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ABSTRACT 

The profile of bile acids (BA) largely depends on the enzymatic activity of the 

microbiota, but this can be modulated by the dietary addition of biologically active 

compounds, e.g., polyphenols and polyunsaturated fatty acids. The aim of this study was to 

examine the effect of dietary raspberry pomace as a rich source of biologically active 

compounds on microbial activity and the BA profile in the caecum of rats fed a high-fat diet. 

Wistar rats were fed the standard diet AIN-93, a high-fat diet or a modified high-fat diet 

enriched with 7% different types of processed raspberry pomaces produced by standard 

grinding and fine grinding, with or without seeds. Rats fed the high-fat diet for eight weeks 

showed some disorders in liver function and cecal BA, as manifested by an increased 

concentration of cholesterol, total BA in the liver and cholic, deoxycholic, and ȕ-muricholic 

acids in the cecal digesta. In general, irrespective of the type of raspberry pomace, these 

dietary preparations decreased liver cholesterol, hepatic fibroblast growth factor receptor 4, 

peroxisome proliferator-activated receptor alpha, cecal ammonia and favorable changed BA 

profile in the cecum. However, among all dietary pomaces, the finely ground preparation 

containing seeds had the greatest beneficial effect on the caecum by modulating bacterial 

activity and reducing the levels of secondary BA. 

 

Keywords: cholesterol; bile acids; PPARĮ; ellagitannins; Wistar rat
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1. INTRODUCTION 

It is well known that a high-fat diet stimulates the secretion of bile acids (BA) into the 

intestinal lumen, leading to a higher risk of neoplastic changes in the lower gut [1-3]. The 

effect of dietary fat on BA metabolism results in microbial activity that promotes the 

deconjugation, dehydrogenation, and dehydroxylation of primary to secondary BA in the 

distal small intestine and colon, thus increasing the chemical diversity of the BA [4, 5]. The 

secondary BA are one of the factors associated with an increased risk of colon cancer [6-8]. 

Nevertheless, the modulation of the bacterial activity by the dietary addition of biologically 

active compounds, e.g., polyphenols and polyunsaturated fatty acids [9-11] might regulate the 

profile and concentration of the BA in the gastrointestinal tract. There is still little information 

regarding compounds that are able to regulate the BA profile in the gastrointestinal tract or 

their synthesis in the liver. 

BA are synthesized from cholesterol in hepatocytes and then conjugated to glycine or 

taurine and released into the duodenum following the ingestion of a meal to facilitate the 

absorption of triglycerides, cholesterol, and lipid-soluble vitamins [12-14]. The synthesis of 

these compounds is regulated by at least 14 liver enzymes [15, 16]. The main enzymes 

responsible for BA synthesis are cholesterol 7-alpha-hydroxylase (CYP7A1) and sterol 12-

alpha-hydroxylase (CYP8B1) [12, 15]. The hepatic expression of CYP7A1 and CYP8B1 is 

regulated by farnesoid X receptor (FXR), which is highly expressed in liver [17]. The activity 

of FXR can be regulated by BA, which are the main signaling endogenous ligands for this 

receptor, and through mechanisms that are dependent on the nuclear receptors small 

heterodimer partner (SHP) [15] and fibroblast growth factor 15/19 (FGF15/19) [18-20]. There 

is also molecular evidence for cross-talk between FXR and peroxisome proliferator-activated 

receptor Į (PPARĮ), which is a nuclear receptor that mainly controls lipid and lipoprotein 

metabolism [21]. 
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The BA synthesis in the liver seems to be modulated by biologically active 

compounds supplied in the diet e.g., diet enriched with ellagic acid increased expression of 

the CYP7A1 and CYP8B1 genes involved in bile acid synthesis [22]. Raspberries are 

popularly consumed fruits that are rich in biologically active compounds. These fruits are 

known as an excellent source of dietary antioxidants, largely due to their high level of 

phenolic compounds comprised primarily of cyanidins, anthocyanins, ellagitannins, and 

quercetin [23, 24]. During the processing of raspberries, particularly for the production of a 

concentrated juice, a significant portion of the compounds, mainly fiber and polyphenols, 

remains in the pomace. The nutritional and health-promoting properties of these bioactive 

compounds are not sufficiently understood. It is worth noting that more than 80% of the 

raspberry pomace consists of the seeds, which include approximately 23% oil and are a rich 

source of essential fatty acids [25, 26]. Unfortunately, seeds that have not been processed pass 

intact through the digestive system with all their biologically active compounds, thus reducing 

the biological value of raspberry pomace. 

This study proposes two solutions -which have not been described previously in vivo- 

that may increase the health potential of the raspberry pomace in terms of the modulation of 

BA synthesis in the liver and the BA profile in the gut: (1) Separation of the seeds from the 

pulp fraction, thereby also increasing the concentration of biologically active compounds 

from the pulp that are readily available to the organism. (2) Fine grinding of the native 

pomace, damaging the seed coat and thus increasing the availability of the accumulated 

valuable seed compounds. The aim of this study was to examine whether dietary raspberry 

pomaces with or without seeds and their grinding level may favorably alter cecal microbial 

enzymatic activity and BA profiles in rats fed a high-fat diet.  

2. MATERIALS AND METHODS 
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2.1 Preparation of raspberry pomaces 

Dried raspberry press cake was obtained from a fruit transformation plant in the 

Masovia region in Poland. Four preparations were evaluated. Native press cake was 

characterized by a particle diameter smaller than 1.25 mm. To obtain other preparations, the 

press cake was ground up and sieved as follows. Fine-ground native press cake (containing 

seeds) was prepared using a Blixer 3 blender (Robot Coupe, France) with solid CO2 at -

78.5°C to obtain particles smaller than 0.65 mm. To prepare seedless press cake, the material 

was milled in a laboratory ball mill (own built, ŁódĨ University of Technology, Poland) for 1 

hour and sieved to a diameter smaller than 0.8 mm and larger than 0.65 mm. To obtain the 

nonstandard-ground fraction, a portion of the seedless press cake was further milled on the 

ball mill until granulation smaller than 0.65 mm was achieved. 

