat tube due to constraint 

release of the thin tube. In the absence of CLF, this is consistent with the theory of Viovy.28  

The term f(Z*), determined in equation D4 (of Appendix D), represents correction of the chain 

reptation time due to CLF motion, where Z*  is the number of entanglements along the tube in 

which the dominant CLF motion takes place. Depending on the blend composition and on the 

constraint release time, this term can represent either CLF in the thin or in the fat tube, or in an 

effective tube at intermediate length scale. So, the quantity Z*  could equal Z=N/Ne, or 

Zfat=N׋/Ne, or some intermediate value. The details on blend compositions and values of ߬CR,TT 

associated with different regimes of CLF enhancement are discussed in Appendix D. 

For validating these theoretical conclusions, we run simulations of the chain dynamics with a 

fraction 1-f of slip-links blinking with characteristic time ĲCR,TT varying over a broad range of 

values, while others are permanent but can slip along the backbone and thus can only disappear 

if the probe chain releases its end from the corresponding slip-link by sliding motion. 

In Figure 12 for a broad range of ĲCR,TT values, we plot simulation results of the longest 

relaxation time of the end-to-end vector of the probe chains. Theoretical predictions plotted as 

colored lines are computed using equation 9. 



37 

 

10-6 10-4 10-2 100 102 104
102

103

104

105

 

Figure 12: Comparison between theoretical predictions (color lines) and simulation results (markers) of the 
end-to-end vector of a probe linear chain with N=132 constrained by blinking and permanent 
entanglements.  Fraction 1-f of blinking entanglements have the same lifetime, ĲCR,TT. The lowest horizontal 
black solid line represents terminal relaxation dominated by free Rouse motion of the chain; the uppermost 
– shortened by CLF reptation of the probe chain. Arrows show stress equilibration time of an entanglement 
strand, Ĳe,and longest relaxation time of the probe chain in no CR case, Ĳd,p=36280. 
 

In Figure 12 the two horizontal black solid lines show theoretical values of ĲR and Ĳd in the thin 

tube. At intermediate values of ĲCR,TT, we observe a transition zone with two inflection points 

reflecting the dominant contribution of CR Rouse tube motion to the terminal relaxation time. 

After the second inflection point, all curves representing different compositions of blinking and 

permanent entanglements match the uppermost black solid line representing terminal relaxation 

dominated by chain diffusing along the fixed thin tube. 

With respect to the regimes described in equation D4, most of the presented simulation data, 

except for 0=׋, where no effective fat tube exists, are consistent with the first case, where 

Z*=Zfat.  

The observed discrepancies at ĲCR,TT<Ĳe are consistent with those in Figure 10(a), where systems 

diluted to the effective Z<10 demonstrate slower longest relaxation time with respect to the 

theory. 

By analyzing the data shown in Figure 12, we can now summarize the results of this section. 

There are several distinct scenarios for terminal relaxation of this system. However, in practice, 

the lines between these regimes are not sharp, and all transitions are smooth. 
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1. At ĲCR,TT<Ĳe, chain relaxation terminates by chain diffusing in the fat tube with little or 

no effect from the blinking slip-links; 

2. At ĲCR,TT>Ĳe  terminal relaxation is due to effective CR motion of the thin tube controlling 

both reptation and CLF within a permanent fat tube. 

3. At larger values of ĲCR,TT the second term on the right hand side of equation 8, becomes 

the dominant contribution, so that chain transport along the thin tube begins to dominate 

over CR motion of the thin tube. Yet, there remains freedom for CLF along the fat tube 

contour. 

4. At yet slower ĲCR,TT the thin tube does not even have time to explore locally the fat tube 

within the CLF timescale, and (according to the regimes noted in equation D4) the 

system transitions to CLF in the thin tube. At ĲCR,TT > Ĳd,p terminal relaxation is due to 

chain reptating and performing CLF in the thin tube only. 

The third transition corresponds to the line usually drawn on the Viovy diagram for system 3 

(figure 2, inset) representing competition between motion along thin and fat tubes.  The other 

transitions would be represented as different boundaries as constraint release rate is varied, but 

not necessarily giving fixed lines within the Viovy diagram, which is a two dimensional 

projection of a larger parameter space. 

The fourth transition listed above raises an intriguing but speculative possibility.  In a 

monodisperse melt, as terminal relaxation is approached, some constraint release does occur, at 

a broad range of CR rates coming from fast relaxing chain ends to slower reptation modes. 

Presumably these CR events lead to a small enhancement of CLF, which can occur in a 

marginally diluted tube. In contrast, if the same chains are placed in an environment of longer 

chains, the CR is suppressed, and the CLF will occur only in the narrowest possible tube. 

Therefore we would anticipate an increase in the terminal relaxation time for short chains placed 

in a long chain matrix, especially for short chains of only a few entanglements where CLF 

effects strongly affect the terminal time. This may give a qualitative explanation of the 

observations of Matsumiya et al.18 who measured such a retardation, though more work is 

needed to investigate this. In particular, due to constraints on time and resources, the 

simulations we present in this paper do not cover the required range of parameters to investigate 

this point. 
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In the next section we will further increase complexity of the constraint release environment by 

permitting motion of previously fixed entanglements. We thereby converge to the case of probe 

chains relaxing in a binary mixture with two distinct rates of constraint release. 

