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Abstract 

Successful subretinal transplantation is limited by considerable early graft loss, 

despite pharmacological suppression of adaptive immunity. We postulated that 

early innate immune activity is a dominant factor in determining graft survival 

and chose a non-immunosuppressed mouse model of retinal pigment epithelial 

(RPE) cell transplantation to explore this. 

Expression of almost all measured cytokines by DH01 RPE cells increased 

significantly following graft preparation and the neutrophil chemoattractant, 

KC/GRO/CINC, was most significantly increased. Subretinal allografts of DH01 

cells (C57BL/10 origin) into healthy, non-immunosuppressed C57BL/6 murine 

eyes were harvested and fixed at 1, 3, 7 and 28 days post-operatively and 

subsequently cryosectioned and stained. Graft cells were detected using SV40 

large T antigen (SV40T) immunolabeling and apoptosis/necrosis by terminal 

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Sections were 

also immunolabeled for macrophage (CD11b & F4/80), neutrophil (Gr1 Ly-6G), 

and T-lymphocyte (CD3-ε) infiltration. Images captured with an Olympus 

FV1000 confocal microscope were analyzed using Imaris software. 

The proportion of the subretinal bolus comprising graft cells (SV40T+) was 

significantly (p<0.001) reduced between post-operative day (POD) 3 (90% ± 

4%) and POD 7 (20% ± 7%). CD11b+, F4/80+ and Gr1 Ly-6G+ cells increased 

significantly (p<0.05) from POD 1 and predominated over SV40T+ cells by POD 7. 

Co-labeling confocal microscopic analysis demonstrated graft engulfment by 

neutrophils and macrophages at POD 7 and reconstruction of z-stacked confocal 

images confirmed SV40T inside Gr1 Ly-6G+ cells. Expression of CD3-ε was low 

and did not differ significantly between time-points. By POD 28, no graft cells 

were detectable and few inflammatory cells remained. 

These studies reveal for the first time a critical role for innate immune 

mechanisms early in subretinal graft rejection. The future success of subretinal 

transplantation will require more emphasis on techniques to limit innate 

immune-mediated graft loss, rather than focusing exclusively on suppression of 

the adaptive immune response.
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INTRODUCTION 

Retinal degenerative disease, including neovascular and non-neovascular age-

related macular degeneration, are the commonest cause of blindness in the 

developed world1. Anti-vascular endothelial growth factor (anti-VEGF) agents 

prevent loss of vision and improve visual acuity in patients with neovascular 

degenerations2-4. However, no effective treatment exists for the more common5 

non-neovascular degenerations. Transplantation of cells to the subretinal space 

(SRS) to replace degenerate or dysfunctional cells has been proposed as a 

treatment strategy6, and achieves anatomical and visual rescue in animal models 

of retinal degenerative disease7-22 and in affected humans23-25. 

Rapid graft loss and decline of anatomical and functional benefit following 

transplantation26,27 remains a major challenge. This occurs despite suppression 

of the T-lymphocyte mediated adaptive immune response with drugs such as 

cyclosporine and azathioprine. These immunosuppressive regimes still have 

graft survival rates of just 11% at 4 weeks28,29 and 0.2% at 28 weeks28. Indeed, 

rabbit allograft failure is not associated with lymphocyte infiltration and is not 

altered by cyclosporine-immunosuppression30,31. 

Poor graft survival in the SRS is paradoxical, as this site is characterized by a 

suppressed antigen-specific adaptive immune response32-34. The RPE expresses 

CD95 ligand that induces T-cell apoptosis, secretes TGF-b, which is important in 

the induction of tolerance35, and can also phagocytize T-lymphocytes36. We 

hypothesized that cells transplanted to the immune-deviant SRS are destroyed 

by an alternate immune mechanism rather than via classic T-lymphocyte 

mediated immunological rejection. 
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Innate immune responses are characterized by upregulation of pro-

inflammatory cytokines37 and a coordinated local and systemic inflammatory 

response38. A critical role for innate immunity in acute allograft rejection is now 

emerging39-41, and has been shown to be crucial in skin42 and pancreatic islet 

cell43 allograft rejection. However, the role of innate immunity in subretinal 

transplantation has not been studied. We hypothesized that subretinal graft 

failure is a consequence of innate immune mechanisms and used a mouse RPE 

allograft model to investigate this. The purpose of this study was to examine the 

mechanisms underlying early allograft cell loss in the SRS rather than to achieve 

a structural or functional benefit following transplantation. Accordingly, we used 

healthy non-immunosuppressed hosts to investigate our hypothesis. 

 

MATERIALS AND METHODS 

Ethics statement 

Ethical approval for this research was obtained from University College Dublin’s 

Animal Research Ethics Committee (AREC-P-07-09-Keegan). All procedures 

involving the use of mice were performed in accordance with the Association for 

Research in Vision and Ophthalmology (ARVO) Statement for the Use and Care of 

Animals in Ophthalmic and Vision Research and all efforts were made to 

minimize suffering. 

Cell line derivation 

The DH01 RPE line was prepared from RPE cultured from a healthy 

C57BL/10.RIII-H-2r mouse as previously described44 and immortalized using 

supernatant from the SVU 19.5 cell line45 secreting retrovirus encoding a 

temperature-sensitive non-SV40 origin-binding U19 mutant of the SV40T 

antigen and the neomycin resistance gene46. 
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Cell culture 

DH01 cells were routinely cultured in high glucose Dulbecco’s modified Eagle’s 

medium (DMEM) (Sigma-Aldrich Ireland, Wicklow, Ireland) supplemented with 

1% fetal calf serum (Sigma-Aldrich, Ireland) 200 mM L-glutamine (Sigma-

Aldrich, Ireland) and 5 mg/ml penicillin/streptomycin (Sigma-Aldrich, Ireland). 

As these cells harbor SV40T they were grown at 33° C in 5% CO2. 

Transplant conditions (TC) and baseline conditions (BC) 

TC cells were prepared as a highly concentrated cell suspension (50,000 

cells/μl), deprived of serum (suspended in serum-free medium), and kept on ice 

for the maximum period that typically exists between harvesting and 

transplanting the graft (4 hours). To determine the effect of graft cell suspension 

preparation on cytokine production, we compared cytokine expression by DH01 

cells immediately following resuspension in full media (BC) and after being 

prepared for subretinal transplantation (TC). 

