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Abstract. Multi-class segmentation is a crucial step in cell image analy-
sis. This process becomes challenging when little information is available
for recognising cells from the background, due to their poor discrimina-
tive features. To alleviate this, directed acyclic graphs such as trees have
been proposed to model top-down statistical dependencies as a prior for
improved image segmentation. However, using trees, modelling the rela-
tions between labels of multiple classes becomes difficult. To overcome
this limitation, we propose a polytree graphical model that captures label
proximity relations more naturally compared to tree based approaches.
A novel recursive mechanism based on two-pass message passing is devel-
oped to efficiently calculate closed form posteriors of graph nodes on the
polytree. The algorithm is evaluated using simulated data, synthetic im-
ages and real fluorescence microscopy images. Our method achieves Dice
scores of 94.5% and 98% on macrophage and seed classes, respectively,
outperforming GMM based classifiers.

1 Introduction

Macrophages are cells that play vital roles within the immune system. They
recognise invasions to body and combat their agents and are also involved in
healing processes. Studying these cells in depth requires quantification of their
behaviour in their interactions with other cells and proteins, which needs seg-
mentation of cells in microscopy images. One instance of such studies is the
segmentation of nuclear and surface areas of mice macrophages in fluorescence
microscopy images [9], which defines a multi-class segmentation problem ad-
dressed here. The challenges are more highlighted when limited information is
available for recognition of each area, due to the low quality of images and/or
complexity of shapes. In these cases, quality of segmentation is subject to im-
provement by employing inter-object relations.

Segmentation can be a primary step for cell, and in general, object count-
ing. Although not directly considered in this paper, two categories of counting
methods exist: first category recognises cells using detection based algorithms [6],
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while the other one estimates density based on regression [1]. Former approaches
perform based on a prior segmentation or detection of individual cells, while the
latter do not rely on individual object detection and rather take a holistic ap-
proach towards counting and have been proven to be more efficient. Inspired
by the counting application outlined in [1], our segmentation method is capable
of extracting the image foreground as the union of subregions having different
labels. The segmented foreground can be further used for efficient recognition of
individual cells and their nuclei through post processing steps.

Graphical models are tools for modelling associative relations between ob-
jects. The key aspect of these models is that the label of each node is determined
based on both its own attributes as well as attributes of other nodes connected
to it through graph edges. This way, not only all the relevant information is in-
corporated in inferring the labels, but also label configuration constraints can be
effectively projected on the model and be used during the inference. For instance,
Chen et al. [5] employed graphical models to incorporate nuclear positions with
boundary information for yeast cell segmentation. In a broader context of appli-
cation, Uzunbas et al. [12] used an interactive graphical-model-based approach
which seeks user’s input for nodes with uncertain labels and learns from mis-
labelled nodes. Another instance is the use of graphical models for combining
appearance models with shape priors for retinal segmentation [11].

Two types of graphical models have been used for image segmentation.
Markov Random Fields have weighted edges indicating the degree of dependen-
cies between variables. These models require iterative procedures for estimating
the hidden random variables and are therefore computationally demanding [4]
and only approximate solutions are achievable for them [7]. On the other hand,
Bayesian Networks (BNs) have directed edges that show how random variables
depend on each other. Laferte et al. [8] proposed an efficient posterior calcu-
lation algorithm for nodes on a tree BN using message passing. Tree BNs are
models in which there is only one route between any two nodes, and each node
(except the root node) has exactly one parent node. Despite the efficiency of
their proposed model, it lacks the ability to model complex multi-label configu-
ration constraints. More specifically, the tree model proposed in [8] is capable of
modelling two-wise constraints between nodes and thus suitable for binary im-
age segmentation. However, many applications, such as cell/nuclei segmentation
involve more complex constraints due to the presence of multiple classes.

In this paper, we introduce the application of polytree based BNs to image
segmentation. Polytree BNs share features such as existence of a unique route
between each two nodes on the graph with their tree relatives, however, each
node in a polytree can have more than one parent. In comparison to tree graph-
ical models, polytrees can model more complex label proximity relations on the
graph (three-wise and more, based on the number of parent nodes) more nat-
urally to achieve a potentially better image segmentation. This paper presents
a tractable and efficient inference algorithm on BN polytrees for the first time.
The proposed algorithm calculates closed form posteriors through two succes-
sive bottom-up and top-down inference passes on the polytree. The method is
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evaluated by ancestral sampling on arbitrary graphs, and applied on synthetic
and real microscopy images to segment macrophages and nuclei (seeds) from
background. However, we anticipate that more general applications of polytrees
using the proposed inference algorithm.