 

6.4. Systems with two moving tubes. 

 In this section we discuss the relaxation of probe chains constrained by entanglements with 

two finite lifetimes. As a representative case of these systems, we analyze probe chains 

dispersed in a binary blend with shorter chains having fixed CR time and with long chains. The 

constraint release time of long chains is varied over the broad range of values (see system#4 in 

Figure 2). Thus, by increasing constraint release time of long chains the system discussed in 

this section is evolving from the equivalent to system #2 to the system #3 (in Figure 2). 

In section 6.3 we have concluded that the total friction of the thin tube constrained by the 

permanent fat tube, ȗTT’, is determined by a combined contributions from ȗCR,TT and ȗ+.  

In order to determine all contributions to the total fat tube friction coefficient, ȗFT, we consider 

two extreme cases with respect to ratio between constraint release rates. In the first scenario 

lifetimes of the fat tube entanglements are the same as those of the thin tube. In this case we 

only have a single thin tube and should obtain ȗFT equal to ȗTT derived in equation E4. On the 

other hand if lifetime of the “slow” slip-links, ĲCR,FT, is much larger than those of the fast slip-

links, ĲCR,TT,  the total friction coefficient of the fat tube should be dominated by the slower CR 

motion of the fat tube constraints. 

In order to interpolate between these limits, we follow a similar reasoning to the derivation of 

equation E4. The fraction of slow slip-links per chain is f and by analogy with equation 3 these 

provide a friction per chain bead of: 

 
eFT

BFTCR
FTCR N

f

h

Tk
2

,
,

2
  ,  (10) 

where hFT is the typical hop amplitude from the fat tube CR event. In Appendix E we 

demonstrate how hFT depends on timescale of the fat tube hopping and on blend composition.  

The fraction of fast slip-links is 1-f and so the total friction per monomer from both chain 

friction and thin tube CR events can be estimated using equation E5 as:  
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The friction for the fat tube motion can then be found by combining equation 10 (which gives 

friction from slow CR events), where hFT is estimated in equation E10 (of Appendix E), and 

equation 11 (which gives combined friction per monomer from both fast CR events and chain 

friction). Hence, the total friction per bead due to fat tube motion is:  

 TTFTCRFT ,0,   .  (12) 

For validation of the derived analytical equations, we run simulations of the probe chain 

entangled with slip-links having two distinct lifetimes ĲCR,TT(=60)>>Ĳe, and a wide range of 

ĲCR,FT≥ ĲCR,TT. In order to highlight terminal relaxation dominated purely by CR events in the fat 

tube, we do not allow slip-links to diffuse out of the chain ends thereby prohibiting relaxation 

by sliding motion of the chain (see Figure 14). 

As a first step we verify the scaling of the jumping amplitude of fat tube segments at different 

polymer concentrations. For this purpose we run simulations of the probe chain “diluted” at 

different concentrations, having slip-links with lifetime, ĲCR,FT, varying over a broad range, 

whereas, ĲCR,TT=0. 

In Figure 13 we demonstrate theoretical predictions of equation 12 compared with friction 

coefficients obtained from simulating MSD of chain’s center of mass at the limit of tืλ (see 

equation 6). The simulations are conducted with good statistics (1000 chains) and long 

computation time (21 days). 
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Figure 13: Total friction coefficient of the fat tube in the binary CR environment. Comparison of the 
theoretical predictions (solid lines) and the simulation results (markers). In the simulations, Ne,ss=4, 8 and 
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20 as shown by the red, black and blue symbols, respectively. Lifetime of 1-f fraction of slip-links ĲCR,TT = 0 
for all the mixtures. Lifetimes of other slip-links, ĲCR,FT, vary over a broad range of values. 
 

Comparison between theoretical predictions (equation 12 at the limit of ĲCR,TT՜ Ͳ) and 

simulations in Figure 13 is quantitatively good over the entire range of probed ĲCR,FT. These 

results demonstrate that the jumping amplitude of fat tube segments scales as ~Ne0.5- ׋ similar 

to the assumption of the tube dilation theory.9, 17 

Theoretical predictions of the terminal relaxation for freely reptating chains entangled with two 

types of finite lifetime obstacles can be computed by assuming independence of Rouse motion 

of the fat tube, with respect to reptation of the thin tube and chain along the fat tube: 

 
)3()4(

111

pFTp 
 , (13) 

where longest relaxation time )3(
p representing the reptative motion of the thin tube and the 

chain along the fat tube is computed using equation 9 with friction coefficient ȗp
(3), which 

includes the effects of slip-link friction as shown in equation C8. We note that the above 

mentioned reptative motion of the thin tube can only be considered when thin and fat tube exist: 

ĲCR,TT> Ĳe, and ĲCR,FT>ĲCR,TT and number of slow entanglements is sufficient to form fat tube. 

The longest relaxation time due to CR Rouse motion of the fat tube is computed in analogy 

with equation 5 as  
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3
 ,    (14) 

where the friction is computed in Equation 12. In appendix F we propose a simple correction 

of the term ȗFT to avoid double counting of the relaxation mechanisms. 