2.2 Chemical composition of the raspberry pomaces 

Dry matter, ash, crude protein, crude fat and total dietary fiber (TDF) were determined 

according AOAC official methods [27]: 920.151; 940.26; 920.152; 930.09; and 985.29. 

Carbohydrates were determined according to the following formula: carbohydrate = total 

solids – (protein + fat + ash). The proximate compositions of the raspberry pomaces are 

presented in Table 1. For the ellagitannin (ET) and anthocyanin (AC) measurements, the 

samples of raspberry pomaces and known standards were diluted with 50% (v/v) methanol, 

filtered through PTFE filters (0.45 µm) and introduced into high-performance liquid 

chromatography (HPLC) systems.  

2.2.1 Quantification of Ellagitannins 

The content of ETs was determined using a Smartline chromatograph (Knauer, Berlin, 

Germany) composed of degasser (Manager 5000), binary pump (P1000), an autosampler 

(3950), a thermostat and a detector PDA (2800). The ETs were separated on a 250 x 4.6 i.d., 
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5-µm, Gemini C18 110A column (Phenomenex) by gradient elution with 0.05% (v/v) 

phosphoric acid in water (solvent A) and 83:17 (v/v) acetonitrile:water with 0.05% 

phospohoric acid (solvent B). The column temperature was set at 35°C, the flow rate was 1.25 

mL/min, and the gradient program was as follows: 0 – 5 min, 5% (v/v) B; 5 – 10 min, 5 – 

15% (v/v) B; 10 – 35 min, 15 – 40% (v/v) B; 35 – 40 min, 40 – 73% (v/v) B; 40 – 44 min, 

73% (v/v) B; 44 – 46 min, 73 – 5% (v/v) B; 46 – 54 min, 5% (v/v) B. The injection volume 

was 20 µL. Data were collected using the ClarityChrom version 3.0.5.505 program (Knauer, 

Berlin, Germany). ETs were detected at 250 nm, and the standard curves generated using 

lambertianin C, sanguiin H-6, and ellagic acid were applied for quantification. Standards of 

lambertianin C and sanguine H-6 were isolated from raspberry extract as described by Sójka 

et al. (2013) [28]. Ellagic acid standard was purchased from Extrasynthese. 

2.2.2 Quantification of flavan-3-ols (FLs) 

The contents of FLs, i.e., the sum of proanthocyanidins and catechins, were 

determined using the method described by Sójka et al. (2013) [28]. For separation, the same 

column and conditions were used. For this analysis, the Shimadzu system equipped with a 

pump (LC-20AD), a degasser (DGU-20A5R), an autosampler (SIL-20ACHT), a thermostat 

(CTO-10ASUP), and a detector (RF-10AXL), and LabSolutions Lite version 5.52 software 

was used. 

2.2.3 Quantification of Anthocyanins 

HPLC coupled to a DAD and an electrospray ion (ESI) trap mass spectrometer was 

used to identify ACs. The HPLC system was equipped with a SCM1000 membrane solvent 

degasser (ThermoQuest, San Jose, CA, USA), a binary high-pressure gradient pump (1100 

Series; Agilent Technologies, Santa Clara, CA, USA), an autosampler, and a column oven 

(Surveyor Series, Thermo-Finnigan, San Jose, CA, USA). A Gemini C18 110A 
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250Ԝ mmԜ ×Ԝ 4.6Ԝ mm i.d. (Phenomenex) 5-µm column was used. The column temperature 

was 30°C, and the injection volume was 10Ԝ µL. Chromatographic data were collected using 

Xcalibur software, version 1.2 (Thermo-Finnigan, San Jose, CA, USA). The solvents and the 

gradient used for AC separations were as follows: solvent A, 0.25% (v/v) formic acid in 

water; solvent B, 0.25% (v/v) formic acid in acetonitrile, with a flow rate of 12Ԝ mL/min; the 

gradient program (time in min – % (v/v) was as follows B): 0–5, 2–5, 32–20, 37–70, 42–70, 

45–5, and 55–5. The MS system coupled to HPLC was an LCQ DECA ion trap mass 

spectrometer (Thermo-Finnigan, San Jose, CA, USA) equipped with an ESI source, which 

was used in negative mode. The phenol content was quantified using a KNAUER Smartline 

chromatograph (Berlin, Germany). Details about equipment, separation as well as 

quantification of the phenol content were previously described by Sójka et al. (2015) [29]. 

The polyphenolic compositions of the raspberry pomaces are presented in Table 2. 

2.3 Animal study 

This study was conducted in strict accordance with the recommendations of the 

National Ethic Commission (Warsaw, Poland). All procedures and experiments complied 

with the guidelines and were approved by the Local Ethic Commission of the University of 

Warmia and Mazury (Olsztyn, Poland, Permit Number: 68/2014) with respect to animal 

experimentation and the care of the animals under study, and all efforts were made to 

minimize suffering. The nutritional experiment was performed using 48 male Wistar rats, 

which were allocated to 6 groups of 8 animals each that were housed individually in plastic 

cages. The initial body weight was comparable among groups (154±6.5 g on average). For 8 

weeks, each group was fed a modified version of the semi-purified rodent diet recommended 

by Reeves (1997) [30] (details provided in supplemental Table 1). Group C was fed a 

standard diet for laboratory rodents that consisted of 6% fat and 5% fiber (AIN-93 diet), and 

group HF received a high-fat diet containing 20% fat and 4.55% fiber. Another experimental 
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group was fed a high-fat diet enriched with 7% four different types of raspberry pomaces with 

standard grinding with or without seeds (HFSGs and HFSG, respectively) and fine grinding 

with or without seeds (HFNGs and HFNG, respectively). Details regarding the proportional 

composition of each group-specific diet are shown in supplemental Table 1. The diets were 

freshly prepared at weekly intervals, stored in hermetic containers at -20°C and administered 

ad libitum. The individual food intake was recorded on a daily basis. The animals were 

maintained individually in cages under a 12-hour light/dark cycle, a controlled temperature of 

21–22°C and extensive room ventilation (15 times per hour), and they had free access to 

water.  