2 Method

Here, the procedure of using our proposed graphical model for image segmenta-
tion is presented. First, a polytree is generated for the image by grouping similar
pixels and regarding them as nodes of the graph. Next, the parameters of the
likelihood functions are trained and labels of the nodes are inferred. Finally, the
segmented image is constructed based on the optimal labels on the graph.

ℒ: Leaf node

ℛ: Root nodes (lowest level) Initial superpixels
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Fig. 1. Graph generation and inference on the polytree. (a) Generation of the polytree
for the sample image. (b) Symbolic process of node merging for a synthetic macrophage
with a seed. (c) Presenting the notation for nodes connected to an internal node s of the
graph. (d) Graphical representation of ascendant, Ya(s), and descendant, Yd(s), obser-
vation nodes. Edge directions on cliques in conventional directed tree graphical models
and the proposed polytree structure are shown in figures (e) and (f), respectively.

2.1 Graph generation

The graph is generated by firstly grouping pixels into locally coherent areas
(superpixels), each representing a single root node (Fig. 1a). We use the SEEDS
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algorithm [2], which refines the initial grid of identically block shaped superpixels
into more coherent ones. The two most similar superpixels are then recursively
merged to generate nodes in higher levels of the hierarchical graph, as follows.

Firstly, for each superpixel at the finest level, one (root) node in the lowest
level of the graph is created (see Fig. 1a). Each two nodes that achieve the
highest score in a similarity metric are then merged to create a new node. The
new node corresponds to the union of image regions attached to its two lower
level descendant nodes. We define the similarity metric as a superposition of
distances using spatial and intensity features of the superpixels. A vector β is
introduced to adjust contributions of each of these features in the similarity
metric. The choice of β is investigated in section 3.3. After each merging step,
the new node and all the other orphan nodes, are assessed with the similarity
metric to recognise candidate nodes for the subsequent merging step. Region
merging is continued until only two orphan nodes remain in the graph, which
are eventually merged to create the leaf node that corresponds to the whole
image (Fig. 1a). It is worth mentioning that since two nodes are merged at each
step of graph evolution, the resulting structure is a binary graph; i.e. each non-
root node has exactly two descendent nodes directly connected to it. We call
this three-wise structure a clique and denote it by parent1− child− parent2.

Once the graph is generated for the image, a set of observed and latent vari-
ables are assigned to nodes to define of the inference problem, which is presented
in the next section. Fig. 1b shows a symbolic process of merging for a cell with a
seed. Nodes 1 and 2 align with blue and yellow areas in the synthetic cell. If these
two nodes are chosen to be merged based on their value in the similarity metric,
node 3 is generated which corresponds to the union of blue and yellow areas and
is annotated by the dashed ellipse. This clique is represented by 1− 3− 2.

2.2 Label inference

Let X = {xs} and Y = {ys} denote sets of labels (latent variables) and the
corresponding observed features at nodes, respectively, and G denote the set of
nodes and edges. We assume that each node can be labelled as background (B),
macrophage (M) or seed (S). Equivalently, xs ∈ Λ, where Λ is the set of all
possible labels, Λ = {B,M,S}. Following the notation of [8], for an internal
node (neither in the lowest level nor the leaf node) s in the graph, s−, s+ and
s′ denote nodes in higher, lower and same layers, respectively (Fig. 1c).

Fig. 1e shows the structure of a clique in conventional trees [8], where graph
edges are oriented accordingly from the root node s to the leaves s+1 , s

+
2 . For

this configuration, the joint probability factorises into probabilities of 1-1 child-
parent constraints, as p(X) = p(xs

+

1

|xs)p(xs
+

2

|xs)p(xs). The limitation of this

structure is that constraints can only be enforced on individual child-parent
connections. This factorisation implies that label of each node is dependant on
the label of its parent node on the hierarchy. However, many applications such
as multi-class cell segmentation require to enforce three-wise prior constraints
to ensure the expected clique configurations occur in the model. For instance, in
our case of three possible classes of B, M and S, we expect to see an M node
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having oneM and one S parent nodes, as depicted in Fig. 1b. In the conventional
structures, this prior knowledge is projected on the model through setting the
probabilities p(xs

+

i

= S|xs = M) and p(xs
+

i

= M |xs = M) to non-zero values.

