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Abstract

One-dimensional models of the cardiovascular system can capture the physics of

pulse waves but involve many parameters. Since these may vary among individ-

uals, patient-specific models are difficult to construct. Sensitivity analysis can be

used to rank model parameters by their effect on outputs and to quantify how uncer-

tainty in parameters influences output uncertainty. This type of analysis is often

conducted with a Monte Carlo method, where large numbers of model runs are used

to assess input-output relations. The aim of this study was to demonstrate the com-

putational efficiency of variance-based sensitivity analysis of 1D vascular models

using Gaussian process emulators, compared to a standard Monte Carlo approach.

The methodology was tested on four vascular networks of increasing complexity

to analyse its scalability. The computational time needed to perform the sensitivity

analysis with an emulator was reduced by the 99.96% compared to a Monte Carlo

approach. Despite the reduced computational time, sensitivity indices obtained using

the two approaches were comparable. The scalability study showed that the number

of mechanistic simulations needed to train a Gaussian process for sensitivity analy-

sis was of the order O(d), rather than O(d × 103) needed for Monte Carlo analysis

(where d is the number of parameters in the model). The efficiency of this approach,

combined with capacity to estimate the impact of uncertain parameters on model

outputs, will enable development of patient-specific models of the vascular system,

and has the potential to produce results with clinical relevance.
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1 INTRODUCTION

The cardiovascular system is a complex network of elastic
vessels through which blood is pumped by contraction of
the heart. This pulsatile regime and vessel elasticity cause
pressure to propagate along the arterial circulation as waves.
Mechanical discontinuities caused by bifurcation, bends or
cardiovascular pathology, eg, vessel stenoses, cause pressure
waves to be reflected in all directions. As a result, pressure

waves measured at a specific location can be seen as the
result of a superimposition of incident and reflected waves.
The analysis of this superposition mechanism allows for the
study of mechanical properties upstream and downstream of
the measurement point and can be a rich source of diagnos-
tic information about the system through which these waves
propagate. However, given the vascular system complexity, it
is at present difficult to ascribe a particular waveform feature
to a specific trait of the arterial circulation.1-3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited.

© 2017 The Authors International Journal for Numerical Methods in Biomedical Engineering Published by John Wiley & Sons Ltd.

Int J Numer Meth Biomed Engng. 2017;33:e2882. wileyonlinelibrary.com/journal/cnm 1 of 11

https://doi.org/10.1002/cnm.2882

C M B E 1 5 : S E L E C T E D P A P E R S F R O M T H E 4 T H I N T E R N A T I O N A L C O N F E R E N C E

O N C O M P U T A T I O N A L & M A T H E M A T I C A L B I O M E D I C A L E N G I N E E R I N G 2 0 1 5



2 of 11 MELIS ET AL.

Numerical models of the vascular tree are ultimately aimed
at a better understanding of the circulation. Depending on the
model dimensionality and on the target application, differ-
ent levels of complexity can be reached.4 Three-dimensional
(3D) models are spatially accurate and can predict blood
flow in complex geometries, eg, around heart valves, near
aneurysms, or arterial bifurcations.5,6 However, these mod-
els rely on an accurate description of the system geometry
and of the boundary conditions. Hence, when noninvasive
measurements are difficult to be obtained, 3D simulations
cannot be performed. One-dimensional (1D) models are capa-
ble of simulating the physics of pulse wave propagation and
reflection. Many of these models are based on a reduction
of 3-dimensional Navier-Stokes equations and on a consti-
tutive equation linking transmural pressure to arterial wall
displacement.7-9 Each vessel of the arterial tree is represented
by a straight elastic tube whose parameters can be fixed or
varied along the tube length.10

One-dimensional models are less computationally expen-
sive than 3-dimensional ones and require a less precise
description of the vasculature geometry. The drawbacks
reside in the lack of accuracy in areas where the flow is
not developed, eg, in proximity of valve outlets and bifurca-
tions, where secondary and recirculatory flows may originate.
One-dimensional models have been used to study and repro-
duce the behaviour of the entire systemic circulation,11,12 the
coronaries,13 the cerebral vasculature,14 and the pulmonary
circulation.15

Although faster to solve than full 3-dimensional simula-
tions, 1D models still require a large number of parameters to
be specified for each vessel in the system. In a patient-specific
scenario, the total number of parameters to be measured
becomes easily infeasible and clinically nonjustifiable, eg,
an arterial tree made of 103 segments requires about 500
parameters.12 This issue can be overcome by identifying
those parameters that will have a more significant effect on
the output of interest. By ranking the inputs, the parame-
ters worth to be accurately measured could be identified and
their uncertainty reduced. Whereas, parameters whose vari-
ation has less effect on the outcome of interest can be fixed
to their typical reference values. The process of parameter
ranking and fixing consists in performing a model sensitivity
analysis.16

The state-of-the-art technique for parameter ranking and
fixing is the computation of sensitivity indices.17 These
indices assess the sensitivity of outputs to variation in indi-
vidual inputs or combinations of inputs. First-order sensitivity
indices measure the proportion of output variance that can
be accounted for by the variance of one individual input.
The variation of a single output due to the combined varia-
tion of multiple inputs is measured by higher-order sensitivity
indices. The sum of all indices concerning a specific input is
called total sensitivity index. First-order indices can be used

to rank inputs and to decide which has the strongest influ-
ence on the model outputs. Eventually, by highlighting input
collaborations, total sensitivity indices assess the inputs or
model parameters that can be fixed.