Preparation of samples for cytokine quantification 

Cytokine production by DH01 was quantified under BC and following the stress 

of the graft cell suspension preparation procedure (TC). Cells were cultured in 

full medium, trypsinized (Trypsin from Sigma-Aldrich, Ireland) and seeded in 

triplicate to 24-well culture plates with 2x105 cells/well to yield confluent 

cultures. BC cells were seeded in 0.5 ml of serum-free medium. TC cells were 

subjected to the process involved in preparation of a graft cell suspension as 

described above, and after 4 hours on ice were seeded in 0.5 ml serum-free 

medium. Following culture for 24 hours, the medium was removed and stored at 

-80°C for subsequent analysis. 

Multiplex cytokine assay 

A 9-plex multi-spot T-helper 1 (TH1) / T-helper 2 (TH2) cytokine assay kit 

(Meso Scale Discovery-MSD, K15013B-1) was used according to the 

manufacturer’s instructions to quantify the following cytokines: IFN-γ, TNF-α, IL-

1β, IL-2, IL-4, IL-5, IL-10, IL-12 total and KC/GRO/CINC (CXCL1). An 8-point 

calibration curve from 0-10,000 pg/ml was constructed using a plot of signal 
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intensity from a series of known concentrations of the multiplex standard 

provided by the kit manufacturer. Cytokine levels were calculated using the MSD 

Sector Imager 2400 and Discovery Software 2.0 (MSD, Rockville, MD, USA). 

Concentrations were determined in triplicate and expressed in pg/ml. 

IL-6 enzyme-linked immunosorbent assay (ELISA) 

IL-6 was not included on the MSD TH1/TH2 multiplex kit. Therefore, expression 

of this cytokine was measured separately using an IL-6 ELISA kit (Invitrogen, 

KMC0061). A 6-point calibration curve from 0-500 pg/ml was generated from 

standard mouse IL-6 reconstituted in standard diluent buffer. ELISA was carried 

out as per the manufacturer’s instructions. Absorbance at 450nm was measured 

using a spectrophotometer (SpectraMax M2, Molecular Devices). Sample IL-6 

concentrations were calculated against the graph of the standard curve. 

Concentrations were determined in triplicate and expressed in pg/ml. 

Subretinal RPE cell transplantation 

Male C57BL/6 mice were obtained from Harlan UK (Bicester, UK). All surgery 

was performed under ketamine (Ketalar, 75 mg/kg, C&M Vetlink, Limerick, 

Ireland) and medetomidine (Domitor, 0.5 mg/kg, C&M Vetlink) anesthesia, and 

the mice were recovered with atipamezole (Antisedan, 1 mg/kg, C&M Vetlink). 

Euthanasia was with sodium pentobarbitone (Euthatal 140 mg/kg, C&M Vetlink) 

followed by cervical dislocation. All drugs were delivered by intra-peritoneal 

injection, with the exception of atipamezole, which was delivered by 

subcutaneous injection. 

DH01 (C57BL/10 origin) cell suspensions (50,000 cells/μl DMEM) were 

prepared from pre-confluent cultures as described under TC above. We have 

previously demonstrated that preparing DH01 cell suspensions in this manner 

results in 95% graft cell viability at the time of transplantation 44. Subretinal 

transplants were delivered transsclerally through glass micro-injection pipettes 

(BioMedical Instruments, Germany) to the dorso-temporal subretinal space of 

healthy non-immunosuppressed C57BL/6 mice. Eyes received 2 µl of the graft 

cell suspension (n=16). Graft position and size was verified by fundoscopy under 

the operating microscope. To distinguish a host inflammatory response to the 
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surgical procedure, as distinct from a response directed specifically against the 

allograft, sham surgery controls that received 2 µl vehicle only (serum-free 

medium) were also performed (n=16). The animals were euthanized and eyes 

harvested on POD 1, 3, 7 and 28 (n=4/group/time-point). In order to establish 

the baseline expression of markers of interest, unoperated eyes were also 

harvested from naïve mice that received neither graft nor sham surgery to either 

eye (n=4). The eyes were fixed in 4% paraformaldehyde, cryoprotected in 

sucrose, embedded in OCT under liquid nitrogen and stored at -80°C. Sections 

(7µm) were cut on a Leica cryostat and stained as described below. 

Graft detection (SV40T), TUNEL-labeling and identification of the host 

immune response to subretinal RPE transplants 

To examine temporal graft survival, graft cells were identified using a specific 

primary antibody to SV40T (Santa Cruz, SC-20800, 1:100) and goat-anti-rabbit 

Texas Red-labeled secondary antibody (Jackson, 111-075-003, 1:100). DNA 

strand breaks were detected by TUNEL as previously described 47. 

To examine the host immune response to subretinal DH01 allografts, 

cryosections were immunolabeled for the SV40T antigen (Santa Cruz, SC-20800, 

1:100) using a donkey-anti rabbit FITC-labeled secondary antibody (Jackson 

711-095-152, 1:100). In addition, sections were immunolabeled to detect 

macrophages (CD11b and F4/80), neutrophils (Gr1 Ly-6G) or T-lymphocytes 

(CD3-ε). Rat anti-mouse CD11b (AbD Serotec MCA711, 1:100), rat anti-mouse 

F4/80 (AbD Serotec MCA 497EL, 1:25) and rat anti-mouse Gr1 Ly-6G (R&D 

Systems, MAB1037, 1:100) primary antibodies were secondarily immunolabeled 

using donkey anti-rat TRITC-labeled secondary antibody (Jackson, 712-025-150, 

1:50). Goat anti-mouse CD3-ε (Santa Cruz, sc-1127, 1:100) was secondarily 

immunolabeled using donkey anti-goat TRITC-labeled secondary antibody 

(Jackson, 705-025-003, 1:100). 

For all immunohistochemistry performed, serum from the host species of the 

relevant secondary antibody (1:50) was used to block non-specific binding and 

4,6-diamidino-2-phenylindole (DAPI 10 ng/ml, Sigma-Aldrich, D9542) 
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counterstaining was used to enable visualization of nuclei. Phosphate-buffered 

saline (Sigma-Aldrich, Ireland) was used to dilute all reagents and for three 5-

minute washes between steps. After the final wash, sections were mounted using 

Vectashield® HardSet™ (Vector laboratories). 

Confocal Microscopy 

Immunolabeling was visualized using an Olympus FV1000 confocal microscope. 

Differential interference contrast microscopy (DIC) images were taken at the 

time of fluorescent confocal microscopy to more accurately identify the SRS. Z-

stack images were taken through areas of interest to enable 3-dimensional (3D) 

image reconstruction using image analysis software as described below. 

Captured images were viewed using Olympus Fluoview Ver. 1.4a software. 