However, enforcing the former constraint also makes S−M −S cliques feasible,
even though they are not acceptable based on the nature of the problem. This
example shows the shortcoming of conventional directed tree models.

To overcome this limitation, we propose the use of another type of hierarchi-
cal graphical models with reverse edge orientations, as depicted in Fig. 1f, called
polytrees [3]. In a polytree, each node at the lowest graph level (finest image res-
olution) is a root (in contrast to the single root node in conventional tree graphs)
and there is only one leaf node (see Fig. 1a). This subtle yet effective change re-
places 1-1 child-parent constraints with three-wise constraints on the cliques. The
joint probability in this case is factorised as p(X) = p(xs|xs

+

1

, xs
+

2

)p(xs
+

1

)p(xs
+

2

),

in which the term p(xs|xs
+

1

, xs
+

2

) enforces the constraint on the clique. Using this

configuration, the example structure of Fig. 1b requires setting the constraint
p(xs = M |xs

+

1

= S, xs
+

2

= M) to be nonzero. However, in contrast to the pre-

vious structure, enforcing this constraint does not give rise to the emergence of
physically infeasible clique structures.

We now derive equations governing the posterior probabilities of graph nodes.
Given the observed data Y, finding the best segmentation is equivalent to infer-
ring the best configuration of labels X for the graph. Bayesian inference associates
the most probable label from the set of possible labels Λ, given all observations:

∀s ∈ G, x̂s = arg max
xs∈Λ

p(xs|Y) (1)

As the dependencies of nodes’ labels have been revised in the proposed graph
structure, a new set of equations are derived to calculate the closed-form poste-
rior probabilities at each node. The inference algorithm on the polytree calcu-
lates the posteriors in two passes. These two consist of a pass from the leaf to
the roots, (top-down pass), and from the roots to the leaf (bottom-up pass).

Probability of a node’s label xs, given all data Y, is computed by marginal-
ising the probability of the clique over two parent nodes s+1 and s+2 given Y and
is called joint posterior.

p(xs|Y) =
∑

x
s
+
1

,x
s
+
2

p(xs, xs
+

1

, xs
+

2

|Y)
(2)

Here, three-wise constraints on cliques appear in the posterior calculation. Using
the D-separation rule [10], the joint posterior is expanded as follows:

p(xs, xs
+

1

, xs
+

2

|Y) = p(xs|xs
+

1

, xs
+

2

,Y)p(xs
+

1

, xs
+

2

|Y)

= p(xs|xs
+

1

, xs
+

2

,Ya(s))p(xs
+

1

, xs
+

2

|Ya(s+
1
,s

+

2
),Yd(s+

1
,s

+

2
))

(3)

where Ya(.) and Yd(.) refer to the set of observation nodes of the ascendant and
descendant nodes, respectively. For each node s (or a set of nodes S) ascendant
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nodes refer to the set of all nodes that are connected to s (S) through edges
with inward directions. Similarly, descendant nodes include the nodes that are
connected to node s (S) through outward oriented graph edges. The union of as-
cendant and descendant observation nodes constructs the set of all observations
(see Fig. 1d for a graphical explanation).

We first elaborate the term p(xs|xs
+

1

, xs
+

2

,Ya(s)) on the right-hand side of

Eq. 3. This term enforces posteriors of infeasible configurations to zero, as it is
a product of the joint probability of a child node and its two parent nodes.

p(xs|xs
+

1

, xs
+

2

,Ya(s)) =
p(xs, xs

+

1

, xs
+

2

|Ya(s))
∑

x′

s

p(x′
s, xs

+

1

, xs
+

2

|Ya(s))
(4)

Using D-separation rule, the nominator becomes:

p(xs, xs
+

1

, xs
+

2

|Ya(s)) = p(xs
+

1

, xs
+

2

|xs)p(xs|Ya(s))

=
p(xs, xs

+

1

, xs
+

2

)

p(xs)
p(xs|Ya(s)).