2.3.1 Sample collection and analysis 

At the end of the experiment, the rats were anesthetized with sodium pentobarbital 

according to the recommendations for the euthanasia of laboratory animals (50 mg/kg body 

weight). After laparotomy, blood samples were collected from the vena cava and stored in 

tubes. Immediately after euthanasia (ca. 10 min), the cecal and colonic pH values were 

measured directly in the intestinal segments (model 301 pH meter; Hanna Instruments, Vila 

do Conde, Portugal). The caecum and colon were removed and weighed. Fresh cecal content 

was used for determination of the ammonia concentration by the microdiffusion method in 

Conway’s dishes. The short-chain fatty acid (SCFA) concentrations were measured using gas 

chromatography (Shimadzu GC-2010, Kyoto, Japan) and a capillary column (SGE BP21, 30 

m × 0.53 mm; SGE Europe Ltd., Milton Keynes, UK) as previously described [10]. The 

activities of selected bacterial enzymes (Į-galactosidase, Į-glucosidase, ȕ-galactosidase and 

ȕ-glucosidase) released into the cecal environment were measured according to the rates of p- 

and o-nitrophenol release from their nitrophenyl glucosides according to a previously 

described method [31]. The concentration of total BA in the caecum was measured using a 

colorimetric kinetic method with a commercial BA assay kit.  
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The BA in the caecum were assessed using an Agilent 1200 rapid resolution LC 

system (Stockport, U.K.) coupled to an AB Sciex 4000 QTrap triple-quadrupole mass 

spectrometer (Warrington, U.K.). Chromatographic separation was conducted using a Supelco 

Ascentis Express C18, 15 cm x 4.6 mm, 2.7-µm column (Sigma Aldrich) by gradient elution 

with 0.012% (v/v) formic acid in methanol (solvent B) and 5 mM ammonium acetate in water 

(solvent A). The column temperature was set at 40°C, the flow rate was 0.6 mL/min, and the 

gradient program was as follows: 0 – 2 min, 50% (v/v) B; 2 – 20 min, 50 – 95% (v/v) B; 20 – 

22 min, 95% (v/v) B; 22– 23 min, 95– 50% (v/v) B; 23– 40 min, 50% (v/v) B. The injection 

volume was 5 µL. Mass data acquisitions were performed using Analyst 1.6.2 software (AB 

Sciex). The internal standards d4-cholic, d4-glycochenodeoxycholic, d4-glycocholic, d4-

litocholic, d4-deoxycholic, and d4-chenodeoxycholic acids, and the relative response factor, 

were used to quantify the BA. 

The liver fat mass was determined shortly after dissection by time-domain nuclear 

magnetic resonance (Minispec LF 90II, Bruker). After storage of the liver at -80°C, FGF19, 

FGFR4, FXR, PPARĮ and SHP-1 were determined using commercial ELISA kits (Cloud- 

Clone Corp). The concentration of total BA in the liver was estimated using a commercial BA 

assay kit (Blue Gene Biotech, Shanghai, China). Total hepatic cholesterol was measured in 

liver using standard diagnostic kits (Alpha Diagnostics) after lipid extraction by the Folch 

method [32].  

2.3.2 Quantification of ellagitannin metabolites 

The ET metabolites were evaluated in the colon and serum. Details concerning the 

sample preparation have been previously described [10]. The metabolites were determined 

using HPLC (Knauer Smartline system with a photodiode array detector, Berlin, Germany) 

coupled to a Gemini C18 column (110 Å, β50×4.60 mm; 5 ȝm, Phenomenex). The separation 
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conditions were the same as those used to determine the ETs in the dietary extracts. The ET 

metabolites were identified by comparisons of the UV spectra with the available data in the 

literature [33]. Furthermore, to confirm the results, the samples were dissolved in methanol 

and analyzed using HPLC-ESI-MS with a Dionex UltiMate 3000 UHPLC and a Thermo 

Scientific Q Exactive series quadrupole ion trap mass spectrometer. The ET metabolites were 

separated using a Kinetex C18 column (110 Å, 150×β.1 mm; β.6 ȝm, Phenomenex) and a 

binary gradient of 0.1% formic acid in water (phase A) and 0.1% formic acid in acetonitrile 

(phase B) at a flow rate of 0.5 mL/min as follows: stabilization for 1.44 min with 5% B, 5-

15% B for 1.44-2.98 min, 15-40% B for 2.98-10.1 min, 40-73% B for 10.1-11.5 min, 73% B 

for 11.55-12.7 min, 73-5% B for 12.7-13.28 min, and 5% B for 13.28-18 min. Urolithin-A 

isolated from human urine via semipreparative HPLC was used as the standard to quantify the 

ET metabolites. The detailed procedure used for the isolation of urolithin-A has been 

described elsewhere [33]. 

2.4 Statistical analysis 

STATISTICA software (version 10.0; StatSoft Corp., Krakow, Poland) was used to 

determine whether variables differed among the treatment groups. The results were calculated 

statistically using one-way analysis of variance (ANOVA) and Duncan’s multiple range test. 

Differences were considered significant at P<0.05. The results are presented as the mean 

values ± the standard error of the mean (SEM), except for the phenolic composition of 

raspberry pomaces expressed as the mean and the standard deviation (SD) of the mean. In 

order to present a reliable value for the phenolic composition the SD was calculated from 3 

samples. 

3. RESULTS 
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After an 8 week feeding period, the preparations of raspberry pomaces did not affect 

dietary intake or animal growth (data not shown). Cecal/colonic tissue and the relative mass 

and pH of the digesta in the intestinal segments were comparable among all experimental 

groups (Table 3). All of the animals fed high-fat diets displayed a significant increase in fat 

accumulation in the liver (P<0.05 vs. C). The control high-fat diet (group HF) had the highest 

cecal ammonia concentration, but treatment with HFSG and HFNGs reduced these values to 

levels similar to those in the C group (Table 4). There were no significant differences in the 

cecal activity of selected microbial enzymes or the concentration of SCFAs between the HF 

and C group. The highest cecal activity of Į-galactosidase (P<0.05 vs. C and HF) and ȕ-

glucosidase (P<0.05 vs. all groups except HFSG) and the highest total SCFA cecal 

concentration (P<0.05 vs. C and HFSG) were noted in the HFNG group. Additionally, both 

dietary treatments with native pomaces (with seeds, irrespective of grind type) significantly 

increased the cecal activity of bacterial Į-galactosidase in comparison to the HF group. Only 

HFNG treatment significantly elevated content of butyric acid in the cecal digesta (P<0.05 vs. 

all other groups). Interestingly, both finely ground raspberry pomaces significantly increased 

the concentration of acetic acid in the cecal digesta (P<0.05 vs. C). Irrespective of the grind 

type, the preparation of seedless raspberry pomace significantly increased the blood serum 

concentration of ellagic acid dimethyl ether glucuronide (DMEAG) (Table 5). 