Image Analysis 

Four transplanted eyes and 4 sham-treated eyes were examined for each post-

operative time-point. Four unoperated eyes were also examined. In order to 

maintain consistency in analyses of transplanted eyes, cryosections through the 

center of the subretinal cell bolus where the greatest numbers of cells were 

present were used for all eyes. For sham-treated eyes, cryosections in the region 

of the injection site were used. All sections were immunolabeled for SV40T to 

identify transplanted cells and counterstained with DAPI to label all nuclei. 

Sections were also immunolabeled to detect one of the following: DNA nicks 

(TUNEL), macrophages (CD11b and F4/80), neutrophils (Gr1 Ly-6G) or T-cells 

(CD3-ε). 

Single optical sections from 4 transplanted eyes and 4 sham-treated eyes per 

time-point, in addition to 4 unoperated control eyes were analyzed using Imaris 

image analysis software (Bitplane AG, Switzerland). For sections fluorescently 

labeled to detect both SV40T and TUNEL, the following counts of cells in the SRS 

were performed: total number of cells (DAPI+); number of graft cells 

(DAPI+/SV40T+); and number of graft cells with DNA nicks 

(DAPI+/SV40T+/TUNEL+). As the total number of cells in the SRS varied between 

images, the proportion of the subretinal cell bolus comprising grafted cells was 
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calculated as SV40T+ cells per 100 cells (DAPI+) in the SRS. The proportion of 

graft cells (SV40T+) that had DNA nicks (SV40T+/TUNEL+) was also calculated. 

As immune cell infiltration of the SRS was identified by cell specific surface 

markers (CD11b, F4/80, Gr1 Ly-6G and CD3-ε), it was not possible to accurately 

estimate cell number. Therefore, sections immunolabeled for these markers in 

conjunction with the graft cell marker (SV40T) were analyzed by calculating the 

area of immunolabeling using Imaris. To correct for differing sizes of subretinal 

boluses, the numbers of nuclei (DAPI) in the SRS were also counted and the areas 

of immunolabeling expressed as µm2/100 nuclei in the SRS. This enabled 

determination of the temporal change in expression of the graft cell marker 

(SV40T) relative to markers of infiltrating immune cells. 

The proportion of the area of SV40T+ immunolabeling that co-labeled with 

immune cell markers (CD11b, F4/80, Gr1 Ly-6G and CD3-ε) was also calculated 

using Imaris. This allowed determination of altered temporal co-labeling of the 

graft cell marker with markers of infiltrating cells. 

Z-stack confocal images of selected regions of SV40T co-labeling with immune 

cell markers were processed using Imaris and reconstructed in 3D form using 

isosurface rendering to determine the nature of the relationship between co-

labeling markers at a cellular level. 

Statistical analysis 

Data were analyzed using GraphPad Prism 5 statistical software (GraphPad, San 

Diego, CA, USA). Data are expressed as mean ± standard deviation (SD) and 

p<0.05 was considered statistically significant. 

Comparisons of cytokine levels 

Student’s t-tests assuming unequal variances were used to determine the 

significance of differences between sample means. Results are presented as 

mean ± SD. 
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Comparisons of cell numbers in the SRS at different post-operative time-points 

At POD 1, 3, 7 and 28, counts of cells in the SRS were performed to determine the 

total number of cells; the proportion of cells expressing SV40T; and the 

proportion of SV40T+ cells that were also TUNEL+. One-way analysis of variance 

(ANOVA) followed by all pairwise post-hoc t-tests with Bonferroni Correction 

were used to determine the significance of differences between sample means. 

Analysis of areas of immunolabeling 

The areas of immunolabeling and the total numbers of nuclei in the SRS were 

calculated for each immunolabeling combination at POD 1, 3, 7 and 28. Thus, 

areas of immunolabeling/100 nuclei were determined. To assess for changes in 

marker expression between time-points, areas of immunolabeling/100 nuclei 

were treated as normally distributed and analyzed with ANOVA and Tukey’s 

post-hoc test. 

Analysis of immunofluorescent co-labeling 

The proportions of SV40T immunolabeling that co-labeled with immunolabeled 

infiltrating cells were calculated using Imaris. The co-labeling as proportions are 

likely not normally distributed and were analyzed with nonparametric methods, 

Kruskal-Wallis test and Dunn’s post-hoc comparisons. 

RESULTS 

Cytokine expression increases significantly following graft preparation 

Cytokine expression by the mouse RPE cell line, DH01, was quantified under BC 

and TC prior to transplantation (Table 1). With the exception of IL-4, expression 

of all cytokines increased significantly (p<0.05) following graft preparation (TC). 

However KC/GRO/CINC was expressed at considerably greater levels under both 

BC and TC, compared to all other cytokines measured. KC/GRO/CINC also had 

the greatest increase (6-fold increase; p=0.022) in expression following TC. A 3-

fold increase (all p≤0.001) in expressed IL-1β, IL-5, IL-6 and IL-12 occurred 

following TC. There was also significantly increased expression of IL-10 (2.1-fold 
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increase; p=0.024) and IL-2 (2.7-fold increase, p=0.002) following graft 

preparation (TC) compared to baseline levels (BC). 

Retinas from unoperated and sham-treated eyes of C57BL/6 mice contain 

F4/80+ cells and few TUNEL+ cells, but do not comprise CD11b+, Gr1 Ly-6G+ 

or CD3-ε+ cells. 

To establish the baseline expression of markers of interest in the C57BL/6 

mouse retina, cryosections from unoperated eyes (n=4) and sham-treated eyes 

at POD 1, 3, 7 and 28 (n=4/time-point) were labeled for macrophage (CD11b and 

F4/80), neutrophil (Gr1 Ly-6G) and T-lymphocyte (CD3-ε) markers. TUNEL-

labeling was also performed to examine for baseline apoptosis and necrosis in 

the retina. All sections were additionally labeled for SV40T to establish levels of 

background staining for the graft cell marker. All nuclei were counterstained 

with DAPI (Fig. 1). 

The unoperated retina was characterized by the presence of F4/80+ cells, 

particularly in the ganglion cell layer (Fig. 1k). Low background levels of TUNEL+ 

cells were also present in the retina (Fig. 1a). SV40T, CD11b, Gr1 Ly-6G or CD3-ε 

labeling was not observed and no cells were present in the SRS. 

Sham-treated eyes did not demonstrate SV40T immunolabeling but had low 

levels of TUNEL+ cells in the inner and outer nuclear layers of the retina (Fig. 1b-

e). At all post-operative time points, sham-operated eyes did not have cells in the 

SRS and the retina did not stain for CD11b, Gr1 Ly-6G or CD3-ε. However, F4/80+ 

cells were seen in retinas of sham-operated eyes, particularly in the ganglion cell 

layer in a pattern analogous to that observed in unoperated eyes (Fig. 1l-o). 