In order to validate equations 12 and 14, we run simulations of probe chains constrained by 

different ratios of slip-links with two distinct lifetimes ĲCR,TT=Ĳd,s(=60) and ĲCR,FT. As in the 

simulations presented in Figure 11(a), the slip-links are not allowed to slip through the chain 

ends and thus chain relaxation is only due to CR motion of the thin and fat tubes.  

In Figure 14(a,b) we compare the simulation results and the theoretical predictions. Here, upon 

increasing ĲCR,FT, termination by effective thin tube motion combined with Rouse chain motions 
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at ĲCR,FT~ĲCR,TT is taken over by the effective fat tube motion with a broad transition zone in 

between. 
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Figure 14: Comparison of the theoretical predictions (solid lines) and the simulation results (markers).  
(a) Total friction coefficient of the fat tube in the binary CR environment with ĲCR,TT=Ĳd,s(=60) and various 
ĲCR,FT. (b) Longest end-to-end vector relaxation time due to CR motion of the fat tube (equation 14), 
normalized by ĲCR,FT. Inclined black solid line corresponds to extreme case when all entanglements have the 
same lifetime ĲCR,TT. Arrows show longest relaxation time of the short, ĲCR,TT=Ĳd,s (=60), and probe chains, 
Ĳd,p =36280, in no CR case. The fractions of the slow slip-links, f=0.2, 0.5 and 0.8 as indicated by black, blue 
and green symbols, respectively. Color code in (a) and (b) is the same. 
 

In order to validate equation 13 we run simulations of the probe chains constrained by different 

ratios of slip-links with two distinct lifetimes ĲCR,TT and ĲCR,FT. In these simulations the slip-links 

can freely diffuse out of the chain ends thus permitting chain relaxation by reptation and CLF. 

In Figure 15 we compare simulation results of this model with the theoretical predictions of 

equation 13.  
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Figure 15: Longest relaxation time of the end-to-end vector of the probe chain with free chain ends in binary 
CR environment of different compositions. The theoretical predictions (equation 13) shown by solid color 
lines are superimposed with the simulation data (markers). In all mixtures lifetime of entanglements with 
short chains ĲCR,TT=60, whereas all entanglements with long chains have lifetime, ĲCR,FT≥ĲCR,TT. The 
lowermost horizontal black solid line corresponds to extreme case when all entanglements have the same 
lifetime and relax by the effective thin tube motion, Ĳp

(2); the uppermost – affected by CLF reptation of the 
probe chain in the fixed thin tube. Arrows show longest relaxation times of the short chains, ĲCR,TT=Ĳd,s=60, 
and probe chain in no CR case, Ĳd,p =36280. 
 

In Figure 15, all possible longest relaxation times depending on characteristic times and 

fractions of the fast and slow entanglements are localized between two horizontal black solid 

lines designating theoretically predicted terminal relaxation due to CR motion of the thin tube, 

and chain reptation along the thin tube shortened by CLF, respectively. 

Unlike the systems discussed in sections 6.2 and 6.3 the data points show a very broad shoulder 

spanning the range ĲCR,TT<ĲCR,FT<Ĳd,p. This can be explained by a more complex correlation 

between all involved relaxation mechanisms, that significantly blurs separation of a single 

dominant relaxation mechanism from the analyzed combinations of ĲCR,TT, ĲCR,FT and Ĳd,p. 

Comparison between the simulations and the theory can be characterized as quantitatively good 

at all probed ĲCR,FT. However, the quality of prediction varies depending on composition of the 

CR environment. The observed slight discrepancies at the right-hand side in Figure 15 are 

consistent with those observed in the transition zone in Figure 12, which, in turn, are consistent 

with slight discrepancies in Figure 10(a).  

To summarize, in this system with probe chains constrained by two types of entanglements, 

appearing and disappearing at constant frequencies 1/ĲCR,TT = 1/60 and 1/ĲCR,FT൑1/ĲCR,TT, the 

terminal relaxation of the chain can be determined by one of the following scenarios: 
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(1) If ĲCR,FT ~ ĲCR,TT then relaxation terminates by effective CR motion of the single thin 

tube. In this case depending on the ratio between ĲCR and Ĳd,p terminal relaxation can also 

be dominated by chain reptation along the thin tube; 

(2) If Zfat>>1 and ĲCR,TT<ĲCR,FT<Ĳd,p the relaxation terminates by combination of the effective 

CR motion of the fat and thin tubes; 

(3) If ĲCR,FT >Ĳd,p the relaxation terminates by the correlated reptative motion of the chain 

along the thin tube and CR motion of thin tube along the fat tube. This scenario is 

equivalent to the transition zone in Figure 12, described by scenario 2 at the end of 

previous section. 

 

7. Conclusions 
In this paper we have solved a set of simple problems for understanding the effect of CR on the 

relaxation dynamics of entangled chains. We have proposed and verified a method for 

predicting the effect of several CR environments on the relaxation of the end-to-end vector of 

probe chains in well controlled “model systems” containing slow chains and/or fast relaxing 

chains. Experimental data have been confronted with simulations by the SSp model, which was 

later used as a benchmark for validating predictions by a detailed tube model. For the latter, we 

have followed the CR picture reported by Viovy et al. 28 and implemented and refined the 

effective fat tube friction and the CLF contribution in the analyzed CR environments based on 

ideas of Read et al.22 The main results are as follows: 

 

- The SSp model is capable to simultaneously predict the viscoelastic and dielectric 

relaxations of monodisperse and binary melts of linear polymers using the same set of 

parameters consistent with those used in previous works. It is thus a valid benchmark 

for testing higher level (in the sense of coarser description) tube theories.  