The effect of the dietary raspberry pomaces on the BA profile in the cecal digesta is 

shown in Figure 1. The high-fat diet used in this study significantly increased the cecal 

concentration of cholic (CA), deoxycholic (DCA) and ȕ-muricholic (ȕ-MCA) acids, 

compared with the control C group. However, for all the aforementioned acids, this effect was 

reduced by dietary application to the high-fat diet of both raspberry pomaces with seeds. 

Treatments with seedless pomaces caused a significant decrease in CA and ȕ-MCA, but not in 

the DCA cecal concentration in comparison to the HF group. The fine grinding of dietary 
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raspberry pomace with seeds (group HFNGs) resulted in a significant reduction of litocholic 

(LCA) and Ȧ-muricholic acid (Ȧ-MCA) concentrations in the cecal digesta (P<0.05 vs. all 

groups including C). In the case of the fine grinding of seedless raspberry pomace, such 

manipulation significantly reduced the cecal concentration of MCA (P<0.05 vs. all other 

groups fed high-fat diets). The highest cecal concentration of chenodeoxycholic acid (CDCA) 

was found in the HFSGs rats (P<0.05 vs. C and HFNG). The raspberry pomaces examined 

also modulated the profile of conjugated BA in the rat caecum (Figure 2). The dietary HFNGs 

treatment resulted in a significant decrease in the cecal concentrations of glycocholic (GCA; 

P<0.05 vs. other groups), glycolithocholic (GLCA; P<0.05 vs. C), taurodeoxycholic (TDCA; 

P<0.05 vs. other groups), taurochenodeoxycholic (TCDCA; P<0.05 vs. C and HF) and 

tauroursodeoxycholic (TUDC; P<0.05 vs. other groups except HFSG) acids. Concomitantly, 

the HFNGs group was characterized by the highest concentrations of glycochenodeoxycholic 

(GCDCA; P<0.05 vs. C) and taurolithocholic (TLCA; P<0.05 vs. all other treatments with 

raspberry pomaces) acids in the cecal digesta. The highest cecal concentration of tauro-Į-

muricholic (T-Į-MCA) and tauro-ȕ-muricholic (T-ȕ-MCA) acids was noted following HFNG 

treatment (P<0.05 vs. HFSG and HFNGs, as well as P<0.05 vs. all other groups, 

respectively).    

The total BA concentration in the cecal digesta was comparable among all groups 

(Table 6). However, the control high-fat diet (without pomace application) displayed 

significantly (P<0.05) elevated total BA concentrations in the liver in comparison to group C. 

Excluding HFSG, all treatments with raspberry pomaces effectively reduced the liver values 

of total BA to the levels observed in C rats. The highest cholesterol concentration in the liver 

was noted in the HF group (P<0.05 vs. all other treatments except HFNG). Among the groups 

fed high-fat diets, the HFNGs rats were characterized by the lowest liver cholesterol 

concentration (P<0.05 vs. all other groups fed high-fat diets). The two groups fed diets with 
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seedless pomaces had the highest levels of SHP-1 (P<0.05 vs. HF and HFNGs groups). The 

dietary treatments with pomaces containing seeds caused significant reductions in liver 

FGFR4 levels compared with HF, and both treatments with seedless pomaces resulted in 

levels comparable to that in group HF (P>0.05 vs. HF). The highest levels of hepatic FGF19 

and PPARĮ were noted in the HFSG group, while the lowest levels of those parameters were 

detected in the HFNGs group.  

 

4. DISCUSSION 

The results of the present study indicated that raspberry pomaces were a valuable 

source of not only dietary fiber but also fat and polyphenols, most of which were ETs, FLs 

and ACs. Other studies of raspberry pomaces have reported a very wide range of these 

compounds, especially polyphenols [34, 35]. The concentrations of these substances are 

strongly influenced by many factors, e.g., genotype and extrinsic factors such as agricultural 

practices, the environment and maturity [36]. Differences in the chemical composition of the 

examined raspberry pomaces were also caused by the level of grinding and the presence of 

seeds in the pomace. Most of the polyphenols accumulate in the seedless fraction of the 

pomace [37]; consequently, an increased concentration of these bioactive compounds was 

observed after the removal of seeds from the raspberry pulp. Additionally, the disruption of 

complexes between fibers and polyphenols by fine grinding increased the concentration of 

these bioactive compounds. Moreover, approximately 80% of the raspberry pomace 

comprises seeds [38], which consist of approximately 23% oil enriched with polyunsaturated 

fatty acids (PUFAs) [25, 26]. The fine grinding of the native raspberry pomace released the 

accumulated lipid fraction from the seeds and thus increased the level of available fat in the 

examined raspberry pomace.  
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After feeding with a high-fat diet, a significantly higher concentration of ammonia 

was detected in the cecal digesta of the rats. A high concentration of this compound can 

destroy cells, alter nucleic acid synthesis and increase viral infections in the lower bowel [39]. 

HFSG and HFNGs treatments reduced the unfavorably high levels of ammonia in the caecum. 