The Monte Carlo method is a simple approach to com-
pute sensitivity indices. Several thousand simulator (ie, the
mechanistic model) runs are done. For each simulator run, a
different set of inputs are randomly drawn from a distribution
of point, which covers the entire input space. Ideally, the dis-
tribution contains infinite points, hence by obtaining a result
for each point, the model global behaviour would be known.
In practice, an infinite distribution cannot be achieved, and
Monte Carlo sampling requires a number of runs of the order
of O(d × 106), where d is the number of input parameters.
Saltelli et al18,19 introduced a Monte Carlo–based technique to
calculate sensitivity indices that requires a number of runs of
order O(d × 103), but this can still be an impractical number
of runs for most applications.

When considering a large number of parameters, the com-
putational time needed for the d × 103 simulations becomes
prohibitively high. This analysis can be made more efficient
by introducing a fast-running approximation of the mechanis-
tic model, ie, an emulator.16 Emulators are well known in both
the applied mathematics and in the statistics community.20

The former mostly uses a tool called polynomial chaos expan-
sions (PCE), whereas the latter principally uses Gaussian
process (GP) emulators. Both tools aim to infer the simula-
tor global behaviour starting from observed simulator runs.
The main advantage of GP over the PCE technique resides
in the availability of uncertainty information. This character-
istic directly descends from the probabilistic nature of a GP,
which allows embedding of uncertainty and explicit treatment
of model parameters as uncertain quantities. This is essential
because it enables the impact of missing, uncertain, or noisy
measurements on model outputs to be quantified, which can
become relevant in a clinical setting. For a detailed analysis
of the differences between the two techniques, see other
works.20,21 The PCE has been successfully used for sensitiv-
ity analysis in the cardiovascular field, see, for example, other
studies.22-25 Outside of the cardiovascular field, GP is a widely
used emulation technique,26 but to our knowledge, GP has
never been used to predict 1D blood flow model outcomes for
sensitivity analysis purposes.

The aim of this work was therefore to compare sensitiv-
ity analysis of a 1D cardiovascular model on the basis of GP
emulators with the traditional approach based on Monte Carlo
sampling. We have also shown how the GP properties scale
with the vascular network complexity. Four patient-generic
arterial networks of increasing size were used to demonstrate
the benefits of using GP emulators for cardiovascular appli-
cations. Results were validated on the outcomes of a Monte
Carlo analysis.
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2 METHODOLOGY

2.1 Vascular model

The vascular model was based on the reduced 1D form of
the general continuity and Navier-Stokes equations for incom-
pressible flows within narrow straight elastic tubes.7,9 A con-
stitutive equation describing elastic wall behaviour was used
to close the equation system. The equations governing the
problem of flow through and an elastic vessel are

⎧
⎪⎪⎨⎪⎪⎩

𝜕A

𝜕t
+

𝜕(Au)

𝜕x
= 0,

𝜕(Au)

𝜕t
+

𝜕(Au2)
𝜕x

+
A

𝜌

𝜕P

𝜕x
= −8𝜋 𝜇

𝜌
u,

P = Pext + 𝛽

[(
A

A0

)1∕2
− 1

]
, 𝛽 =

√
𝜋

A0

Eh0

1−𝜎2
.

(1)

where t is time, x is the longitudinal space coordinate, 𝜌 is the
blood density, 𝜇 is the blood dynamic viscosity, A0 is the ref-
erence cross-sectional area (ie, when P − Pext = 0), h0 is the
reference wall thickness, E is the wall Young modulus, 𝜎 =

1∕2 is the wall Poisson ratio, and Pext is the external pressure.
The numerical solution of Equation 1 was achieved by means
of a finite-volume scheme.27-29 The numerical mesh was inde-
pendently set for each vessel by using at least 5 elements or,
where possible, Δx = 1 mm. To guarantee numerical stabil-
ity, time steps were adaptively computed at each iteration in
all vessels depending on the maximum local wave speed cmax

and Δx as

Δt = Ccf l
Δx

cmax
, (2)

where the Courant number was set to Ccfl = 0.9 and the Δt set
for the entire system was the smallest computed for all vessels
in the system.