 

- The proposed theoretical framework, based on refined tube theory, quantitatively 

captures results of SSp simulations of chain dynamics in various CR environments. This 

good agreement between tube theory and the SSp model predictions gives some hope 

that these seemingly different approaches can be reconciled and unified. Specifically, 

in Appendix G, we summarize some key results in terms of the tube model parameters 

to aid comparison with the experiments. 
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- Our theoretical predictions in line with experimental observations of Matsumiya and 

co-workers18 demonstrate that CR does contribute to dielectric relaxation of linear probe 

chains. We have also shown that the longest relaxation time of the end-to-end vector of 

the probe chain is in fact affected by dynamics of all topological constraints with a 

lifetime shorter than the chain’s own bare reptation time shortened by CLF. 

 

Finally, the SSp model can serve as a versatile research tool, “an idealized numerical 

experiment”, providing detailed information on individual relaxation mechanisms which can 

be turned on and off at will, and suitable for further developing current understanding of multi-

chain effects in tube models, applied to systems with complex constraint release environments, 

i.e.  polydisperse in chain length and even architecture. The methodology developed in this 

work can be easily extended to include a larger number of constraint release rates. 

 

Appendix A: Mapping dilution effects in tube and SSp models. 

In the limit of point-like slip-springs (in which the restraining spring is infinitely stiff) we might 

expect the number of beads per entanglement in the tube model representation to be Ne =  Ne,ss  

(the average number of beads between slip-springs).  However, since the restraining springs in 

SSp model have a finite spring constant, the slip-links explore a finite volume and this 

effectively smooths the mean path of the tube, so that chain beads need to travel a shorter 

curvilinear distance to relax by reptation. It also reduces the plateau modulus, because the 

chains are less constrained overall.  Both of these effects can be interpreted as an increase in 

the effective number of beads per (tube) entanglement, Ne. The analysis leading to Eq 28 of 

ref.23, for springs uniformly distributed along the chain, indicates the effective enhancement 

factor with respect to the modulus is sn41 , where ,/s s e ssn N N  is the ratio of number of 

beads in the virtual spring to the beads between slip-springs. In what follows, we shall take this to be 

the correct enhancement factor in the present SSp simulations, i.e. 

sssee nNN 41,      (A1) 

The number of entanglements along the tube is defined as Z=N/Ne. For the “standard” SSp 

model parameters (see section 4), using Ne,ss=4 and, Ns=0.5, this gives Ne =4.89. 
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One corollary to this discussion, particularly relevant to the blend calculations, concerns the 

effect of dilution of slip-springs on the effective tube dilution. As the number of constraining 

slip-springs decreases, they become more “point-like” with respect to the length scale of the 

tube diameter. If the slip-springs are diluted by a factor f, so that Ne,ss(f)=Ne,ss/f , then we can 

define a tube dilution factor, ׋, such that Ne(f)=Ne/׋. In general it is not true for the SSp model 

that ׋  = f exactly.  Instead, using the previous equation, we find: 

s

s
ee

fn

n
ffNN

41

41
)(/)1(




 ,    (A2) 

where we assume Ns, representing stiffness of virtual springs, to remain constant at different 

concentrations. 

In our simulations of experimental systems, constraint release is always modeled by a pairwise 

connection between slip-links. This may be expected to give an effective dilution exponent of 

d=1 in the equivalent tube theory. This dilution, however, applies to the slip-link dilution factor 

f. Hence, the tube diameter dilution of the variable ׋ implied by equation A2 is very marginally 

weaker than implied by an exponent of d=1, though it approaches exponent of d=1 for small ׋, 

when the slip-links become equivalent to point-like slip-links. 

 

 

Appendix B : Slip-link friction. 
When comparing the predictions of equation 1 to our data for the terminal relaxation time of 

chains within the SSp model, we found evidence that the slip-springs themselves provide a non-

negligible contribution to the effective friction for along-the-tube motions, i.e. to both reptation 

and CLF. This effect could be reduced by increasing the number of Monte Carlo hopping 

attempts per time step. In all results presented in section 6 we use 10 attempts per slip-spring, 

per time step (this accelerates the terminal relaxation, but increasing further had no significant 

effect). We believe, however, that there remains a slip-link contribution to the friction which is 

intrinsic to the simulations, most likely arising from the use of Monte Carlo hops between beads 

in the limit where the stiffness for the virtual springs is significantly greater than the stiffness 

of the spring between beads. In this limit, slip-link hops to adjacent beads are relatively unlikely 

events in the Monte Carlo scheme, because adjacent beads are usually further away than the 



47 

 

typical fluctuation volume of a virtual spring.  As a result, a successful, permanent hop to an 

adjacent bead typically needs to wait for a favorable local rearrangement of the chain, bringing 

adjacent beads into the locality of the slip-spring. Hence the “hopping time” for the beads is 

slaved to the chain motion, and this gives rise to larger than anticipated slip-link friction. 