(5)

Term p(xs, xs
+

1

, xs
+

2

) in Eq. 5 controls the occurrence of feasible and infeasible

configurations on the graph, by being set to zero and nonzero values for them,
respectively. Term p(xs|Ya(s)) in Eq. 5 is the posterior of node s having given
observations of all its ascendant nodes as well as its own observation. This top-
down posterior is expanded as:

p(xs|Ya(s)) ∝
∑

x
s−

,x
s′

p(ys|xs)p(ys′ |xs′)p(xs′ |Yd(s′))
p(xs, xs′ , xs−)

p(xs−)p(xs′)
p(xs− |Ya(s−))

(6)
Eq. 6 indicates that having calculated the likelihood probabilities p(ys|xs)

and p(ys′ |xs′) and the posterior p(xs′ |Yd(s′)), the top-down posterior of node s is
calculated based on top-down posterior of node s−. This implies that a top-down
recursion calculates the top-down posteriors for all nodes.

On the other hand, term p(xs
+

1

, xs
+

2

|Ya(s+
1
,s

+

2
),Yd(s+

1
,s

+

2
)) on the right-hand

side of Eq. 3 is factorised by several usages of D-separation rule. This factorisa-
tion separates parts that are calculated from ascendant and descendant nodes.

p(xs
+

1

, xs
+

2

|Ya(s+
1
,s

+

2
),Yd(s+

1
,s

+

2
)) ∝ p(Ya(s+

1
,s

+

2
),Yd(s+

1
,s

+

2
)|xs

+

1

, xs
+

2

)p(xs
+

1

, xs
+

2

)

= p(Ya(s+
1
,s

+

2
)|xs

+

1

, xs
+

2

)p(Yd(s+
1
,s

+

2
)|xs

+

1

, xs
+

2

)p(xs
+

1

, xs
+

2

)

= p(Ya(s+
1
,s

+

2
)|xs

+

1

, xs
+

2

)p(Yd(s+
1
)|xs

+

1

)p(Yd(s+
2
)|xs

+

2

)p(xs
+

1

, xs
+

2

)

∝ p(xs
+

1

, xs
+

2

|Ya(s+
1
,s

+

2
))
p(xs

+

1

|Yd(s+
1
))

p(xs
+

1

)

p(xs
+

2

|Yd(s+
2
))

p(xs
+

2

)

(7)
Similar to Eq. 6, term p(xs

+

1

, xs
+

2

|Ya(s+
1
,s

+

2
)) on the right-hand side of Eq. 7

is calculated through a top-down recursion as below.

p(xs
+

1

, xs
+

2

|Ya(s+
1
,s

+

2
)) ∝

∑

xs

p(ys
+

1

|xs
+

1

)p(ys
+

2

|xs
+

2

)p(xs
+

1

, xs
+

2

|xs)p(xs|Ya(s)) (8)
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Using a definition similar to that of top-down posterior, terms p(xs
+

1

|Yd(s+
1
))

and p(xs
+

2

|Yd(s+
2
)) in Eq. 7 are called bottom-up posteriors as they are calculated

based on posteriors of their descendant nodes. For each node s in the graph, the
bottom-up posterior is written as

p(xs|Yd(s)) ∝
∑

x
s
+
1

,x
s
+
2

p(ys
+

1

|xs
+

1

)p(ys
+

2

|xs
+

2

)

p(xs
+

1

|Yd(s+
1
))p(xs

+

2

|Yd(s+
2
))p(xs|xs

+

1

, xs
+

2

)

(9)

Derivations of Eq. 6, 8 and 9 are not included due to the shortage of space.
Making use of Eq. 3, 4, 5 and 7 the node’s posterior in Eq. 2 given all the

observations is written as follows.

p(xs|Y) ∝
∑

x
s
+
1

,x
s
+
2

p(xs, xs
+

1

, xs
+

2

|Ya(s))
∑

x′

s

p(x′
s, xs

+

1

, xs
+

2

|Ya(s))

p(xs
+

1

, xs
+

2

|Ya(s+
1
,s

+

2
))
p(xs

+

1

|Yd(s+
1
))

p(xs
+

1

)

p(xs
+

2

|Yd(s+
2
))

p(xs
+

2

)

(10)

Eq. 10 calculates the posterior at each node s using three marginal posteri-
ors p(xs, xs

+

1

, xs
+

2

|Ya(s)), p(xs
+

1

, xs
+

2

|Ya(s+
1
,s

+

2
)) and p(xs|Yd(s)), in Eq. 5, 8 and 9.

Each of these terms are calculated through either top-down or bottom-up recur-
sions. The inference is summarised in Algorithm 1. Note that R and L denote
the set of root nodes and the leaf node in the graph, respectively.