A boundary condition was applied to the inlet of the root
vessel as a flow time function. Outlet boundaries of periph-
eral bifurcating vessels were coupled to 3-element wind-
kessel models30; at capillary level, the last boundary condition
was assigned by assuming the arterial-venous interface rela-
tive pressure equal to 0. To avoid artificial wave reflections
induced by discontinuities caused by time-dependent changes
in diameters at the bifurcation outlets, windkessel impedances
Z were calculated at each time step to match daughter vessel
outlet impedance.

To show how the computational time, the accuracy, and
the convergence of the proposed methodology scales with
the mechanistic model complexity, 4 vascular networks were
analysed (Figure 1). These represent the iliac bifurcation (8
arteries), the ascending and the upper thoracic aorta (7 arter-
ies), the thoracic aorta and the right arm (15 arteries), and a
more complete cardiovascular system (61 arteries). Geomet-
rical values (lumen radius R0 and vessel length 𝓁), material
properties (wall Young modulus E), inlet flow time function

(Figure 2A), and windkessel parameters (peripheral resis-
tance R and peripheral compliance C) were based on data
published in previous studies.31-33 Uncertainty domains for all
the parameters were set as in Huberts et al1 (Table 1). Analysis
of the results was conducted by extracting 2 outputs: the pres-
sure waveforms were computed at each node of the system,
and minimum and maximum values at middle point of the root
vessel (ie, the vessel to which the inlet boundary condition is
applied) were recorded (Figure 2B).

2.2 Gaussian process for regression

Gaussian process theory for both regression and classification
is well known and established in the machine learning com-
munity. In this context, only GP for regression is presented.
A complete and exhaustive mathematical description of this
method can be found in the literature, see, for example, other
studies.26,34-36

Let us consider a set of N d-dimensional input vectors
X = {x1, … , xN} and N corresponding observations Y =

{y1, … , yN}. Inputs are mapped into outputs by an unknown
function f(X). The goal of regression is to learn function
f from dataset D =

{
X,Y

}
. Since the input data can be

uncertain, it is desirable to obtain a set of likely interpolating
functions rather than a single function f(X).

A GP describes a probability distribution over functions,
p( f). This conveys the prior knowledge about the interpolating
functions before observing data D. By definition, the prior of
GP has a multivariate Gaussian distribution, mathematically
described by

p( f ) = N(m,Σ), (3)

where m = m (x) is the mean vector computed with the mean
function m and Σ is a covariance matrix. The mean is often
set to 0; this is because datasets can be simply preprocessed
to have 0 mean before training the statistical model. The
covariance matrix is built through a kernel function k(x, x′) as

Σij = k(xi, xj). (4)

The kernel choice depends on the problem. Complex
behaviour may require a combination of kernel functions.
Kernel function building starts from widely used kernel func-
tions like the squared exponential

kSE(x, x
′) = 𝜃2

1 exp

(
−
||x − x′||2

2𝜃2
2

)
, (5)

or the Matérn class of functions

kM𝜈(x,x
′) =

21−𝜈

Γ(𝜈)

(√
2𝜈
𝜃3

||x − x′||
)𝜈

I𝜈

(√
2𝜈
𝜃3

||x − x′||
)
, (6)

where 𝜃i (i = 1, … , 3) are hyper-parameters, Γ(·) is the
Gamma function, I𝜈 is a modified Bessel function, and 𝜈 is a
positive parameter that controls the smoothness of the kernel
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FIGURE 1 A, Diagrams of the 4 vascular networks used in the scalability study: (I) iliac bifurcation,31 (II) ascending and thoracic aorta,32 (III)
thoracic aorta and right arm,32,33 and (IV) complete model of the main 61 arteries adapted from Boileau et al.33 The deterministic model outputs
were extracted at the middle point of the root vessel of each network (white × marker). B, Symmetric iliac bifurcation detailed model scheme. For
each vessel in any of the 4 networks (I − IV), the length 𝓁, lumen radius R0, and wall Young modulus E are defined. At the outlets, the windkessel
model requires the peripheral resistance R and the peripheral compliance C to be defined

function.37 Of particular interest are the cases 𝜈 = 3∕2 and
𝜈 = 5∕2 for which the kernel function can be simplified as

kM3∕2(x,x
′) =

(
1+

√
3

𝜃3
||x−x′||

)
exp

(
−

√
3

𝜃3
||x−x′||

)
, (7)

kM5∕2(x, x
′) =

(
1 +

√
5

𝜃3
||x−x′||+ 5

3𝜃 2
3

||x − x′||2
)

× exp

(
−

√
5

𝜃3
||x − x′||

)
.