In this Appendix we present a simple analysis of the slip-link friction, obtaining the (perhaps 

surprising) result that the slip-link friction per chain-bead, for along-the-tube motion, is almost 

independent of dilution. The anticipated reduction in friction from fewer slip-springs is 

compensated, almost exactly, by the increased number of hops between monomers required to 

allow motion along the fatter tube. As a result, the effective friction per bead for along-the- tube 

motion in a diluted tube can be written as: 

0,0,0 


  SLtube

f
           (B1) 

where SL,0  is a constant governing the effective friction per bead from slip-links, in the 

undiluted tube and ȗ0 is the monomeric friction. We then replace equation 1 with:  

 ZfZk RSLd  3            (B2) 

where 0,0 / tubeSLk   is the factor by which the along-the-tube motion is slowed down by 

slip-link friction. 

Below we derive a simple expression for slip-link friction contributions to along-the-tube 

motion and its behavior in dilution. We suppose a slip-link makes a “successful” and 

uncorrelated hop to an adjacent bead on average every time ǻtSL. We note that ǻtSL may be 

expected to be significantly larger than the hopping attempt time, since in the SSp model the 

virtual spring stiffness is larger than the bead-bead spring stiffness. Thus, typically adjacent 

beads are further away than the typical fluctuation volume of a slip-link, and even if a hop is 

occasionally “allowed” to a high energy state on an adjacent bead, it will quickly be followed 

by a correlated hop back. Thus, successful, uncorrelated hops require significant local 

rearrangement of the chain. 

Hops to adjacent beads allow the slip-link to diffuse back and forth along the chain. In time t, 

the mean square number of beads from its initial position will therefore be:  
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
2

           (B3) 

So, the time required to hop Ne monomers (equivalent to motion of one diameter along the tube) 

is:  

SLe tNt  2
   (B4) 

Hence, the effective diffusion constant along the tube contour is 

SLeSLe

e

tN

b

tN

bN

t

a
D







222

2

2

22

. (B5) 

This corresponds to a friction constant, per slip-link, of 

2

2

b

tTk
N

D

Tk SLB
e

B 
 .         (B6) 

Since there are Ne,ss beads per slip-spring, the friction constant per bead is therefore:  

2
,

,0

2

b

tTk

N

N SLB

sse

e
SL


 .   (B7) 

Upon dilution of slip-links, Ne,ss is increased by a factor 1/f, whilst Ne increases by a different 

factor 1/, as detailed in Appendix A. f  and   are almost, but not exactly, the same, so 

consequently the effective friction per chain bead from slip-links is almost unchanged by 

dilution, giving the factor f.ȗ0,SL/  in equation B1. 

 

Appendix C:  Friction for “fat tube” motion in SSp model. 

We first reproduce the derivation of the effective friction coefficient for fat tube motion 

proposed by Read and co-workers.22  

In the limit of small ĲCR,TT (ȗCR,TTĺ0) the chain friction per bead must always remain ȗ0
 

regardless of f. This condition is satisfied by introducing the additional chain friction 

contribution, ȗ+: 
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1

1
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, 
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 


effTTCRfTTCR

 (C1)  

In this equation ȗCR,TT is defined for the fraction of blinking entanglements 1-f using equation 

3. ȗeff is the effective friction coefficient due to the sliding motion of the chain projected on the 

fat tube contour, LFT=1/2׋L. The theoretical expression for this projected motion can be derived 

by recognizing that, in a system where reptation is the only relaxation mechanism, the escape 

times of the chain from the thin tube and the fat tube are the same. Therefore, in the absence of 

slip-link friction: 

2
0

2 LLFTeff   . 

Thus, the effective friction per bead for the chain’s sliding motion projected on the fat tube 

contour can be computed as: 

 



 0eff .  (C2) 

Next, by substituting equation C2 in equation C1 we can derive an expression for the additional 

chain friction contribution per bead which ensures that at the limit of very fast CR events total 

chain frictions remains equal to ȗ0: 

 






 1

0 .  (C3) 

It is possible to follow the same line of reasoning with the addition of slip-link friction and 

careful consideration of dilution effects. We first note, from equation B1, that we expect the 

effective friction for motion along the (diluted) fat tube to take the form: 

fa tSLp

f 


  ,0
)3(

            (C4) 

in which the first term f.ȗ0,SL/׋  represents the friction from the fraction f of slip-springs with 

“slow” constraint release which define the fat tube. Any motion along the “fat tube” must 

involve chain motion through these slip-springs, and so they contribute directly to the friction. 

The extra friction ȗfat represents all other friction contributions. In the limit when constraint 

release from the “fast” slip-springs is extremely fast i.e. ĲCR,TTĺ0  then these slip-springs 

contribute no friction, and the only friction comes from the chain, i.e. ȗfat=ȗ0. In all other cases, 
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we need to combine friction contributions from chain motion, constraint release and slip-link 

friction in an appropriate way. 

Following presented above arguments, we assume independence of transport processes for 

motion of the chain along the thin tube and constraint release of the thin tube along the fat tube. 