3 Results

3.1 Validation of the inference algorithm in a two-class labelling

problem

To assess the performance of the core inference algorithm, regardless of the
problem it is applied to, ancestral sampling was used [3]. This technique, which
is applied to generative models, mimics the creation of the observed data by
generating sets of fantasy data. In this case, the model is a perfect representation
of the observed data. Using the generated fantasy data as the observed data and
comparing the inferred labels with the sampled values gives a measure for the
method performance.

Consider we aim to draw a sample x̂1, x̂2, ..., x̂N from the joint distribution
p(X,Y). The graph consists of N nodes and xN denotes the only leaf node in
the graph. To draw this sample, we start from the root nodes by taking samples
x̂s from the probability distribution p(xs)

∣

∣

s∈R
for all root nodes. Visiting the

internal nodes in an upward recursion, we draw a sample x̂s from the conditional
distribution p(xs|xs

+

1

, xs
+

2

), for which the parent labels xs
+

1

and xs
+

2

have been

sampled in the previous stages. Once we have sampled from the leaf node of the
graph, xN , we will have obtained a sample from the joint distribution p(X,Y).
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Algorithm 1 Label inference on polytree directed graphical model

� Preliminary pass. This initial upward recursion computes prior marginals for
each node. p(xs|xs

+

1

, x
s
+

2

) are parameters set based on the nature of problem the

model is representing.
for all s ∈ R do

p(xs) =
1

|Λ|

end for

for all s 6∈ R do

p(xs) =
∑

x
s
+
1

,x
s
+
1

p(xs|xs
+

1

, x
s
+

2

)p(x
s
+

1

)p(x
s
+

2

)

p(x
s
+

1

, x
s
+

2

|xs) =
p(xs|x

s
+
1

,x
s
+
2

)p(x
s
+
1

)p(x
s
+
2

)

p(xs)

end for

△ Bottom-up pass. Upward recursion for calculating bottom-up posteriors of
nodes.
for all s ∈ R do

p(xs|Yd(s)) = p(xs)
end for

for all s 6∈ R do

p(xs|Yd(s)) ∝
∑

x
s
+
1

,x
s
+
2

p(y
s
+

1

|x
s
+

1

)p(y
s
+

2

|x
s
+

2

)p(x
s
+

1

|Y
d(s+

1
)
)p(x

s
+

2

|Y
d(s+

2
)
)p(xs|xs

+

1

, x
s
+

2

)

end for

∇ Top-down pass. Downward recursion for calculating top-down posteriors and
calculation of complete posteriors from marginal posteriors.
if s = L then

p(xs|Ya(s)) = p(xs|ys) ∝ p(ys|xs)p(xs)
end if

for all s 6= L do

p(xs|Ya(s)) ∝
∑

x
s−

,x
s′
p(ys|xs)p(ys′ |xs′)p(xs′ |Yd(s′))

p(xs,xs′
|x

s−
)

p(x
s′

)
p(xs− |Ya(s−))

p(xs, xs
+

1

, x
s
+

2

|Ya(s)) = p(x
s
+

1

, x
s
+

2

|xs)p(xs|Ya(s))

p(x
s
+

1

, x
s
+

2

|Y
a(s+

1
,s

+

2
)
) ∝

∑
xs

p(y
s
+

1

|x
s
+

1

)p(y
s
+

2

|x
s
+

2

)p(x
s
+

1

, x
s
+

2

|xs)p(xs|Ya(s))

end for
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Fig. 2. Likelihood distribution functions and their effect on ancestral sampling infer-
ence accuracy. (a) and (b) show β distributions chosen as class-conditional likelihood
functions in the ancestral sampling. b value was fixed and curves correspond to values
of a from 0.2 to 1. (c) Percentage of wrongly inferred labels using ancestral sampling.
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In this section only, we considered two classes for latent variables xs and
selecting ys from the continuous range [0, 1] and beta distributions were used as
class conditional likelihood functions, p(ys|xs). Labels done for different num-
bers of root nodes ranging from 10 to 100000 (leading to 19 to 199999 nodes
in total as the graph is binary) and for different selectivities of the likelihood
functions, controlled by parameters of β distributions. Fig. 2a and 2b show beta
distributions for different values of parameter a. Fig. 2c depicts percentage of
nodes with wrongly inferred labels for different numbers of nodes in the graph
and for different beta distributions. This experiment verifies the correctness of
the developed derivations and also indicates that more selective likelihood dis-
tribution functions result in higher inference accuracies. The best accuracy was
achieved for a = 0.2 with the average error of 0.30%.