(8)

Hyper-parameters 𝜃i govern kernel properties, and their selec-
tion is part of the optimisation process. The GP optimises
hyper-parameters from training data. This is done by applying
Bayes Theorem,

p ( f |D) =
p (D| f ) p( f )

p(D)
, (9)

which evaluates the uncertainty in f afterD has been observed.
The posterior probability, p( f |D), is obtained by taking into
account prior knowledge about f before seeing D, p( f), and
by expressing how likely it is to observe D for different f.
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FIGURE 2 A, Typical inlet flow time functions for the 4 networks,
taken from Boileau et al.33 B, Example of computed pressure waveform
at the middle point of the root vessel of network IV. The waveforms are
reported in function of the time normalised with respect to the cardiac
cycle period Tc. The minimum (circle) and the maximum (square)
pressure values are the waveform features taken as outputs of the
deterministic model

TABLE 1 Simulation parameters uncertainty domain1: 𝓁 vessel
length, R0 lumen radius, E wall Young modulus, R peripheral
resistance, and C peripheral resistance

𝓵(%) R0(%) E(%) R (%) C (%)

−10, 10 −10, 10 −20, 20 −25, 25 −50, 50

The effect of the observed data is expressed by the likelihood
function p (D|f ). The denominator term is a normalisation
constant. The likelihood function is used as a cost function,
and it is maximised with respect to hyper-parameters 𝜃i. This,
in turn, maximises the posterior probability of f describing D.

Let us now introduce a new set of test inputs XT and corre-
sponding outputs YT. The predictive distribution is assumed
to have a multivariate Gaussian distribution

p(YT |Y) = N (mT ,KT ) , (10)

with mean and covariance given by

mT = ΣT
NT
Σ−1Y,

KT = ΣT − ΣT
NT
Σ−1ΣNT ,

(11)

where ΣNT = k(xn, xN+T) for n = 1, … ,N. Predictions are
made by sampling the distribution (Equation 10) at points
from XT. Note that the predictive distribution does not have
a zero mean function and that its covariance matrix is com-
puted by using the optimised kernel function learned from the
training set D.

The training cost has O(N3) complexity, becuse of the
covariance matrix inversion. Nevertheless, this is a one-time
operation, and the GP obtained can be used to predict an
output at any input point within the input space.

2.3 Gaussian process emulator verification

To assess the GP prediction error, a Monte Carlo (MC) analy-
sis was performed on system 1. This consisted of running d×

103 simulations by sampling the d-dimensional input space.
The d × 103 inputs and the d × 103 × 2 outputs constituted
the GP design data D. A portion of the dataset was randomly
sampled and saved for diagnostic purposes. The GP model
was trained on the remaining part. The MC analysis was per-
formed for the networks I, II, and III, but not for the complete
model IV, as the computational time required would have
been prohibitive and estimated around 9 years and 4 months
(see Figure 5).

The GP model was implemented by using the GPy library.38

To avoid numerical problems due to bad conditioning of
the covariance matrix, training inputs and training outputs
were normalised dimension-wise, ie, each dimension in the
input space was separately normalised. The kernel func-
tion to compute the covariance matrix was obtained as the
sum of a squared exponential kernel and a Matérn 5∕2 ker-
nel. Hyper-parameter optimisation was conducted by min-
imising the log-likelihood through the conjugate gradient
descent method.

The training sample was varied in size to assess the rela-
tion between the prediction error and the sample size. Three
diagnostics39 were used to verify GP model predictions:

1. Graphical analysis. Normalised GP model (emulator) pre-
dictions were compared with normalised vascular model
(simulator) outputs (Figure 3A-C). The normalised val-
ues were computed by first subtracting their mean, by
then dividing by their standard deviation, and then com-
bined all together. Points lying on the dashed line of
equality indicate a good agreement between emulator and
simulator.

2. Standardised prediction error. The differences between
simulator outputs (Y) and emulator mean predictions
(m[𝜁 (X)|Y]) were quantified as

D(Y) =
Y − m[𝜁(X)|Y]√

Σ[𝜁(X)|Y]
. (12)

The emulator is claimed to be able to represent properly
the simulator when its error distribution is normally dis-
tributed (Figure 3D-F). The normal distribution having
mean and standard deviation computed from the error dis-
tribution is plotted over the actual error distribution. A
visual inspection of the error distribution confirms the
similarity between the two distributions.
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FIGURE 3 Gaussian process validation diagnostics for the first 3 vascular networks (I − III). A to C, Graphical comparison between emulator
predictions and simulator outputs; points lying on the dashed line of equality indicate a good agreement between the 2 techniques. D to F, A properly
trained emulator is expected to have standardised prediction errors normally distributed

3. Mean average prediction error (MAPE). The MAPE was
computed between emulator predictions and simulator
outputs for each output of interest (Figure 4) for a differ-
ent input sample size. In case IV, for which the complete
MC analysis would require (Figure 5C), a computational
time of 9.3 years, the MAPE was computed on a reduced
dataset of 1000 simulator runs.