Hence   

effTTfa t 
111

'
             (C5) 

where     TTCRTT f ,
' 1  represents the total friction for hopping of the thin tube 

constrained by a fraction 1-f of blinking entanglements, and where ȗ+ represents the 

contribution of chain friction to the hopping motion. The friction ȗeff represents chain motion 

along the thin tube, but rescaled to give the effective friction for the projected motion along the 

fat tube in an analogous manner to the derivation of equation C2. The simple crossover formula 

employed in eq.C5 provides a smooth transition between two regimes. The physics captured by 

this formula is identical to that described eq.17 in Viovy et al., 28 in section 3 in Read et al. 22 

and eq.19 in van Ruymbeke et al.26 However, the latter one makes use of a more sharp transition 

between different regimes implemented through a “max” function. 

However, we must also include the contribution of slip-link friction to this motion, from a 

fraction 1-f of slip-links, and so:  

 



 SL

eff

f ,00 1
    (C6) 

where the slip-link friction ȗ0,SL does not carry the extra factor f / ׋  because we are examining 

motion along the undiluted tube.  Finally, insisting that ȗfat= ȗ0 in the limit ĲCR,TTĺ0  allows us 

to obtain:  

  
    SL

SL

f

f

,00

,000

11

1








 .   (C7) 

These equations guarantee two important limits. When constraint release is fast, we obtain 

equation B1 as the friction for motion along the fat tube. Conversely, in the limit of slow 

constraint release such that ȗ’TT>> ȗeff, we note that ȗfat   ȗeff and so:  
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This gives the friction for motion along the (undiluted) thin tube, including slip-link friction, 

but rescaled to give the effective friction along the fat tube. 

 

Appendix D: Determination of the effective tube for contour length fluctuations.  

In this appendix we demonstrate how the effective tube diameter in which CLF motion takes 

place is determined by the blend composition and CR timescale.  

We first consider the timescale for CLF along the fat tube. Recognizing that )3(
p  obtained in 

equation 8 is the effective friction constant for chain motion projected onto the fat tube 

coordinate, the timescale for CLF in the fat tube is obtained as the Rouse time calculated using 

)3(
p  as the chain friction. This gives:  

 )3(
2

22

, 3 p
B

fatCLF Tk

bN 


  .  (D1) 

In the limit of slow constraint release such that    SLp ,00
)3(  , we find  /, RSLfatCLF k  

where   0,00 / SLSLk   is the factor by which the along-tube motion is slowed down by 

SSp friction. This is exactly in line with the enhanced stretch relaxation time identified by Auhl 

et al., (2009).  Since both reptation and CLF along the fat tube are governed by the same friction 

factor )3(
p , the whole dynamics is consistent with projection of the chain motion along the fat 

tube, i.e. taking Z*= Zfat with CLF in the fat tube. 

This conclusion remains valid unless constraint release of the thin tube is so slow that the thin 

tube does not have chance to explore, locally, the fat tube within this CLF timescale. If this is 

the case then there is not sufficient freedom for CLF to occur fully in the fat tube. The timescale 

for local equilibration of these monomers is the CR Rouse time of their subsection of thin tube, 

i.e.  
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where TT is as given in equation 5. If fatCLFfate ,,    then we expect CLF in the fat tube, i.e. 

Z*= Zfat. This condition usually only breaks down in the limit of slow constraint release such 

that  /, RSLfatCLF k  and where TTCRTT ,   in equation 2 so that: 
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In this case, the condition fatCLFfate ,,    becomes a condition on the constraint release timescale:  

 RSL
CR

TTCRfat kZZ 



2

3
 if 

22

,
*  . 

The other limiting case occurs where constraint release is so slow that RTTCR  ,  so that no 

significant constraint release occurs during the timescale R  for CLF in the thin tube. Then, 

CLF occurs dominantly in the thin tube and Z*= Z. 

Intermediate between these two limiting cases is a regime in which contour length fluctuations 

occur whilst the thin tube simultaneously undergoes constraint release Rouse motion. In this 

case, CLF effectively occurs in an intermediate “supertube” defined by dilution factor 
* , 

which we obtain by equating fatCLFfate ,,    with the replacement
*  . In this intermediate 

regime, eNNZ /**  . Putting all three regimes together:  
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For validating these theoretical conclusions, we run simulations of the chain dynamics with a 

fraction 1-f of slip-links blinking with characteristic time ĲCR,TT varying over a broad range of 

values, while others are permanent but can slip along the backbone and thus can only disappear 

if the probe chain releases its end from the corresponding slip-link by sliding motion. 



53 

 

In Figure D1 for a broad range of ĲCR,TT values, we plot simulation results of the longest 

relaxation time of the end-to-end vector of the probe chains. Theoretical predictions plotted as 

solid color lines are computed using equation 9. 

10-6 10-4 10-2 100 102 104
102
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Figure D1: Comparison between theoretical predictions (lines) and simulation results (markers) of the end-
to-end vector of a probe linear chain with N=132 constrained by blinking and permanent entanglements. 
The lines show prediction of equation 9 with different CLF regimes described in equation D4. The crossover 
between different regimes is fitted using eq. D5 with parameter ȕ=0.25 (color solid lines) and ȕ=1 (dashed 
black lines).  Fraction 1-f of blinking entanglements have the same lifetime, ĲCR,TT. The lowest horizontal 
black solid line represents terminal relaxation dominated by free Rouse motion of the chain; the uppermost 
– shortened by CLF reptation of the probe chain. Arrows show Rouse entanglement relaxation time Ĳe= 
ĲR/Z2 and longest relaxation time of the probe chain, Ĳd,p=36280. 
 