3.2 Validation of the algorithm on a synthetic image

The method was evaluated on a synthetic image containing two types of objects.
A multi-scale first and second order derivative based invariant features have
been utilized here. The segmentation results were compared to those of using
Gaussian Mixture Models (GMMs). Yellow and blue areas in the synthetic image
represent macrophages and seeds, respectively (chosen to be similar to the real
image dataset). At each node, median of intensity across the superpixel was
utilised as feature. Random noise was added to these features. Random noise
was added to feature values of each node, which were median of node’s intensity.

Segmentation was done for different noise levels added to the synthetic image.
Fig. 3 shows the synthetic image and its segmentation results for four cases of
0%, 30%, 60% and 65% of noise amplitudes, in each row, respectively. First
column depicts the input image and second and third columns show results of
segmentation for GMM and the proposed method, respectively. Dice scores of
segmentations for GMM and the proposed method are shown in Fig. 4a. It can
be seen that the proposed algorithm is more robust to intensive additive noise
compared to GMM.

3.3 Applying the method to multi-class cell segmentation

We applied the proposed method to the image set BBBC020 from the Broad
Bioimage Benchmark Collection [9] including 20 two-channel fluorescent mi-
croscopy images with ground truth annotations and compared the results with
GMM. Multi-scale first and second derivatives of the image were calculated and
a 10-dimensional feature vector ys containing median of feature values over the
node’s region was created for each node s. Class-conditional distribution func-
tions were considered to be Gaussian and their parameters were trained by feed-
ing the algorithm with a few samples of manually segmented cells. Fig 5 shows
three samples from the image dataset (first column) that were segmented using
GMM classifier (second column) and the proposed method (third column). Dice
scores of using the two methods on the dataset of real images are depicted in Fig.
4b. Segmentation results and the Dice scores indicate that the proposed method
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(a) (b) (c)

Fig. 3. Segmentation of the synthetic image for different random noise levels using
GMM and the proposed method. Rows of column (a) correspond to images, with 0%,
30%, 60% and 65% (of maximum image intensity levels), respectively. (b) and (c) show
results of segmentation using GMM and the proposed method for the input images of
the first column, respectively. Last row illustrates the case where the proposed method
cannot handle the added noise.
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Fig. 4. Dice accuracies of segmentation for the proposed method and Gaussian Mixture
Model (GMM). (a) Dice score for segmentation of two classes of objects, M and S, for
the proposed method and GMM for different amounts of random noise added to the
synthetic image. The proposed method shows more robustness to noise. (b) Accuracy
of segmenting bone-marrow macrophages dataset for macrophage surface and the seeds
for the proposed method and GMM. (c) Effect of β vector used in graph generation on
segmentation accuracy. Horizontal axis shows the ratio of weights of intensity features
to those of spatial features.
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segments the images more accurately, which is due to considering semantically
meaningful relationships between labels of nodes.
In graph generation, the β vector, used for similarity metric, consists of uniform
weights (set as one) over intensity and β weighted spatial features (barycenters
of the superpixels). To select a suitable value for β, we run a 5-fold crossvali-
dation experiment where we learn the Gaussian likelihoods from training sets
and measure the Dice score on the test set. Fig. 4c shows how the choice of this
parameter affects segmentation results. Based on this, we chose β = 0.1.

(a) (b) (c)

Fig. 5. Segmentation results for 3 samples from the image dataset. Column (a) shows
real image samples. Columns (b) and (c) show segmentation results for GMM and the
proposed method, respectively. Red arrows point to areas of the cell or the seeds that
were not recognised by GMM, while the proposed algorithm segmented them correctly.

4 Conclusion

We proposed polytree based directed graphical models for multi-class cell seg-
mentation. A non-iterative algorithm was derived for inferring labels of nodes on
polytree that calculates closed form posteriors through two successive bottom-
up and top-down recursions. The derived recursive inference algorithm is novel
and contributes to the state-of-the-art from methodological perspective. The
method was evaluated by ancestral sampling on the graph level, in addition to
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segmentation of cell surfaces and seeds in synthetic and real microscopy images.
This study was focused on the application of the proposed method to image seg-
mentation and three-wise constraints. However, the designed formulation can be
straightforwardly used for more complex applications where more complicated
constraints are required to be projected on the model.
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