The first week post-transplantation is characterized by rapid loss of DH01 

RPE allograft cells, but low levels of graft apoptosis and necrosis 

We sought to ascertain whether apoptosis or necrosis were predominant 

mechanisms of graft failure in the early post-operative period. DH01 (C57BL/10 

origin) cell suspension allografts (in serum-free medium) were transplanted to 

the SRS of C57BL/6 mice. Subretinal DH01 allografts were examined at POD 1, 3, 

7 and 28 (n=4 eyes/time-point). Cryosections were immunohistochemically 
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labeled for SV40T (Texas red) to identify transplanted cells and TUNEL-labeled 

(FITC, green) to examine for DNA strand nicks. All nuclei were identified using 

DAPI (blue) counterstaining. 

Subretinal DH01 allograft cells were distinguishable from host cells by SV40T 

immunolabeling (Fig. 2A). At POD 1 and POD 3 most cells in the subretinal bolus 

were identified as graft cells by the expression of the SV40T in the nucleus (Fig. 

2A: a, b). By POD 7, there was a dramatic reduction in the proportion of cells in 

the subretinal bolus expressing SV40T (Fig. 2A: c). TUNEL-labeling 

demonstrated that few cells in the subretinal bolus had DNA strand nicks at each 

time-point. No graft cells were identified at POD 28 (Fig. 2A: d). Few cells in the 

nuclear layers of the retina were TUNEL+ following subretinal cell 

transplantation (Fig. 2A: a-d). This observation relates to the retinal detachment 

induced to place the graft and was also evident in sham-treated eyes (Fig. 1: b-e). 

Cell counts were performed using Imaris image analysis software. The 

proportion of all cells (DAPI+) identifiable as graft cells (DAPI+/SV40T+) in the 

SRS was quantified. The proportion of graft cells (DAPI+/SV40T+) with DNA 

strand nicks (DAPI+/SV40T+/TUNEL+) was also quantified. There was no 

significant change in the total number of cells in the SRS between POD 1 (435 ± 

143), POD 3 (487 ± 164) and POD 7 (607 ± 45), but total cell number decreased 

significantly (p<0.05) between POD 7 (607 ± 45) and POD 28 (49 ± 49) (Fig. 2B). 

There was no significant difference in the proportion of the subretinal bolus 

comprised of graft cells between POD 1 (93% ± 1%) and POD 3 (90% ± 4%). 

However, there was a significant (p<0.001) reduction in the proportion of the 

subretinal bolus comprised of graft cells between POD 3 (90% ± 4%) and POD 7 

(20% ± 7%) (Fig. 2C). No graft cells survived to POD 28. Levels of graft cells with 

DNA strand nicks remained low at every time-point (POD 1: 2% ± 0.3%; POD 3: 

0.4% ± 0.3%; POD 7: 5% ± 2%) and did not differ significantly between time-

points (Fig. 2C). 
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The period of graft loss is characterized by infiltrating cells expressing 

markers of innate immunity, but not T-lymphocytes 

Figure 2 illustrates a significant (p<0.001) decrease in the proportion of cells in 

the subretinal bolus expressing SV40T between POD 3 and POD 7, with total 

graft cell loss by POD 28. Subretinal DH01 allografts were also examined at POD 

1, 3, 7 and 28 (n = 4 eyes per time-point) for evidence of infiltrating 

macrophages (CD11b+ and F4/80+) and neutrophils (Gr1 Ly-6G+). T-lymphocytes 

(CD3-ε+) are traditionally regarded as mediating allograft rejection in 

conventional (non-immune deviant) sites and these cells were also sought. 

In eyes that received subretinal transplants, the period of graft loss between POD 

1 and POD 7 was characterized by infiltration of the SRS by cells expressing 

markers of innate immunity (Fig. 3A). CD11b and F4/80 are cell-surface markers 

used to identify macrophages and Gr1 Ly-6G is a cell surface marker used to 

identify neutrophils. Low levels of infiltrating CD11b+, F4/80+, and Gr1 Ly-6G+ 

cells were seen at POD 1 and POD 3, with a marked increase evident at POD 7. No 

graft cells were identified at POD 28. Only 1 of 4 eyes at POD 28 had cells 

remaining in the SRS and these were F4/80+ (Fig. 3A: h). Few T-lymphocytes 

(CD3-ε+) were seen at each time point (Fig. 3A: m-p). At POD 28 the neural retina 

overlying the graft site had folds in the outer nuclear layer, but otherwise 

appeared undamaged (Fig. 3A: d, h, l, p). 

The area of immunolabeling as a function of the number of nuclei present in the 

SRS was calculated and expressed as µm2/100 nuclei. A significant (p<0.05) 

increase in expression of the innate immune cell markers CD11b, F4/80 and Gr1 

Ly-6G coinciding with a significant (p<0.05) decrease in immunolabeling of the 

graft cell marker (SV40T) was identified between POD 1 and POD 7 (Fig. 3B). 

Expression of the T-cell marker CD3-ε remained very low across all time-points 

and was not expressed at significantly different levels between time-points (Fig. 

3B). 
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Macrophages and neutrophils co-label with, and engulf, graft cells during 

the first post-operative week 

Areas of co-labeling of the graft cell marker (SV40T) with the innate immune cell 

markers (CD11b, F4/80 and Gr1 Ly-6G) were apparent on confocal microscopy 

images. The proportion of SV40T immunolabeling that co-labeled with 

infiltrating immune cell markers on POD 1, 3, 7 and 28 was calculated. CD11b, 

F4/80 and Gr1 Ly-6G all co-labeled with SV40T at significantly (p<0.05) 

increased levels by POD 7 (Fig. 4F). However, co-labeling of SV40T with the T-

lymphocyte marker (CD3-ε) remained low at all time-points and did not change 

significantly across time-points (Fig. 4F). 

To better discriminate areas of co-labeling, high power z-stack confocal images 

were taken through these areas. SV40T immunolabeling was apparent inside the 

cell membranes of CD11b+ (Fig. 4A) and F4/80+ (Fig. 4B) cells. DIC images also 

identified pigment granules inside the cell membranes of these cells. Similarly, 

Gr1 Ly-6G+/SV40T+ co-labeling was apparent inside cell membranes of Gr1 Ly-

6G+ cells (Fig. 4C-D). Reconstruction of z-stacked confocal images taken through 

such areas of co-labeling confirms SV40T inside Gr1 Ly-6G+ cells (Fig. 4E). The 

images presented in Figure 4 are consistent with phagocytosis of graft cells by 

macrophages and neutrophils. 