2.4 Sensitivity analysis

Sobol sensitivity indices are briefly introduced. More mathe-
matical background is given in previous works.17,19,23

If we consider a model y = f (x1, … , xd), the model total
variance reads

V(y) = ∫
S

(
f (x1, … , xd) − y0

)2
dS, (13)

where the term y0 represents the model mean value and S is
the input hyperspace. Analysis of variance (ANOVA) decom-
position allows the variance (Equation 13) to be rewritten as
the sum

V(y) =

d∑
i=1

Vi+
∑

1⩽i<j⩽d

Vij+· · ·+
∑

1⩽i<j<···<k⩽d−1

Vij… k+V12… d, (14)

where the partial variances are defined as

Vi = ∫
Si

f 2
i
(xi)dSi, (15)

Vij = ∫
Si
∫
Sj

f 2
ij
(xi, xj)dSi dSj, (16)

Vij… k =∫
Si
∫
Sj

· · ·∫
Sj

f 2
ij… k

(xi, xj,… , k)dSi dSj … dSk, (17)

where Si is the domain of xi. The partial summands fi, fij, and
fij… k are univocally defined as

fi(xi) = ∫
S−

i

f (xi, … , xd)dS
−
i
− y0, (18)

fij(xi, xj) = ∫
S−

ij

f (xi, … , xd)dS
−
ij
− fi(xi) − fj(xj) − y0, (19)
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FIGURE 4 Mean average prediction error (MAPE) between emulator predictions and simulator outputs for each input of interest on A, the first 3
networks and for B, the complete model. The MAPE decreases as the number of points in the training sample increases

FIGURE 5 A, Computational time required by the mechanistic solver to compute the flow solution for each of the 4 networks (I − IV). The
computational time increases as more vessels are added to the network. B, Number of input parameters in the vascular model to be studied with the
sensitivity analysis as the number of vessels increases. C, Total computational time required to compute all the d × 103 simulation for the sensitivity
analysis by both the Monte Carlo (MC, filled markers) and the Gaussian process (GP, empty markers) methods

fij… k(xi, xj, … , xk) = ∫
S−

ij… k

f (xi, … , xd)dS
−
ij… k

− fi(xi)

− fj(xj) − · · · − fk(xk) − y0,

(20)

where S−
i

is the input hyperspace except the domain of xi, ie,
S = Si ∪ S−

i
.

The partial variances in Equation 14, normalised with the
total variance V(y), return sensitivity indices. First-order sen-
sitivity indices Si measure the amount of variance that can be
attributed to variance on each input. The variance in the out-
put due to interaction between variances of two inputs is given
by second-order sensitivity indices Sij. The sum of all the

indices regarding input i is called the total sensitivity index Ti.
The influence of input i on the output y due to various input
interactions is measured by the difference between Ti and Si.
By construction, sensitivity indices are smaller than 1 and can
be interpreted as proportions.

The sensitivity analysis for parameter fixing and prioritisa-
tion was performed following a 3-step strategy16:

1. The mechanistic model was run with a small set of input
values spanning evenly the entire parameter space. Sim-
ulation inputs and outputs constituted the dataset T on
which the GP emulators were trained. T was designed
through orthogonal Latin hypercube sampling method to
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8 of 11 MELIS ET AL.

ensure an even coverage of the input space. To avoid an
ill-conditioned covariance matrix, inputs and outputs were
normalised.

2. The trained GP was then used to predict outcomes for a
bigger set of inputs with size of order O(d × 103).

3. Sobol sensitivity indices were computed by means of
ANOVA decomposition. Inputs were ranked accordingly
to first-order indices. The largest first-order indices indi-
cated those inputs that mainly affect the outcome. Any
differences between first-order and total sensitivity indices
indicated that the outcome variance could be ascribed to
covariance of more than one input.

3 RESULTS AND DISCUSSION

The time spent to run a single simulation with the mecha-
nistic solver, ts, for each network is reported in Figure 5A.
The trained GP emulators were used to predict results for all
the d × 103 input points needed for the sensitivity analysis
(Figure 5B). These input points were chosen to explore thor-
oughly the input hyperspace. The sensitivity analysis com-
putational running times, tSA, of both the numerical vascular
model and the GP emulator are reported in Figure 5C. The
computational time in the MC analysis added up to 2.5 days
for the single bifurcation, and it was estimated to scale up to
about 9 years in the case of the complete vascular model. The
GP computational time for both training and prediction phases
increased as the number of vessels in the network increased.
The tSA was always 4 orders of magnitude smaller with respect
to the MC approach. By coupling the numerical model with
the GP regression model, the bulk of the computational time
was taken by numerical simulations on the dataset used for
training (Table 2), eg, 14 hours for the 61 arteries model. Pre-
dictions for the d × 103 datasets were made in 0.42 seconds
by the GP emulator. Therefore, the sensitivity analysis on the
complete model was performed in 14 hours.

