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Article

Evaluating treatment
effectiveness under model
misspecification: A comparison
of targeted maximum likelihood
estimation with bias-corrected
matching

Noémi Kreif,1 Susan Gruber,2 Rosalba Radice,3 Richard Grieve1

and Jasjeet S. Sekhon3

Abstract

Statistical approaches for estimating treatment effectiveness commonly model the endpoint, or the

propensity score, using parametric regressions such as generalised linear models. Misspecification of

these models can lead to biased parameter estimates. We compare two approaches that combine the

propensity score and the endpoint regression, and can make weaker modelling assumptions, by using

machine learning approaches to estimate the regression function and the propensity score. Targeted

maximum likelihood estimation is a double-robust method designed to reduce bias in the estimate of

the parameter of interest. Bias-corrected matching reduces bias due to covariate imbalance between

matched pairs by using regression predictions. We illustrate the methods in an evaluation of different
types of hip prosthesis on the health-related quality of life of patients with osteoarthritis. We undertake

a simulation study, grounded in the case study, to compare the relative bias, efficiency and confidence

interval coverage of the methods. We consider data generating processes with non-linear functional form

relationships, normal and non-normal endpoints. We find that across the circumstances considered, bias-

corrected matching generally reported less bias, but higher variance than targeted maximum likelihood

estimation.When either targeted maximum likelihood estimation or bias-corrected matching incorporated

machine learning, bias was much reduced, compared to using misspecified parametric models.
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1 Introduction

Health policy makers require unbiased, precise estimates of the effectiveness and cost-effectiveness of
health interventions.1–3 When observational studies are used to estimate average treatment effects
(ATEs), it is vital to address potential bias due to confounding. Most studies use methods that
assume there is no unmeasured confounding.4 Under this assumption unbiased estimates can be
obtained after controlling for observed characteristics, for example with parametric regression,
propensity score (PS) or double-robust (DR) methods, provided either the PS or the endpoint
regression model is correctly specified.

In studies that rely on regression methods alone, the estimated ATEs can be highly sensitive to the
choice of model specification.5 When evaluating health care interventions, correctly specifying a
regression model can be challenging. For example, health-related quality of life (HRQoL) data are
often semi-continuous, with non-linear covariate–endpoint relationships.6 Instead, PS approaches
may be preferred such as matching or inverse probability of treatment weighting (IPTW), but these
rely on the correct specification of the PS. Most medical applications use a PS estimated with logistic
regression models that only include main effects, which raises the concern of model
misspecification.7,8

DR methods9,10 are consistent if either the endpoint regression or the PS is correctly specified.
However, in practice both the regression function and the PS may be misspecified, and also, poor
overlap can lead to the estimated PSs close to 0 and 1.11 Here, DR methods such as weighted
regression may not protect from bias.12,13 A recently proposed DR method, targeted maximum
likelihood estimation (TMLE),14,15 can be less biased and more efficient than conventional DR
methods when there is poor overlap16–18 by respecting known bounds on the endpoint. Another
approach which can exploit information from the PS and the endpoint regression is bias-corrected
matching (BCM).19,20 This method aims to reduce residual bias by adjusting the matching estimator
with regression predictions of the endpoint. BCM is relatively robust under misspecification, for
example, unless the functional form relationship between the covariates and the endpoint is highly
non-linear; adjustment using a linear regression for the endpoint can reduce most of the residual bias
from imbalance in the matched data.20–23 However, an outstanding concern with TMLE and BCM
that use fixed, parametric models is that there may be residual bias due to functional form
misspecification of both the PS and endpoint regressions.

In order to minimise bias due to functional form misspecification, both methods can exploit
machine learning techniques. Unlike fixed, parametric models, where the functional form is
chosen by the analyst, these methods use an algorithm to find the best fitting model. Machine
learning estimation approaches for estimating the PS8,24,25 and the endpoint regression function26

have been shown to reduce bias due to model misspecification. However, few studies have
investigated machine learning for DR approaches.16,27 No previous study has considered machine
learning for BCM.

This paper aims to compare TMLE and BCM and to combine both methods with machine
learning for estimating the PS and the endpoint regression function. The methods are contrasted
for estimating the ATE of a binary treatment, with a focus on dual functional form misspecification
of the PS and the endpoint regression. We also compare TMLE and BCM to other commonly
applied DR,12 PS matching28,29 and regression6 approaches.

We illustrate the methods in a motivating case study and in a simulation study. The case study
considers the relative effectiveness of alternative types of total hip replacement (THR) on post-
operative HRQoL for patients with osteoarthritis. We exploit a large UK survey, which collects
patient reported outcome measures (PROMs),30,31 before and after common elective surgical
procedures. This case study exemplifies the challenge of correctly specifying the endpoint
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regression function. The simulation study was grounded in the case study and compared the relative
performance of the methods for a range of data generating processes (DGPs). We compare the
relative performance of the methods according to bias, root mean squared error (RMSE) and
coverage rates of nominal 95% confidence intervals (CIs).