To implement a continuous transition between various regimes derived in equation D4 we use 

a simple crossover formula which in the limit of ĲCR>>Ĳ* converges to f(Z*)=f(Z) but when 

ĲCR<<Ĳ* leads to f(Z*)=f(Zfat) and at intermediate values we get f(Z*)=f(Z.׋* ): 

).(*)( ZAfZf  ,     (D5) 
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with the characteristic time  
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3
*

22
RSLCRk 

  .    (D7) 



54 

 

The theoretical predictions demonstrated in Figure D1 by color solid lines are obtained with 

ȕ=0.25. We also plot predictions with ȕ=1 (black dashed lines) to demonstrate the effect of 

fitting parameter ȕ. 

We note that the crossover formula D6 is purely empirical and is solely used to capture the 

onset of tube dilation from constraint release Rouse motion in an SSp model, and then arrest of 

tube dilation as the fat tube diameter is approached. The exact physics of this transition is not 

clear to us and this is one of the reasons why we demonstrate predictions with different 

parameter ȕ in Figure D1. 

 

Appendix E: Tube hop amplitude due to CR event. 

Thin tube. 

The analysis presented here below rationalizes the empirical mixing law (equation 2), which 

was used by Shivokhin et al.24 

When the constraint release time is long, the hop length, h, is expected to be proportional to the 

typical tube diameter, hence:  

 
222 bNh eCR , (E1) 

where b=1 is the size of the Kuhn segment, and ĮCR  is a yet unknown prefactor. A previous 

publication, 24 did not include the natural scaling with Ne in either equation 3 or E1, and so 

used a different variable ACR, related to ĮCR as ACR=ĮCRNe.  We determine value of ĮCR(=1.2) 

by fitting simulation data in Figure 11(a).  

Significantly, equation 2 is obtained under the assumption that equation E1 gives the hop size 

independently of the constraint release timescale. However, if the constraint release timescale 

is short, such that the local Rouse motion of the chain does not permit a significant change in 

local chain configuration between CR events, then the expected hop length must be smaller, 

limited by how far a monomer on the chain can move during the constraint release timescale. 

This can be estimated by equating the constraint release timescale with the Rouse time of a 

subsection of chain containing nCR monomers, giving:  
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The hop length is then expected to be of order 
22 bcnh CR  where c is an, as yet unknown, 

constant. In order to interpolate the hop length between the limits of short and long constraint 

release time, we might use a simple crossover formula:  
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Now, using equations 3, E2 and E3 together, and adding in the direct contribution of monomer 

friction, we find the friction per bead for the second mode of chain motion, through constraint 

release hops: 

 
02

0
2

22

0,

3

1112




























CRBeCRe

BCR

TTCRTT

Tk

b

cNNb

Tk .  (E4) 

Because of the square root dependence of nCR in equation E2, the form of this equation E4 is 

remarkably similar to that of equation 2. In fact, for the very specific choice 

 2

2
2

6
CRc   

equation E4 becomes exactly identical to equation 2 (where in equation 2, we use equation E1 

for the hop size).  It may be noted that the monomer friction contributes at two levels in equation 

E4. Firstly there is the direct contribution from ȗ0. Secondly, the monomer friction can limit the 

scale of the hopping during CR events. It is this second contribution which gives rise to the type 

of crossover function captured in equation 2, rationalized in equation E4.  More generally, we 

can treat c as a fitting parameter, which we parameterize as:  

 2

2
2

6
CRKc   

so that equation E4 becomes:  
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We find the best fit in the crossover region of ȗTT (in the inset of Figure 11(a) by introducing 

prefactor K(=0.36). 
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Fat tube. 

In the limit of extremely slow constraint release, such that the chain, and the thin tube have a 

great deal of time for local rearrangement between fat tube CR events, we anticipate the typical 

hop amplitude should follow the dilation of the fat tube diameter, i.e.  

 


 22
2 bN

h eCR
FT  .  (E6)  

However, if the fat tube constraint release timescale is shorter, then the effective hop length 

may be smaller, being limited by both chain friction and the friction from CR hops of the thin 

tube. These prevent the chain and thin tube from moving a large distance during a slow CR 

event. 