The GP prediction error decreased as the number of points
in the training sample increased (Figure 4). The number
of training points needed to score a MAPE lower than 1%

was always lower than the number of points needed to per-

form the MC analysis (Table 2). These results indicated

that the number of points needed to train the GP is of the

order O(d).

In the case of the complete model, the ensemble of input

points and predicted outputs was used to compute first-order

Sobol sensitivity indices (Figure 6A-E). To ease the analysis,

the indices were subdivided in 5 sets depending on the vessel

location as in Eck et al.2 The vessel length and the periph-

eral compliance (𝓁 and C, respectively) scored low first-order

sensitivity indices (less than 0.02, Figure 6B and 6E). Upper

limbs vessel radii and Young moduli slightly affected (SR0,E
∼

0.05) the maximum pressure in the ascending aorta whereas

they had no effect on the minimum pressure (Figure 6A and

6C). Aorta vessel radii and Young moduli were the topo-

logical parameters to have the most effect on the maximum

pressure (SR0,E
∼ 0.1). The peripheral resistance (R) varia-

tion at organ vessels affected the variation of the maximum

and minimum pressure (SR ∼ 0.25), whereas the upper part

of the network (upper limbs and neck vessels) has a slightly

lower effect (0.05 < SR < 0.15) on both minimum and maxi-

mum pressure at the ascending aorta (Figure 6D). To show the

sensitivity indices spatial distribution, the first-order indices

relating the maximum pressure variation to the variation of

the Young modulus were converted to luminance values and

plotted in a heat map (Figure 6F).

The choice of different inlet boundary conditions for the

networks investigated did not seem to affect the main outcome

of the study, as computational time reduced linearly with the

number of vessels for all networks regardless of the conditions

set at their inlets (Figure 5C). In addition, the same prediction

accuracy, as measured by the MAPE (Figure 4), was achieved

for a sample size proportional to the number of vessels rather

than to the type of flow time-function used. Nonetheless, the

inlet boundary condition is a source of uncertainty because

of its large variability between individuals. In future stud-

ies aimed at finding clinical biomechanical markers, the inlet

flow function will be included as a GP input.

TABLE 2 Gaussian process and Monte Carlo training sample size (NGP,
NMC) for the 4 vascular networks

d NGP NMC tSAMC
(%)

I 8 17 8000 0.216

II 29 34 29000 0.120

III 61 47 61000 0.075

IV 245 500 245000 0.040

The time needed by the GP method to perform the sensitivity analysis predictions
is reported as percent of the time taken by the MC, tSAMC

%. For each network, its
complexity is reported in terms of the number of input parameters d.
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FIGURE 6 A to E, First-order sensitivity indices (Si) relating the variation of minimum and maximum pressure (the outputs of the deterministic
model, Pmin and Pmax, respectively) at the ascending aorta location (∗ marker in F) with the variation of the lumen radius R0, vessel length 𝓁, wall
Young modulus E, peripheral resistance R, and peripheral compliance C for 5 groups of arteries. F, Diagram of the 61 vessels vascular network.
The 5 groups of arteries used for the sensitivity analysis are indicated by different colours

4 CONCLUSIONS

One-dimensional models of the cardiovascular system pro-
vide an accurate description of the physics of wave trans-
mission in blood and can be used to provide realistic or
patient-specific pulse and flow rate waveforms. Their math-
ematical description relies on the specification of a large
number of parameters, which are often not readily available
as typical or patient-specific values. Many of these cannot be
specified as a constant value either, as they will vary within
the physiological envelope of an individual. In this context,
ranking and fixing of parameters through sensitivity analysis

has been previously proposed as a way to focus on the most
influential model inputs or simply to quantify input uncer-
tainty on variables of interest. However, these operations
may require many simulations, resulting in large or infeasible
computational time.

A time-efficient approach to sensitivity analysis is proposed
in this paper. A reduced number of model simulations were
used to train a GP regression model. This emulator was able
to mimic the vascular numerical model with a percentage
error lower than 1% when compared to the actual model runs.
The emulator running time was also much shorter than the
simulator: the GP prediction phase for network IV took
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0.19 second as opposed to an average of 197 seconds
required for a single run of the deterministic model. More
in general, the adoption of a GP emulator in the sensitiv-
ity analysis framework allowed for a minimum reduction
of computational time by 99.96% compared to the Monte
Carlo analysis.

This framework scalability was tested by developing 4
vascular models of increasing complexity, ie, starting from
a single bifurcation, the number of vessels was increased
up to 61 in the case of a complete vascular model. In
all the four cases, by introducing the GP, the simulator
runs needed for the sensitivity analysis is reduced from
d × 103 to O(d).