Cecal ammonia synthesis is mostly modulated by microbial activity which may be changed 

by diet enriched with polyphenols. HFNG treatment significantly elevated the production of 

bacterial SCFAs, especially acetic and butyric acid. Butyrate in the colonic enterocytes is 

rapidly absorbed and metabolized, whereas acetic acid is converted to acetyl-CoA 

contributing to lipogenesis [40]. HFNG treatment also significantly increased the activity of 

bacterial Į-galactosidase and ȕ-glucosidase in the caecum. These microbial enzymes assist in 

the hydrolysis of indigestible oligosaccharides. Thus, higher activity of galactosidases may 

decrease colonic fermentation and gas production, which is undesirable, especially in people 

with irritable bowel syndrome [41]. However, some authors have suggested that 

galactosidases could be responsible for the generation of detrimental metabolites, e.g., from 

kaempferol-3-O-galactoside-rhamnoside-7-O-rhamnoside [42]. The observed changes in 

activity of the bacterial enzymes might be associated with the type and amount of 

polyphenols, as well as dietary fat in the diet. The raspberry pomaces used in this study were 

a rich source of ETs and ACs, which have antibacterial properties against certain groups of 

intestinal bacteria such as Clostridium leptum, Campylobacter spp., and E. coli CM 871 [10, 

11, 43, 44]. A previous study of rats fed a diet supplemented with raspberry polyphenol 

extracts obtained from pomace, showed that the intensity of the cecal microbiota activity 

might be related to the dosages and profiles of dietary polyphenols, e.g., the ET to FL ratio 

[45]. The inhibitory effects of plant phenols could be caused by their covalent attachment to 

reactive nucleophilic sites in an enzyme, such as free amino and thiol groups or tryptophan 

residues [46]. A diet high in saturated fat can also affect the microbial diversity, which may 
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be due to an overflow of dietary fat into the distal parts of the intestine [47]. Our previous 

studies have shown that obesogenic diet rich in saturated fatty acids decreased microbial 

glycolytic activity and metabolite formation in the distal intestine [9, 48]. The modulation of 

bacterial activity may also be associated with the secretion of BA into the small intestine, 

which are potent antimicrobial agents both alone and in conjunction with diet-derived fatty 

acids [49].  

BA are synthesized from cholesterol in the liver and further metabolized by the gut 

microbiota into secondary BA, e.g., DCA and LCA. A high-fat diet is known to stimulate the 

secretion of BA into the intestinal lumen [1, 2]. Secondary BA are considered to be cytotoxic 

to colonic crypt cells, resulting in an increase in compensatory proliferation of colonic 

epithelial cells, which is associated with an increased risk of colon cancer [6-8]. In this study, 

a high-fat diet significantly increased the concentration of CA and DCA in the cecal digesta. 

The high levels of these BA were reduced after enriching the diets with raspberry pomace 

containing seeds. The concentration of DCA in the gastrointestinal tract might by modulated 

by bacterial deconjugation and dehydroxylation of CA from the small intestine, forming new 

DCA throughout the length of the colon [50]. Addition to the high-fat diet of finely ground 

raspberry pomace with seeds considerably reduced the concentration of CA conjugated to 

glycine (GCA), potentially explaining the lower level of CA and DCA in the cecal digesta. 

The reduced concentration of DCA after treatment with a finely ground preparation 

containing seeds may also be associated with a lower concentration of DCA conjugated to 

taurine (TDCA). Ngamukote et al. (2011) [51] suggested that gallic acid, catechin, and 

epicatechin might bind to TDCA and thus modulate the concentration of that BA in the 

gastrointestinal tract. Another study conducted in rats indicated that some dietary 

polyphenols, e.g., catechin, might reduce fecal BA, DCA and LCA [3]. Moreover, some 

intestinal microbes are able to utilize taurine as an electron acceptor for anaerobic respiration 
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and thus reduce the concentration of taurine-conjugated BA [52]. It can be assumed that the 

addition of raspberry polyphenols to the diet can selectively modulate the composition as well 

as the activity of the microbiota, thus altering the metabolism of the primary BA. Bravo et al. 

(1998) [53] have shown that the addition of mono- or PUFAs to the diet increased BA 

synthesis compared with saturated fatty acids in rats. In the present study the lipid fraction 

(rich in PUFAs) released from raspberry seeds reduced the BA concentration in the liver as 

well as the DCA, LCA, ȕ-MCA and Ȧ-MCA concentrations in the cecal digesta. These results 

raise the possibility that the compounds released from raspberry seeds in cooperation with 

polyphenols have the strongest effect on the synthesis of hepatic BA and their profile in the 

cecal digesta.   

 In the ileum and the colon, anaerobic bacteria promote the 7-alpha-dehydroxylation 

of the primary BA and the formation of secondary BA. These BA are more hydrophobic and 

more potent activators of FXR than the primary BA [54-56]. It is generally recognized that 

FXR negatively regulates BA synthesis directly in the liver by inducing the expression of 

SHP-1. In the present study, the high-fat diet had no significant effect on the hepatic levels of 

FXR and SHP-1. However, addition to the diet of a finely ground preparation without seeds 

markedly increased the levels of SHP-1, thereby reducing the concentration of BA in the 

liver. Sayin et al. (2013) [56] demonstrated that the microbiota exerts its effects not only 

within the gut but also in other parts of the enterohepatic system, for example, by regulating 

BA synthesis in the liver via an increase in the FXR-dependent activation of FGF19 in the 

ileum due to reduced levels of T-ȕ-MCA. FGF19 binds to FGFR4 and suppresses the 

synthesis of BA in the liver [18, 20]. In the present study, HFNG treatment markedly 

increased the concentration of T-ȕ-MCA, but there were no significant differences in the 

hepatic levels of FGF19 and FGFR4. A significant reduction of these two hepatic factors as 

well as the lower BA concentrations in the liver were observed in the group fed a diet 
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supplemented with finely ground raspberry pomace containing seeds. The BA synthesis might 

be also regulated by PPARĮ [21]. This receptor regulates intra- and extracellular lipid 

metabolism and stimulates reverse transport of cholesterol [57], which is essential for BA 

synthesis. Therefore, higher level of the PPARĮ may increase concentration of hepatic 

cholesterol and synthesis of BA. In this study, the high-fat diet increased the level of PPARĮ 

and also the concentration of cholesterol and BA in the liver. The enrichment of the high-fat 

diet with the finely ground preparation containing seeds significantly reduced the level of 

PPARĮ and all of the changes described in the liver. PPARĮ ligands may also modulate the 

BA profile by increasing and decreasing the synthesis of CA and CDCA in the bile, 

respectively [58]. Indeed, HFNGs treatment reduced the concentration of GCA and increased 

the concentration of GCDCA in the caecum. Additionally, some derivatives of ET metabolites 

that are transported in the blood may regulate the levels and proportions of the cholesterol 

fractions [59, 60], thereby regulating hepatic BA synthesis. In this study, we observed a 

significantly higher concentration of DMEAG in the serum of rats fed a diet supplemented 

with seedless raspberry pomaces.  