The hop length for slow CR events can be estimated by equating the slow CR time ĲCR,FT  with 

the Rouse time (including total friction as given by equation 11) of a subsection of chain 

containing nCR,FT monomers, so that: 
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 .  (E7)  

The hop length is then expected to be of order 2
,

2 bcnh FTCRFT  . In order to interpolate between 

this and the limit of equation E6, we use a crossover formula:  
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If timescale of the slow constraint release is allowed to approach that of the fast constraint 

release, then it is expected that the hopping length for “slow” CR events must be the same as 

that for “fast” CR events, i.e. it would approach the equivalent of equation E3: 
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In fact, setting ĲCR,FT=ĲCR,TT in equation E8 always underpredicts h2 compared to equation E9, 

but the discrepancy is within a of 2. This indicates that equation E8 captures the correct physics, 

but with just a small discrepancy due to the fact that equations 11 and E7 assume that a 
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continuous chain Rouse model is appropriate. This assumption breaks down as ĲCR,FT 

approaches ĲCR,TT since only a few fast CR hops occur for each slow CR event. A very simple 

interpolation formula, provides the correct scaling for large ĲCR,FT and guarantees the correct 

result when ĲCR,FT=ĲCR,TT : 

  2
)2(

2
)1(

2 ,max FTFTFT hhh  .  (E10)  

 

Appendix F. 

In this appendix we propose a simple method to eliminate overcounting of relaxation 

pathways which can ultimately cause overprediction of the longest relaxation times. 

Thin tube: 

  A small overcounting of relaxation pathwaysbecomes apparent in the limit of small (zero) 

constraint release time ĲCR in equation 4. In this limit, we require that the relaxation time )2(
p  

from equation 4 should equal the Rouse time ĲR, but there is a danger that the combination of 

Rouse relaxation and reptation implied by equation 4 predicts a faster terminal time. Hence, we 

use:   

  TT
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TT Tk
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3 2

22

 , (F1) 

where the monomer friction in TT~ is marginally modified from equation E5: 
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The extra factor  
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ZZfkSL

in this equation removes the overcounting of relaxation 

pathways and ensures that equation 4 reduces to the Rouse time, ĲR, when constraint release is 

fast. This correction factor is in some ways equivalent to the   11   correction factor present 

for ȗ+ in equation C3, as derived in ref .22  
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Fat tube: 

The longest relaxation time due to CR Rouse motion of the fat tube is computed as  

FT
B

FT Tk

bN 


 ~

3 2

22

 ,    (F3) 

where the friction is computed in a manner similar to Equation 12, but with a correction to 

avoid, at an approximate level, the overcounting in Equation 13 of relaxation pathways between 

motion along the fat tube, and constraint release motion: 
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The correction factor  
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 is similar to the factor from equation F2, but now 

applied at the level of the fat tube. 

Since there are fewer fat tube segments than thin tube segments, the correction in equation F4 

is more substantial than that applied in equation F2.  There are evidently problems with this 

approach for small volume fractions when the factor 3kSLZfatf(Z*) approaches unity, but in this 

limit the number of entanglements along the fat tube is less than one, and it ceases to be 

appropriate to consider the existence of a fat tube at all. 

Appendix G. Recast of key results in “tube model parameters”. 

Most of the results presented in section 6, and in the Appendices, relate to comparison between 

the tube model and the SSp model, and so all results are presented in simulation units. There 

are also several specific complications arising from the SSp model itself, namely the issues of 

slip-link friction, and effects of dilution, which might not be relevant in real polymer systems 

(though there is certainly the possibility of equivalents, such as extra friction from 

entanglements). One reviewer of this paper made a (very reasonable) request that some of the 

rather complicated results be presented in “tube model parameters” to aid comparison with 

experiments.  We show this in two specific cases. 

The “system #2” case, dealt with in section 6.2, corresponds to a dilute long chain in a matrix 

of short chains, and it may be anticipated that the terminal relaxation crosses from reptation and 
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contour length fluctuations, for long “short chains” and large values of ĲCR, towards terminal 

relaxation via constraint release Rouse motion.  In our theory, this crossover is handled by 

equation 4 giving the terminal time )2(
p : 

(2)

1 1 1

p TT d  
  .            (G1) 

This crossover function was sufficient for our simulated systems, in which the long chains have 

rather few entanglements. More complicated crossover functions may be needed for the general 

case of longer chains. In entanglement units, the reptation time for the long chains with number 

of entanglements LZ  is given by equation 1: 

   LeLLRLd ZfZZfZ  333             (G2) 

The constraint release Rouse time TT depends on the values of ĲCR, which depends on the length 

of the short chain. In a real blend, there is in fact a spectrum of constraint release times, so we 

can only make an approximation. Let us suppose that the terminal reptation time of the short 

chains determined the constraint release time, and parameterize this as:  

sd
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  ,             (G3) 

where  is a parameter to be determined and sd ,  is the terminal time of the short chains, with 

SZ  entanglements, given by:  

 SeSsd ZfZ  3
, 3 .             (G4) 

Substituting from G3 into equations 5 and F2, and then rearranging gives:  
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The later terms in this expression handle the case where there is a crossover for very small sd ,  

towards unentangled chain Rouse motion. For largersd ,  we simply get the standard constraint 

release Rouse result, 
2

, LsdTT Z  . 

The results of section 6.3 for “system #3” may be considered to be relevant to long chains 

entangled with other long chains (giving a fat tube) and with short chains (giving the thin tube). 

The main result for the terminal time, equation 9, may be written as:  
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where the function  *
LZf   switches between CLF in fat and thin tubes (see equation D4) and 

the friction constant ratio determines whether chain motion along the thin tube or fat tube is 

fastest, and is given by:  
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The first term in equation G7 gives diffusion along the fat tube, mediated by constraint release, 

whilst the second term gives motion along the thin tube. 
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