DISCUSSION 

We examined cytokine expression by DH01 RPE cells under BC and following 

preparation of a concentrated graft cell suspension (TC), to determine whether 

the graft preparation technique might influence the host immune response 

following transplantation. Graft preparation (TC) increased significantly the 

expression of almost all cytokines examined (Table 1). Notably, KC/GRO/CINC 

was expressed at by far the greatest levels and also demonstrated the greatest 

fold increase (6-fold) in expression following graft preparation. Mouse GRO and 

the chemoattractant KC are structural and functional homologues of the human 

chemokine IL-848. IL-8 is a potent neutrophil chemoattractant and stimulates 

phagocytosis, superoxide radical production and cytoplasmic degranulation49,50. 

Thus, production by graft cells of high levels of KC/GRO/CINC in the SRS in the 
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period following transplantation would increase the risk of monocyte migration 

and inflammation at the graft site. KC/GRO/CINC, or IL-8, has not been identified 

previously as a potentially significant mediator of the immune response against 

subretinal grafts. 

TC caused a 3-fold increase in expression of the inflammatory cytokines IL-1β, 

IL-5, IL-6 and IL-12. While increased expression of IL-1 and IL-6 at the graft site 

has been reported following human RPE xenografts to the SRS of non-dystrophic 

Royal College of Surgeons (RCS) rats51, the effects of these cytokines in 

subretinal cell transplantation are unknown. IL-1 has many pro-inflammatory 

effects including mediating a neutrophilic inflammatory response to dying cells 

in vivo52. RPE allografts to rabbits cause elevated IL-6 in the vitreous in the first 

week post-operatively53. IL-6 is a key mediator of allograft rejection and 

increased expression is highly correlated with human cardiac allograft 

rejection54. Graft-produced IL-6 promotes T-cell activation and cardiac allograft 

rejection in the mouse55. 

DH01 expression of IL-10 increased significantly (2.1-fold increase; p=0.024) 

following graft preparation (TC) compared to baseline levels (BC). Production of 

IL-10 by the RPE plays a key role in modulating the posterior ocular immune 

microenvironment and suppressing delayed-type hypersensitivity (DTH) by 

diverting the immune response from a TH1- to a TH2-type immune response56,57. 

Increased IL-10 expression by DH01 RPE cells at the time of transplantation 

would therefore inhibit a T-lymphocytic host response against the subretinal 

graft. 

IL-2 supports T-lymphocyte proliferation58-62 and survival63, as well as the 

differentiation of naive T-lymphocytes into effector and memory T-cells64-66. 

However, IL-2 also has an immunosuppressive function by promoting regulatory 

T cell (Treg) production and homeostasis67 and plays a fundamental role in 

immune regulation and tolerance in vivo68-73. While DH01 production of IL-2 

increased significantly (2.7-fold increase, p=0.002) following graft preparation, 

absolute levels of IL-2 production under both BC and TC were relatively low. 
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In the context of consistently poor graft survival in the SRS, we sought to 

examine graft survival in the early post-operative period. We have previously 

demonstrated that our technique for preparing DH01 graft cell suspensions 

results in 95% cell viability at the time of transplantation44. Expression of SV40T 

by the DH01 cell line enabled examination of the fate of transplanted cells during 

the first post-operative month. The proportion of the subretinal bolus composed 

of graft cells reduced from 90% on POD 3 to just 20% on POD 7, and no graft 

cells survived to POD 28 (Fig. 2). 

Our finding of rapid graft loss in the SRS is consistent with other studies. Human 

RPE cells xenografted to the SRS of cyclosporine-immunosuppressed RCS rats 

are quickly lost with just 27% survival at POD 7 and 11% at POD 2828. Similarly, 

just 3% of subretinal porcine fetal RPE cells xenografted to rabbits survived to 

one month in immune-competent animals and only 10.5% survived in rabbits 

receiving daily triple systemic immunosuppressive therapy with prednisone, 

cyclosporine and azathioprine29. 

In contrast to solid tissue or organ transplants, cell transplants are commonly 

derived from cell cultures and delivered as a cell suspension (e.g. stem cells74, 

Schwann cells75,76, pancreatic islet cells43 and RPE cells8,18,20). Transplantation 

paradigms involving cell suspension grafts have poor rates of graft survival. 

Human fetal dopaminergic neuronal xenografts to cyclosporine-

immunosuppressed rats had only 5-6% survival77, and poor graft survival is also 

a feature of fetal nigral allografts in humans78,79. 

TUNEL-labeling identifies apoptotic cells by detecting DNA fragmentation. 

However, necrosis is also accompanied by DNA breaks and thus TUNEL-labeling 

also identifies necrotic cells80-82. It is unlikely that the rapid graft cell loss 

observed in this study was due to apoptosis or necrosis as rates of TUNEL-

labeling of graft cells remained low at all time points (Fig. 2A). Graft cell 

apoptosis/necrosis was just 2% at POD 1, <1% at POD 3 and 5% at POD 7 (Fig. 

2C). We hypothesized that the rapid graft cell loss observed during the first post-

operative week was a consequence of a host immune response against the 

subretinal allograft. 
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On POD 1 and POD 3, 90% of cells in the subretinal space were identifiable as 

graft cells (SV40T+). However, by POD 7 this figure reduced to just 20% (Fig. 2C). 

Thus, the remaining 80% of cells at this time must be host-derived. We 

characterized the cellular composition of the subretinal bolus during the first 

post-operative month and found that macrophages (CD11b and F4/80) 

infiltrated subretinal grafts on POD 1 and POD 3 and predominated over 

transplanted cells by POD 7 (Fig. 3A: a-h and Fig. 3B). 

There was also a significant increase (p<0.05) in immunohistochemical co-

labeling of the graft cell marker (SV40T) with macrophages (CD11b, F4/80) at 

POD 7 (Fig. 4F). High-power images of areas of co-labeling confirmed the 

presence of the graft cell marker inside macrophages (Fig. 4A and B). Thus, we 

have confirmed that macrophages not only associate with subretinal allografts, 

but also engulf transplanted cells. 

The interaction of graft cells with F4/80+ macrophages in the subretinal space is 

particularly interesting because the mouse macrophage F4/80 receptor is 

known to play a critical role in the generation of antigen-specific efferent Treg 

cells that suppress antigen-specific DTH responses83. However, while F4/80+ 

macrophages may inhibit a T-lymphocytic adaptive immune response, our 

observations reveal direct engulfment of transplanted cells by F4/80+ 

macrophages. Macrophages have been reported to associate with subretinal 

grafts in many host species including the mouse84, rat14,26,27, rabbit29-31,85-87, pig88 

and primate6. While these studies reported macrophages associating with 

subretinal grafts, they did not correlate macrophage infiltration with graft cell 

loss. The study presented is the first investigation to make this connection. 