In conclusion the high-fat diet used in this study led to disorders in the gastrointestinal 

tract and liver function and thus the BA profile in the rat caecum. Nevertheless, addition of 

finely ground raspberry pomaces containing seeds to the high-fat diet reduced the cecal 

ammonia concentration and improved the metabolism of BA in the caecum by decreasing the 

concentration of secondary BA, DCA and LCA. Moreover, the same raspberry preparation 

reduced the concentration of cholesterol and BA in the liver. The molecular mechanisms 

responsible for regulating hepatic BA synthesis after treatment with finely ground raspberry 

pomaces containing seeds might be associated with a reduction of FGF19, FGFR4 and 

PPARĮ levels in the liver. In contrast, finely ground seedless raspberry pomace increased 

activity of the ȕ-glucosidase and production of butyric acid but did not change concentration 
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of ammonia as well as the undesirably high levels of DCA and LCA in the caecum. 

Furthermore, seedless raspberry pomace activated different molecular mechanisms regulating 

hepatic BA synthesis as manifested by increased levels of SHP-1 and PPARĮ. In summary, 

the presence of seeds and the grinding level of the raspberry pomace had significant effects on 

cecal microbial activity, BA profile and also hepatic BA synthesis. 
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FIGURE CAPTIONS 

Figure 1. Bile acid profile in the rat caecum. Values are means ± SEM. Mean values within a 
column with different superscript letters (a, b, c) were significantly different by Duncan’s post 
hoc test (P≤0.05). CA, cholic acid; DCA, deoxycholic acid; CDCA, chenodeoxycholic acid; 
LCA, litocholic acid; MCA, muricholic acid; Į-, ȕ-, Ȧ-MCA, Į-, ȕ-, Ȧ-muricholic acid; 
UDCA, ursodeoxycholic acid; HDCA, hyodeoxycholic acid.  
C and HF were fed a control and high-fat diet, respectively; HFSG and HFNG were fed a 
high-fat diet containing 7% standard and finely ground seedless fraction of raspberry pomace, 
respectively; HFSGS and HFNGS were fed a high-fat diet containing 7% standard and finely 
ground native raspberry pomace, respectively. 

Figure 2. Profile of conjugated bile acids in the rat caecum. Values are the means ± SEM. 
The mean values within a column with different superscript letters (a, b, c) were significantly 
different by Duncan’s post hoc test (P≤0.05). GCA, glycocholic acid; GDCA, 
glycodeoxycholic acid; GCDCA, glycochenodeoxycholic acid; GLCA, glycolitocholic acid; 
TCA, taurocholic acid; TDCA, taurodeoxycholic acid; TCDCA, taurochenodeoxycholic acid; 
TLCA, taurolitocholic acid; T-Į-, T-ȕ-MCA, tauro-Į-, ȕ-muricholic acid; TUDC, 
tauroursodeoxycholic acid. 
C and HF were fed a control and high-fat diet, respectively; HFSG and HFNG were fed a 
high-fat diet containing 7% standard and finely ground seedless fraction of raspberry pomace, 
respectively; HFSGS and HFNGS were fed a high-fat diet containing 7% standard and finely 
ground native raspberry pomace, respectively. 
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Table 1. Chemical composition of the raspberry pomaces, %. 

*Carbohydrates=dry matter–(ash+protein+fat+polyphenolics). 
TDF, total dietary fiber; SDF, soluble dietary fiber; LM, low-molecular carbohydrates.

 Raspberry 
pomace, 
standard 

granulation 

Raspberry 
pomace, fine 
granulation 

Raspberry 
pomace seedless 

fraction, 
standard 

granulation 

Raspberry 
pomace seedless 

fraction, fine 
granulation 

Dry matter 93.13 ± 0.00 93.77 ± 0.05 93.23 ± 0.01 93.70 ± 0.02 
Ash 1.68 ± 0.00 1.75 ± 0.02 2.74 ± 0.01 2.73 ± 0.05 
Protein 11.20 ± 0.31 11.65 ± 0.12 19.64 ± 0.60 20.38 ± 0.14 
Fat  11.44 ± 0.10 12.46 ± 0.17 9.19 ± 0.05 9.09 ± 0.08 
Carbohydrates* 65.90 64.72 55.26 54.58 

TDF 64.76 ± 0.15 61.98 ± 0.06 48.90 ± 0.49 47.00 ± 0.40 
SDF 0.92 0.46 1.80 3.13 

          LM 1.14 2.74 6.36 7.58 
Total 
polyphenols 

2.91 ± 0.04 3.19 ± 0.05 6.40 ± 0.00 6.92 ± 0.04 
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Table 2. Polyphenol composition of raspberry pomaces. 

 

Raspberry 
pomace, 
standard 

granulation 

Raspberry 
pomace, fine 
granulation 

Raspberry 
pomace seedless 
fraction, standard 

granulation 

Raspberry 
pomace seedless 

fraction, fine 
granulation 

Ellagitannins (ET)  
Minor ET* 195.9 ± 6.5 215.8 ± 11.0 534.4 ± 3.4 569.9 ± 0.5 
Lambertianin C 1322.4 ± 29.0 1509.8 ± 39.0 3744.7 ± 21.6 4080.3 ± 23.6 
Sanguiin H-6 754.5 ± 20.4 844.6 ± 21.6 1510.8 ± 3.9 1631.2 ± 12.6 
Ellagic acid 61.1 ± 3.1 70. 0 ± 1.9 103.0 ± 1.3 108.7 ± 1.4 
Total ET 2333.9 ± 58.9 2640.2 ± 73.4 5892.9 ± 16.3 6390.0 ± 37.4 