The analysis of sensitivity indices allowed us to identify
the location in the network of model parameters affecting
maximum and minimum pressures in the ascending aorta. In
particular, the minimum pressure was affected by changes
in the peripheral resistance of organ arteries. The maximum
pressure was sensitive to changes in the aorta Young modulus
as well as in the upper limbs arteries.

The introduction of a GP regression model as an output
generator for a mechanistic model is a novel approach in the
cardiovascular research community. The conclusions drawn
from sensitivity analysis are not novel, but they confirm that
the developed framework is sound, and it is capable of cap-
turing the intrinsic non linear behaviour of flows through
a vascular network. Running times were drastically reduced
when using the emulator approach, which allowed a thor-
ough sensitivity analysis with comparable accuracy to a much
more time-consuming approach. The study of model sensi-
tivity indices gave an insight into how the inputs interact
and could be used to study how input uncertainty propagates
through to the outputs. The same approach has the potential
to improve efficiency in the analysis of more complex and
complete models of the cardiovascular systems.
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Mikelić A. Blood flow in compliant arteries: an effective vis-
coelastic reduced model, numerics, and experimental validation.
Ann Biomed Eng. 2006;34(4):575-592. https://doi.org/10.1007/
s10439-005-9074-4

9. Formaggia L, Quarteroni A, Veneziani A. Cardiovascular Mathe-

matics: Modeling and Simulation of the Circulatory System, vol. 1.
Milan: Springer Science & Business Media; 2010. https://doi.org/
10.1007/s10439-005-9074-4

10. Sherwin SJ, Formaggia L, Peiró J, Franke V. Computational mod-
elling of 1D blood flow with variable mechanical properties and
its application to the simulation of wave propagation in the human
arterial system. Int J Numer Meth Fluids. 2003;43(6):673-700.
https://doi.org/10.1002/fld.543

11. Azer K, Peskin CS. A one-dimensional model of blood flow in
arteries with friction and convection based on the Womersley veloc-
ity profile. Cardiovasc Eng. 2007;7(2):51-73. doi:https://doi.org/
10.1007/s10558-007-9031-y

12. Reymond P, Merenda F, Perren F, Rüfenacht D, Stergiopulos N.
Validation of a one-dimensional model of the systemic arterial
tree. Am J Physiol Heart Circ Physiol. 2009;297(1):H208-H222.
https://doi.org/10.1152/ajpheart.00037.2009

13. Huo Y, Kassab GS. A hybrid one-dimensional/Womersley model of
pulsatile blood flow in the entire coronary arterial tree. Am J Physiol

Heart Circ Physiol. 2007;292(6):H2623-H2633. https://doi.org/10.
1152/ajpheart.00987.2006

14. Alastruey J, Parker KH, Peiró J, Byrd SM, Sherwin SJ. Modelling
the circle of Willis to assess the effects of anatomical variations and
occlusions on cerebral flows. J Biomech. 2007;40(8):1794-1805.
https://doi.org/10.1016/j.jbiomech.2006.07.008

15. Lungu A, Wild JM, Capener D, Kiely DG, Swift AJ, Hose DR.
MRI model-based non-invasive differential diagnosis in pulmonary
hypertension. J Biomech. 2014;47(12):2941-2947. https://doi.org/
10.1016/j.jbiomech.2014.07.024

16. Santner TJ, Williams BJ, Notz WI. The Design and Analysis of

Computer Experiments. New York: Springer Science & Business
Media; 2013. https://doi.org/10.1007/978-1-4757-3799-8

17. Sobol IM. Global sensitivity indices for nonlinear math-
ematical models and their Monte Carlo estimates. Math

Comput Simul. 2001;55(1):271-280. https://doi.org/10.1016/
S0378-4754(00)00270-6

18. Saltelli A. Making best use of model evaluations to compute
sensitivity indices. Comput Phys Commun. 2002;145(2):280-297.
https://doi.org/10.1016/S0010-4655(02)00280-1

19. Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Taran-
tola S. Variance based sensitivity analysis of model output. Design
and estimator for the total sensitivity index. Comput Phys Commun.
2010;181(2):259-270. https://doi.org/10.1016/j.cpc.2009.09.018

 2
0

4
0

7
9

4
7

, 2
0

1
7

, 1
2

, D
o

w
n

lo
ad

ed
 fro

m
 h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

0
2

/cn
m

.2
8

8
2

 b
y

 U
n

iv
ersity

 O
f S

h
effield

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [2

3
/0

2
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



MELIS ET AL. 11 of 11

20. O’Hagan A. Polynomial chaos: a tutorial and critique from a
statistician’s perspective. SIAM/ASA J Uncertain Quantif . 2013;20:
1-20.