The observation of positive immunolabeling for F4/80, but not for CD11b, in the 

ganglion cell layer was unexpected, and may be a consequence of the particularly 

high levels of expression of F4/80 by amoeboid ganglion cell layer microglia 

compared to ramified parenchymal microglia89. Although the 

immunofluorescent techniques employed in this study were insufficient to detect 

the CD11b antigens expressed by ganglion cell layer microglia, they clearly 

identified CD11b cells in the SRS. 
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Zecher et al. described an innate immune response to allografts mediated by 

macrophages that is independent of natural killer cells and T-lymphocytes90. 

Graft survival in the early post-operative period is promoted by macrophage 

inhibition in cellular transplants of pancreatic islet cells91 and spleen cells92. 

Macrophage depletion via subconjunctival administration of clodronate 

liposomes also promotes long-term survival of high-risk corneal grafts93. We 

observed a significant macrophage response in the subretinal graft coinciding 

with the period of graft cell loss during the first post-operative week. It is likely 

that perioperative macrophage depletion or inhibition may also prove useful in 

promoting subretinal graft survival. 

Having found that DH01 cells prepared for transplantation expressed large 

amounts of the neutrophil chemoattractant KC/GRO/CINC, we also investigated 

whether neutrophils infiltrated the subretinal graft. We used an antibody against 

Gr1 Ly-6G which detects the myeloid differentiation antigen, Gr194, and 

specifically identifies neutrophils as distinct from monocyte-macrophages via 

Ly-6G95. We found a significant increase in Gr1 Ly-6G+ cells infiltrating the 

subretinal cell bolus during the first post-operative week (Fig. 3A: i-k and Fig. 

3B). Moreover, by POD 7 there was also a significant increase in 

immunofluorescent co-labeling of transplanted cells with this neutrophil cell 

marker (Fig. 4F). 3D image reconstruction of areas of co-labeling demonstrated 

the presence of the graft cell marker internal to the neutrophil cell membrane 

confirming engulfment of graft cells by infiltrating neutrophils (Fig. 4C-E). 

Neutrophils have not previously been identified in subretinal grafts. 

Neutrophils have recently been implicated as mediators of cardiac graft failure. 

They are the first leukocyte to infiltrate cardiac allografts, arriving within one 

hour following transplantation96. Neutrophil infiltration also correlates with 

cardiac allograft rejection severity97, and cardiac allograft survival is promoted 

by neutrophil depletion98 and inhibition of neutrophil infiltration99. Statins 

inhibit neutrophil transendothelial migration100,101 and when used in patients 

with cardiac allografts they lower the incidence of cardiac allograft vasculopathy 

and reduce the severity of allograft rejection102,103. Thus, the use of perioperative 
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statins may also prove beneficial in suppressing neutrophil infiltration and 

promoting subretinal graft survival. 

T-lymphocyte (CD3-ε) infiltration was not a feature of this study (Fig. 3A: m-p 

and Fig. 3B). T-lymphocytes have also been notable by their absence in 

subretinal transplants to the rat26,27, rabbit29-31,85-87 and pig88. This is consistent 

with the deviant immune environment of the SRS32-34 characterized by a 

suppressed T-lymphocytic adaptive immune response35,36,104,105. Interestingly, 

after finding no significant differences between cyclosporine-

immunosuppressed and control animals in RPE cell suspension allografts in the 

rabbit, Crafoord et al. concluded that graft failure was caused by either 

immunological mechanisms not inhibited by cyclosporine or by non-

immunologic events31. The study presented here describes the cellular infiltrate 

in the SRS at specific time-points following subretinal allograft transplantation. It 

is possible that a T-lymphocyte response was occurring at the regional lymph 

nodes, however this possibility was not investigated. Nevertheless, we found that 

the majority of graft cell loss had occurred by POD 7. This is much earlier than 

acute allograft rejection mediated by T-lymphocytes, which occurs at 10-13 days 

following transplantation106.  

Lopez et al. suggested that RPE cells transplanted to the SRS of the RCS rat could 

phagocytize shed outer segments7. This conclusion was made because histology 

showed pigmented cells incorporated into the host RPE layer, in the SRS and also 

in between photoreceptor outer segments. These cells were assumed to be 

transplanted cells. However, the electron microscopy images revealed 10 times 

as many phagosomes in the putative transplanted RPE cells compared to normal 

rat RPE cells. The staining and imaging techniques were insufficient to determine 

if the phagosomes seen were truly in transplanted RPE cells or another cell type. 

In the present study, the DIC images clearly demonstrate pigment granules in 

macrophages (Fig. 4A and B) and neutrophils (Fig. 4C). We propose that 

infiltrating macrophages and neutrophils, rather than transplanted RPE cells 

may be responsible for the hyperphagocytosis observed by Lopez et al. 
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Retinal detachment activates retinal microglia107. We observed a considerable 

infiltrate of macrophages that appeared to arrive from the retinal side of the 

subretinal graft (Fig. 3A: a, b, f). It is possible that the macrophage infiltration 

represented activated retinal microglia as CD11b108 and F4/80109 also identify 

retinal microglia. The macrophage or microglial response we observed was likely 

exaggerated due to the high-density cell suspension graft delivered. However, it 

is conceivable that a low-density cell suspension graft or even a simple 

subretinal injection of saline may result in lower levels of microglia activation 

and subretinal infiltration that proves beneficial to the host. Activated retinal 

microglia may assume a phagocytic phenotype and migrate to the subretinal 

space, thereby adopting the role of outer segment phagocytosis and enabling 

photoreceptor rescue. This explanation would theoretically explain the following 

phenomena of subretinal transplantation observed particularly, though not 

exclusively, in the RCS rat: (1) transplantation of many different cell types to the 

SRS results in photoreceptor rescue14-16,76,110; (2) sham surgery has 

anatomical76,111 and functional benefits18-21 and even subretinal saline alone 

promotes photoreceptor survival112; (3) the area of rescue may extend beyond 

the area of the graft17; (4) macrophages or macrophage-like cells have 

repeatedly been seen at the graft site6,14,26,27,29-31,84-88; (5) temporal 

photoreceptor rescue may outlast graft survival18. 

Our observation of infiltrating cells expressing the neutrophil marker Gr1 Ly-6G 

is novel. Neutrophils are distinguished from monocyte-macrophages via their 

expression of Ly-6G95. Neutrophils in the eye are CD11b+/Gr1 Ly-6G+113. 