Flavan-3-ols (FL)  
Total FLAVA 544.4 ± 33.3 517.4 ± 17.7 425.7 ± 15.0 434.6 ± 14.5 
(+)-catechin 7.6 ± 0.5 8.2 ± 0.1 12.9 ± 0.2 12.9 ± 0.2 
(-)-epicatechin 101.3 ± 1.4 98.7 ± 0.8 64.8 ± 0.6 65.0 ± 3.1 
Proanthocyanidins 435.5 ± 34.5 410.5 ± 18.0 348.0 ± 15.8 356.6 ± 13.6 

Extension units (%) 
(+)-catechin 47.6 ± 1.0 47.5 ± 0.6 41.3 ± 0.2 39.3 ± 0.5 
(-)-epicatechin 4.3 ± 0.2 5.5 ± 0.6 17.2 ± 1.6 18.6 ± 3.2 

Terminal units (%) 
(+)-catechin 5.6 ± 0.2 5.6 ± 0.1 4.3 ± 0.2 5.6 ± 0.5 
(-)-epicatechin 42.5 ± 1.2 41.5 ± 0.6 37.2 ± 1.5 36.5 ± 2.3 
mDP 2.1 ± 0.0 2.1 ± 0.0 2.4 ± 0.1 2.4 ± 0.2 

Anthocyanins (AC)**  
Cy-3-soph 13.8 ± 0.4 14.8 ± 0.4 35.2 ± 1.0 39.0 ± 3.7 
Cy-3-glu-rut 1.0 ± 0.0 1.0 ± 0.0 2.3 ± 0.1 2.6 ± 0.2 
Cy-3-glu 12.2 ± 0.4 13.3 ± 0.5 32.5 ± 1.2 35.9 ± 3.4 
Cy-3-rut 1.0 ± 0.0 1.1 ± 0.1 3.0 ± 0.1 3.3 ± 0.3 
Minor ACY 0.6 ± 0.0 0.7 ± 0.0 1.3 ± 0.1 1.4 ± 0.1 
Total ACY 28.6 ± 0.9 30.9 ± 0.9 74.3 ± 2.5 82.2 ± 7.7 
TPH 2908.9 ± 44.5 3193.6 ± 54.3 6400.9 ± 4.0 6917.8 ± 34.5 
Values are expressed as the mean ± standard deviation (mg/100 g) ; Cy-3-spoh – cyanidin-3-
O-spohoroside; Cy-3-glu-rut – cyanidin-3-O-glucosyl-rutinoside; Cy-3-glu – cyanidin-3-O-
glucoside; Cy-3-rut – cyanidin-3-O-rutinoside; mDP – mean degree of polymerization; TPH – 
total polyphenols; * - the contents of these substances were calculated based on the sanguiin 
H-6 standard; ** - the contents of anthocyanins were calculated based on the cyanidin-3-O-
glucoside standard.
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Table 3. Tissue and digesta mass of the hindgut, as well as the liver mass and fat accumulation, in rats fed the experimental diets. 

 Cecum  Colon  Liver 
Tissue mass Digesta mass 

pH 
 Tissue mass Digesta mass 

pH 
 Tissue mass Fat 

g/100 g BW 
g/g cecal 

tissue 
 

g/100 g BW g/g cecal tissue 
 

g/100 g BW % 

C 0.54 ± 0.02 1.27 ± 0.22 7.19 ± 0.08 
 

0.88 ± 0.04 0.37 ± 0.08 6.84 ± 0.23 
 

8.86 ± 0.29 18.52b ± 1.30 
HF 0.54 ± 0.02 1.01 ± 0.07 7.19 ± 0.06  0.98 ± 0.06 0.43 ± 0.12 6.87 ± 0.02  8.46 ± 0.28 23.46a ± 0.70 
HFSG 0.56 ± 0.03 1.41 ± 0.13 7.21 ± 0.07  0.94 ± 0.02 0.32 ± 0.10 6.76 ± 0.11  8.04 ± 0.23 23.04a ± 1.15 
HFNG 0.58 ± 0.03 1.27 ± 0.17 7.09 ± 0.04  0.94 ± 0.04 0.28 ± 0.05 7.04 ± 0.08  8.34 ± 0.34 23.89a ± 1.32 
HFSGS 0.52 ± 0.02 1.18 ± 0.08 7.23 ± 0.06  0.87 ± 0.04 0.28 ± 0.03 6.58 ± 0.09  7.92 ± 0.31 26.05a ± 1.60 
HFNGS 0.58 ± 0.02 1.11 ± 0.14 7.20 ± 0.07  0.86 ± 0.03 0.25 ± 0.06 6.75 ± 0.17  8.51 ± 0.25 24.07a ± 1.06 
           
P (ANOVA) NS NS NS  NS NS NS  NS <0.01 

Values are the means ± SEM. The mean values within a column with different superscript letters (a, b, c) were significantly different by 
Duncan’s post hoc test (P≤0.05). NS, nonsignificant data, P>0.05. 
C and HF were fed a control and high-fat diet, respectively; HFSG and HFNG were fed a high-fat diet containing 7% standard and finely ground 
seedless fraction of raspberry pomace, respectively; HFSGS and HFNGS were fed a high-fat diet containing 7% standard and finely ground native 
raspberry pomace, respectively.  

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Table 4. Activity of microbial enzymes and concentration of SCFAs and ammonia in the cecal digesta of rats fed the experimental diets. 