21. Hussain MF, Barton RR, Joshi SB. Metamodeling: Radial
basis functions, versus polynomials. Eur J Oper Res. 2002;
138(1):142-154. https://doi.org/10.1016/S0377-2217(01)00076-5

22. Olsen CH, Tran H, Ottesen JT, Mehlsen J, Olufsen MS. Challenges
in practical computation of global sensitivities with application to
a baroreceptor reflex model. PLoS Comput Biol (online). 2015

23. Huberts W, Donders WP, Delhaas T, Vosse van de FN. Applicabil-
ity of the polynomial chaos expansion method for personalization
of a cardiovascular pulse wave propagation model. Int J Numer

Method Biomed Eng. 2014;30(12):1679-1704. https://doi.org/10.
1002/cnm.2695

24. Donders WP, Huberts W, Vosse van de FN, Delhaas T. Person-
alization of models with many model parameters: an efficient
sensitivity analysis approach. Int J Numer Method Biomed Eng.
2015;31(10);e02727. https://doi.org/10.1002/cnm.2727

25. Ellwein LM, Tran HT, Zapata C, Novak V, Olufsen MS. Sensitivity
analysis and model assessment: mathematical models for arterial
blood flow and blood pressure. Cardiovasc Eng. 2008;8(2):94-108.
https://doi.org/10.1007/s10558-007-9047-3

26. Rasmussen CE, Williams CKI. Gaussian Processes for Machine

Learning. Cambridge, MA: The MIT Press; 2006

27. Toro EF. A fast Riemann solver with constant covolume applied
to the random choice method. Int J Numer Meth Fluids.
1989;9(9):1145-1164. https://doi.org/10.1002/fld.1650090908

28. Toro EF. Shock-Capturing Methods for Free-Surface Shallow

Flows. Chichester, UK: Wiley; 2001

29. Toro EF. Riemann Solvers and Numerical Methods for Fluid

Dynamics: A Practical Introduction: Springer Science & Business
Media; 2013. https//doi.org/10.1007/b79761

30. Fernández MÁ, Milisic V, Quarteroni A. Analysis of a geometri-
cal multiscale blood flow model based on the coupling of ODEs
and hyperbolic PDEs. Multiscale Model Simul. 2005;4(1):215-236.
https://doi.org/10.1137/030602010

31. Xiao N, Alastruey J, Alberto Figueroa C. A systematic comparison
between 1-D and 3-D hemodynamics in compliant arterial models.

Int J Numer Method Biomed Eng. 2014;30(2):204-231. https://doi.
org/10.1002/cnm.2598

32. Brown AG, Shi Y, Marzo A, et al. Accuracy vs. compu-
tational time: Translating aortic simulations to the clinic. J

Biomech. 2012;45(3):516-523. https://doi.org/10.1016/j.jbiomech.
2011.11.041

33. Boileau E, Nithiarasu P, Blanco PJ, et al. A benchmark study of
numerical schemes for one-dimensional arterial blood flow mod-
elling. Int J Numer Method Biomed Eng. 2015;31(10);e02732.
https://doi.org/10.1002/cnm.2732

34. Oakley JE, O’Hagan A. Probabilistic sensitivity analysis of
complex models: A Bayesian approach. J R Stat Soc Series

B Stat Methodol. 2004;66(3):751-769. https://doi.org/10.1111/j.
1467-868.2004.05304.x

35. Bishop CM. Pattern Recognition and Machine Learning.
New York: Springer; 2006

36. O’Hagan A. Bayesian analysis of computer code outputs: a tuto-
rial. Reliab Eng Syst Safe. 2006;91(10):1290-1300. https://doi.org/
10.1016/j.ress.2005.11.025

37. Genton MG. Classes of kernels for machine learning: a statistics
perspective. J Mach Learn Res. 2001;2:299-312

38. The GPy authors. GPy: A Gaussian process framework in python.
2012–2016. http://github.com/SheffieldML/GPy. Accessed 3 April
2017

39. Bastos LS, O’Hagan A. Diagnostics for Gaussian process emula-
tors. Technometrics. 2009;51(4):425-438. https://doi.org/10.1198/
TECH.2009.08019

How to cite this article: Melis A, Clayton RH,
Marzo A. Bayesian sensitivity analysis of a 1D
vascular model with Gaussian process emulators.
Int J Numer Meth Biomed Engng. 2017;33:e2882.
https://doi.org/10.1002/cnm.2882

 2
0

4
0

7
9

4
7

, 2
0

1
7

, 1
2

, D
o

w
n

lo
ad

ed
 fro

m
 h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

0
2

/cn
m

.2
8

8
2

 b
y

 U
n

iv
ersity

 O
f S

h
effield

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [2

3
/0

2
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se


	Bayesian sensitivity analysis of a 1D vascular model with Gaussian process emulators
	Abstract
	INTRODUCTION
	METHODOLOGY
	Vascular model
	Gaussian process for regression
	Gaussian process emulator verification
	Sensitivity analysis

	RESULTS AND DISCUSSION
	CONCLUSIONS
	References