However, neutrophils are negative for F4/80114. It follows therefore that the 

CD11b+ cellular infiltrate observed during the first week following 

transplantation in the present study may comprise a combination of CD11b+ / 

F4/80+ / Gr1 Ly-6G- microglia and CD11b+ / F4/80- / Gr1 Ly-6G+ neutrophils. 

However, the immunohistochemical methods in our study could not sub-classify 

the cellular infiltrate with certainty. Further studies such as multi-labeled flow 

cytometric analysis of cells extracted from the SRS, or following whole-eye 

dissociation, would be helpful in more precisely phenotyping the infiltrate. 

Nevertheless, the data presented here reveal for the first time a critical role for 
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the innate immune system early in subretinal graft rejection, while T-

lymphocytes did not feature at all during the main period of graft loss (POD 3-7). 

The rapid loss of graft cells observed in this study was accompanied by 

comparatively very low levels of graft cell death as examined by TUNEL-labeling 

(Fig. 2A and C). TUNEL-labeling identifies apoptotic and necrotic cells by 

detecting DNA strand breaks80-82. However, it is possible that the graft cell loss 

observed in the present study occurred via a process other than apoptosis or 

necrosis, such as by autophagy115,116. Autophagic cell death is characterized by 

increased autophagosomes/autolysosomes and extensive cytoplasmic 

vacuolization, but with relatively minor changes to the nucleus and chromatin117. 

Therefore, this mode of cell death could remain undetected by TUNEL-labeling. 

Autophagic cell death is triggered by stresses including nutrient deprivation118-

121 and hypoxia119. In order to limit potential immunological triggers against 

subretinal cell suspension transplants, such grafts are normally delivered 

suspended in serum-free medium18,20,76. For this reason, we also suspended 

DH01 cells in serum-free medium immediately prior to transplantation. It may 

be that the stresses of serum-deprivation and the other processes involved in 

preparing a highly concentrated graft cell suspension (TC) trigger autophagic 

graft cell death. Cells that undergo autophagic cell death may be cleared by 

phagocytosis122-124 in a process that limits inflammatory and immunological 

responses125. Consistent with these features of autophagic cell death, there was 

clear evidence of graft engulfment by macrophages and neutrophils in this study 

(Fig. 4) and the retina overlying the graft site remained remarkably preserved 

with no substantial evidence of inflammatory scarring at POD 28 (Fig. 3A: d, h, l, 

p). 

Toll-like receptors (TLRs) are phylogenetically ancient mediators of innate 

immunity that detect microbes via pathogen-associated molecular patterns 

(PAMPs)38,126. Stressed and dying cells express endogenous TLR ligands termed 

damage-associated molecular patterns (DAMPs)127. Activation of the innate 

immune system via TLRs plays an important role in allograft rejection39,40. 

Blocking TLR4-mediated graft rejection prolongs pancreatic islet cell transplant 

survival43. TLR4 is constitutively expressed by RPE cells128,129, photoreceptors130 
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and by resident antigen-presenting cells in the normal human uveal tract131. 

However, there have been no studies to date regarding the role of TLRs in 

subretinal cell transplantation. Cell-suspension grafts are exposed to many 

potential stressors including enzymatic cleavage, centrifugation, resuspension in 

serum-free medium and delivery through non-biological injectors. It is likely that 

these processes not only incite increased inflammatory cytokine and chemokine 

production by graft cells as demonstrated in this study, but may also provoke 

increased expression of DAMPs. Following transplantation the to the SRS, 

excessive DAMP expression by transplanted cells could propagate an innate 

immune response by binding host TLRs, thereby triggering host cytokine and 

chemokine expression capable of recruiting microglia/macrophages from the 

overlying retina as well as neutrophils from the circulation. DAMPs may also 

trigger complement-activation132,133 and the release of anaphylatoxins capable of 

mediating leukocyte chemotaxis134,135. 

Future strategies to suppress the host immune response against cells 

transplanted to the subretinal space should focus more on limiting the effect of 

infiltrating macrophages and neutrophils by specifically targeting these 

mediators of the innate immune response. Potential agents include 

clodronate91,93, statins102,103, resveratrol136,137 and minocycline138,139. Controlling 

innate immune and inflammatory responses following transplantation will be 

particularly important in the context of treating conditions such as age-related 

macular degeneration, which is characterized by increased macrophage 

infiltration at the affected site140-142. 

The rapid innate immune response observed in our study is likely a consequence 

of multiple inciting factors including increased expression of inflammatory 

cytokines and DAMPs by cells prepared for transplantation. Such factors are 

independent of genetic mismatch and would not be restricted to allogeneic cell 

transplants. Consequently, the innate immune response observed in our study is 

also likely to occur in response to other cell transplants including syngeneic, 

autologous and stem cell transplants. The future success of subretinal 

transplantation will require more emphasis to be placed on optimizing 

techniques to prepare and deliver grafts of high quality that limit rapid innate 



Copyright © 2016 Cognizant Communication Corporation 

 

CT-1408 Cell Transplantation early e-pub; provisional acceptance 01/10/2017         
23 

immune-mediated clearance of transplanted cells. Furthermore, pharmacological 

strategies in the field of subretinal transplantation must go beyond merely 

suppressing adaptive immunity in the host, and focus on methods of inhibiting 

the early innate immune response. 
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Table 1. DH01 cytokine expression under BC and TC. 

Cytokine BCa TCa Fold increase P 

IFN-γ 1.8±0.2 2.8±0.2 1.6 0.003 

IL-10 33.9±4.6 70.8±12.4 2.1 0.024 

IL-12 3.4±0.9 10.2±0.9 3 <0.001 

IL-1β 1±0.2 3±0.3 3.1 <0.001 

IL-2 11.3±1.6 30±2.9 2.7 0.002 

IL-4 6.2±0.5 8.2±1.4 1.3 0.128 

IL-5 1.7±0.5 5.2±0.4 3.1 0.001 

KC/GRO/CINC 591.8±15.1 3580.9±790.2 6.1 0.022 

TNF-α 0±0 5.1±0.7 N/A 0.007 

IL-6 44.9±3.5 137.2±3.7 3.1 <0.001 

a Values represent pg/ml and are expressed as mean ± SD. 
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Figure Legends 

 

Figure 1. Retinas from unoperated and sham-treated eyes of C57BL/6 mice 

contain F4/80+ cells and few TUNEL+ cells, but do not comprise SV40T+, 

CD11b+, Gr1 Ly-6G+ or CD3-ε+ cells. 