 
Ammonia Į-gal ȕ-gal Į-glu  ȕ-glu 

SCFAs 
acetic  propionic butyric Total 

mg/100 g 
digesta 

µmol/h/g digesta µmol/g digesta 

C 24.61bc ± 1.62 8.62bc ± 1.04 60.29 ± 7.75 19.63 ± 2.66 2.93b ± 0.32 31.27b ± 1.76 7.92 ± 0.74 3.26b ± 0.34 45.61b ± 2.87 
HF 32.65a ± 1.70 6.49c ± 1.10 73.47 ± 10.92 19.59 ± 2.25 2.09b ± 0.49 36.40ab ± 2.06 9.21 ± 0.43 4.26b ± 0.33 53.23ab ± 2.64 
HFSG 23.02c ± 1.33 9.61abc ± 1.07 56.50 ± 11.76 17.60 ± 3.57 3.43ab ± 0.63 35.42ab ± 1.07 8.68 ± 0.38 4.41b ± 0.37 51.35b ± 1.31 
HFNG 31.24a ± 1.26 12.29a ± 1.22 60.84 ± 8.32 20.62 ± 2.95 4.54a ± 0.46 40.89a ± 0.93 10.17 ± 0.59 5.54a ± 0.23 59.50a ± 1.46 
HFSGS 29.83ab ± 2.75 10.09ab ± 1.22 82.62 ± 11.82 19.40 ± 5.44 2.86b ± 0.50 36.53ab ± 2.47 8.88 ± 0.56 3.85b ± 0.27 52.02ab ± 3.17 
HFNGS 26.25bc ± 2.49 10.15ab ± 0.71 59.59 ± 11.08 15.07 ± 3.13 2.70b ± 0.64 36.94a ± 1.73 10.04 ± 0.67 3.78b ± 0.58 53.43ab ± 3.06 
          
P (ANOVA) <0.05 <0.05 NS NS <0.01 <0.05 NS <0.01 <0.05 

Values are the means ± SEM. The mean values within a column with different superscript letters (a, b, c) were significantly different by 
Duncan’s post hoc test (P≤0.05). Į-gal, Į-galactosidase; Į-glu, Į-glucosidase; ȕ-gal, ȕ-galactosidase; ȕ-glu, ȕ-glucosidase; NS, nonsignificant 
data, P>0.05; SCFAs, short chain fatty acids. 
C and HF were fed a control and high-fat diet, respectively; HFSG and HFNG were fed a high-fat diet containing 7% standard and finely ground 
seedless fraction of raspberry pomace, respectively; HFSGS and HFNGS were fed a high-fat diet containing 7% standard and fine ground native 
raspberry pomace, respectively.  
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Table 5. Ellagitannin metabolite profiles in the colon digesta and serum of rats fed the experimental diets. 

 Colon  Serum 

Nasutin Urolithin A 
 Ellagic acid 

dimethyl ether 
glucuronide 

µg/g  µg/ml 

C 0.00 ± 0.00 0.00 ± 0.00  0.00 ± 0.00 
HF 0.00 ± 0.00 0.00 ± 0.00  0.00 ± 0.00 
HFSG 19.50 ± 35.43 8.72 ± 5.63  0.07a ± 0.02 
HFNG 29.13 ± 41.47 8.77 ± 4.71  0.08a ± 0.02 
HFSGS 19.19 ± 10.75 6.69 ± 3.15  0.03b ± 0.01 
HFNGS 7.55 ± 12.53 2.26 ± 6.40  0.03b ± 0.01 
     
P (ANOVA) NS NS  <0.01 
C and HF were fed a control and high-fat diet, respectively; HFSG and HFNG were fed a high-fat diet containing 7% standard and finely ground 
seedless fraction of raspberry pomace, respectively; HFSGS and HFNGS were fed a high-fat diet containing 7% standard and finely ground native 
raspberry pomace, respectively.  

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Table 6. Bile acids in the cecal digesta and liver and the concentration of cholesterol and indicators that regulate the synthesis of bile acids in the 
liver of rats fed the experimental diets.  

 Total bile acids 
in the caecum 

 Total bile acids 
in liver 

Cholesterol SHP-1 FGFR4 FGF19 PPARĮ FXR 

µmol/g digesta  nmol/g liver mg/g liver ng/g liver ng/g liver ng/g liver µg/g liver ng/g liver 

C 19.39 ± 2.17  1.72b ± 0.12 3.61d ± 0.27 1820ab ± 207 1606b ± 148 41.27bc ± 3.12 21.13c ± 0.88 1699 ± 111 
HF 28.31 ± 1.92  2.83a ± 0.19 8.16a ± 0.25 1362b ± 172 2353a ± 158 51.42abc ± 9.73 22.51b ± 1.43 1764 ± 160 
HFSG 24.09 ± 2.29  2.81a ± 0.15 7.16b ± 0.35 4487a ± 644 2526a ± 199 60.66a ± 4.43 26.55a ± 0.60 2027 ± 115 
HFNG 21.75 ± 2.27  1.61b ± 0.16 7.41ab ± 0.38 4655a ± 748 2449a ± 176 54.96ab ± 4.79 24.93ab ± 0.66 2109 ± 107 
HFSGS 24.20 ± 1.86  1.81b ± 0.28 7.10b ± 0.29 1977ab ± 255 1759b ± 172 44.27abc ± 3.71 22.84bc ± 1.08 1972 ± 137 
HFNGS 19.97 ± 0.99  2.15b ± 0.21 4.92c ± 0.30 1472b ± 205 1416b ± 156 34.95c ± 2.84 20.9c ± 1.60 1727 ± 148 
          

P (ANOVA) NS  <0.001 <0.001 <0.001 <0.001 <0.05 <0.01 NS 

Values are the means ± SEM. The mean values within a column with different superscript letters (a, b, c) were significantly different by 
Duncan’s post hoc test (P≤0.05). FGF19, fibroblast growth factor 19; FGFR4, fibroblast growth factor receptor 4; FXR, farnesoid X receptor; 
NS, nonsignificant data, P>0.05; PPARĮ, peroxisome proliferator-activated receptor alpha; SHP-1, small heterodimer partner 1.  

C and HF were fed a control and high-fat diet, respectively; HFSG and HFNG were fed a high-fat diet containing 7% standard and finely ground 
seedless fraction of raspberry pomace, respectively; HFSGS and HFNGS were fed a high-fat diet containing 7% standard and finely ground native 
raspberry pomace, respectively.  
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Figure 1 
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Figure 2  
 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 

Graphical abstract



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

Highlights 

 

 Diet enriched with raspberry pomace reduces concentration of cholesterol in the liver. 

 Fine ground raspberry pomace with seeds reduced cecal ammonia concentration. 

 Raspberry pomace containing seeds reduced the formation of secondary bile acids. 

 Fine ground preparation with seeds reduced levels of FGF19 and PPARĮ in the liver. 