Representative confocal microscopy images of sections from unoperated and 

sham-treated eyes immunolabeled for SV40T (Texas red: a-e; FITC, green: f-y) to 

identify background expression of the graft cell marker and either TUNEL-

labeled (FITC, green) to identify DNA strand nicks (a-e), or immunolabeled for 

the immune cell surface markers CD11b (f-j), F4/80 (k-o), Gr1 Ly-6G (p-t) or 

CD3-ε (u-y) (all TRITC, red). All nuclei were counterstained with DAPI (blue). 

Unoperated and sham-treated retinas demonstrate F4/80+ cells in the ganglion 

cell layer, and low background levels of TUNEL+ cells in the inner and outer 

nuclear layers. SV40T+, CD11b+, Gr1 Ly-6G+ or CD3-ε+ cells were not observed. 

Scale bar 50µm. 

 

Figure 2. DH01 cells allografted to the SRS of healthy non-

immunosuppressed C57BL/6 mice are lost by POD 28. 

A. Representative confocal microscopy images of sections immunolabeled for 

SV40T (Texas red) to identify transplanted cells and TUNEL-labeled (FITC, 

green) to identify DNA strand nicks. All nuclei were counterstained with DAPI 

(blue). At POD 1 (a) and POD 3 (b) most cells in the subretinal bolus are graft 

cells, but at POD 7 (c) few cells express SV40T (red). No graft cells are identified 

at POD 28 (d). TUNEL-labeling in the subretinal cell bolus remains low at each 

time-point. High-power inset at POD 7 shows an example of an 

apoptotic/necrotic graft cell (DAPI+/SV40T+/TUNEL+). Scale bar 50µm. Scale bar 

in high-power inset (c) 10µm. B. There was no significant change in the total 

number of cells in the SRS between POD 1 (435 ± 143), POD 3 (487 ± 164) and 

POD 7 (607 ± 45), but the total cell number decreased significantly (p<0.05) 
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between POD 7 (607 ± 45) and POD 28 (49 ± 49). C. The proportion of the 

subretinal bolus (red line) comprised of graft cells did not change significantly 

between POD 1 (93% ± 1%) and POD 3 (90% ± 4%). However, there was a 

significant (p<0.001) reduction in the proportion of the subretinal bolus 

comprised of graft cells between POD 3 (90% ± 4%) and POD 7 (20% ± 7%). No 

graft cells survived to POD 28. Levels of graft cell apoptosis/necrosis 

(DAPI+/SV40T+/TUNEL+) (green line) were low at each time-point (POD 1: 2% ± 

0.3%; POD 3: 0.4% ± 0.3%; POD 7: 5% ± 2%) and did not differ significantly 

between time-points. 

 

Figure 3. The period of DH01 allograft loss in the SRS of healthy non-

immunosuppressed C57BL/6 mice is characterized by infiltrating cells 

expressing markers of innate immunity, but not T-lymphocytes. 

A. Representative confocal microscopy images of sections immunolabeled for 

SV40T (FITC, green) to identify transplanted cells and either CD11b (a-d), F4/80 

(e-h), Gr1 Ly-6G (i-l) or CD3-ε (m-p) (all TRITC, red). All nuclei were 

counterstained with DAPI (blue). At POD 1 the subretinal graft site is primarily 

composed of SV40T+ graft cells but by POD 7 the proportion of cells in the 

subretinal bolus expressing this graft cell marker has considerably decreased. 

CD11b+ (a-c), F4/80+ (e-g) and Gr1 Ly-6G+ (i-k) cells infiltrate the graft in 

increasing numbers between POD 1 and POD 7. No graft cells are seen at POD 28 

(d, h, l, p). One of 4 eyes at POD 28 still has cells in the SRS and these are F4/80+ 

(h). Graft cell loss is not associated with CD3-ε+ T-cell infiltration (m-p). Scale bar 

50µm. Scale bars in high-power insets 20µm. B. The period of graft cell loss 

coincides with increasing numbers of infiltrating CD11b+, F4/80+ and Gr1 Ly-6G+ 

cells that predominate over SV40T+ graft cells by POD 7. However, CD3-ε 

immunolabeling remains low across all time-points.  

 

Figure 4. Co-labeling of DH01 allografts with infiltrating CD11b+, F4/80+ 

and Gr1 Ly-6G+ cells peaks at POD 7 with evidence of graft engulfment by 

these innate immune cells. 
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Large areas of SV40T were observed to co-label with CD11b+, F4/80+ and Gr1 

Ly-6G+ on POD 7. Co-labeling of SV40T with the T-lymphocyte marker (CD3-ε) 

remained low at all time-points. Representative images of the 

immunofluorescent co-labeling evident on POD 7 are shown. A. The cell in the 

center of this image has positive cell membrane immunolabeling for the 

macrophage marker CD11b (TRITC, red) on POD 7. SV40T (FITC, green) 

immunolabeling can be seen within this CD11b+ cell suggesting engulfment of 

graft by the macrophage. The DIC image also identifies pigment granules within 

CD11b+ cells. Scale bar 20µm. B. Multiple cells in this image have cell membrane 

immunolabeling for the macrophage marker F4/80 (TRITC, red) on POD 7. 

SV40T (FITC, green) immunolabeling can be seen within these F4/80+ cells. This 

suggests engulfment of graft by macrophages. The DIC image also identifies 

pigment granules within F4/80+ cells. Scale bar 20µm. C. Many cells in this POD 7 

subretinal graft have immunofluorescent co-labeling (orange) for Gr1 Ly-6G 

(TRITC, red) and SV40T (FITC, green). Scale bar 10µm. D. Sequential single 

optical sections from the z-stack confocal image through the highlighted Gr1 Ly-

6G+ neutrophil on POD 7 is consistent with phagocytosis of SV40T from the 

neutrophil cell membrane. E. The cell highlighted in C was also reconstructed in 

3D form using Imaris image analysis software. The red channel (Gr1 Ly-6G) was 

removed from the top portion of the cell to enable visualization inside the cell 

membrane. The reconstructed image confirms the presence of graft (SV40T, 

green) inside the neutrophil cell membrane. F. The proportions of SV40T that co-

labeled with CD11b, F4/80, Gr1 Ly-6G and CD3-ε were analyzed. Co-labeling of 

SV40T with all infiltrating immune cell markers was minimal on POD 1 and POD 

3. However, there was a statistically significant increase in the proportion of 

graft co-labeling with F4/80, CD11b and Gr1 Ly-6G between POD 1 and POD 7 

(p<0.05). Co-labeling of SV40T with the T-lymphocyte marker (CD3-ε) remained 

low at all time-points and there was no statistically significant difference in 

SV40T/CD3-ε co-labeling between time-points. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 

 