In the next section, we outline the statistical methods under comparison. Section 3 presents the
motivating example. Section 4 reports the design and results of the simulation study. The last section
discusses the findings and suggests areas for further research.

2 Statistical methods

The parameter of interest is the ATE of a binary treatment A, defined as

 ¼ E½Y 1ð Þ � Y 0ð Þ�

where Yð1Þ is the potential outcome under treatment, i.e. the endpoint that would be observed under
the treatment state, and Y 0ð Þ is the potential outcome under the control state. The vector of
confounding factors, that is all factors that influence the potential outcomes and treatment
assignment, is defined as W. Under the assumption of no unmeasured confounders,32 all elements
of W are observed, and the mean of the conditional distribution of the potential outcomes
corresponds with the mean of the conditional distribution of the observed endpoint Y

E Yð1ÞjW½ � ¼ E YjA ¼ 1,W½ � and E Yð0ÞjW½ � ¼ E YjA ¼ 0,W½ �

Under the additional assumptions of consistency and positivity, the ATE can be identified as

 ¼ E E YjA ¼ 1,W½ � � E YjA ¼ 0,W½ �jW
� �

where the (potentially heterogeneous) individual level treatment effects are marginalised over the
distribution of W The consistency assumption states that an individual’s potential outcome under
the observed treatment is exactly the observed endpoint.33 The positivity assumption requires that
there are both treated and control individuals at each combination of the values of observed
confounders in the population,11 formally, 05 g A,Wð Þ5 1, for any stratum defined by W, where
g A,Wð Þ ¼ PðAjWÞ is the model for the treatment assignment. In finite samples, positivity violations
often arise; in particular covariate strata there might be few or no individuals from either treatment
group,11 and so the estimated ĝ A,Wð Þ can be close to 0 or 1. The econometric literature on matching
methods refers to positivity violations as ‘poor overlap’,34 and we use this terminology throughout
the paper.

2.1 Regression estimators

We consider a general regression estimator, the G-computation estimator,35 which uses estimates of
the expected potential outcomes, conditional on observed characteristics, defined as
Q A,Wð Þ ¼ E YjA,W½ �. The estimator for the ATE is given by

 ̂reg ¼
1

N

XN

i¼1

Q̂ 1,Wið Þ � Q̂ 0,Wið Þ
n o

ð1Þ
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where Q̂ 1,Wð Þ and Q̂ 0,Wð Þ are the estimated potential outcomes for each individual under
treatment and control states, respectively, and N is the number of subjects in the sample.

Q̂ 0,Wð Þ and Q̂ 1,Wð Þ can be obtained by fitting a regression model that includes the observed
covariates and a treatment variable, for example ordinary least squares (OLS) regression or a
generalised linear model (GLM). A more flexible method is to fit separate models for the
treatment and control samples.36 When there is poor overlap, regression estimators extrapolate,
which can lead to large biases if the regression model is misspecified.5,37

2.1.1 Machine learning estimation of the regression function

In general, machine learning covers a wide range of classification and prediction algorithms.8,26

Unlike approaches that assume a fixed statistical model, for example a GLM with a log link,
machine learning aims to extract the relationship between the endpoint and covariates through a
learning algorithm.24 Machine learning approaches for estimating the endpoint regression can
reduce bias which results from model misspecification.26 Here we consider the ‘super learning’
algorithm,38 which uses cross-validation to select a weighted combination of estimates given by
different prediction procedures.39 The range of prediction algorithms is pre-selected by the user,
potentially including parametric and non-parametric regression models. Asymptotically, the super
learner algorithm performs as well as the best possible combination of the candidate estimators.40

2.2 PS methods

The PS, defined as the conditional probability of treatment assignment given W, gð1jWÞ ¼

PrðA ¼ 1jWÞ, can create balance between the distributions of observed confounders of the
treatment and control samples.41 The PS matching estimator imputes the missing potential
outcomes, Y 0ð Þ or Y 1ð Þ, for each individual, using the observed endpoints of the closest M

individuals (the matches), where closeness is measured by the estimated PS, ĝðA ¼ 1,WÞ

Ŷ 0,Wið Þ ¼

Yi if Ai ¼ 0

1

M

X

j��MðiÞ

Yj if Ai ¼ 1

8
><
>:

Ŷ 1,Wið Þ ¼

1

M

X

j��MðiÞ

Yj if Ai ¼ 0

Yi if Ai ¼ 1

8
><
>:

and where �MðiÞ is the set of M individuals from the opposite treatment group, matched to unit i.
The estimator for the ATE is the mean of the estimated individual-level treatment effects

 ̂match ¼
1

N

XN

i¼1

Ŷ 1,Wið Þ � Ŷ 0,Wið Þ
n o

IPTW reweights the treated and control samples using inverse weights Ai

ĝð1jWiÞ
for the treated and

1�Ai

1�ĝð1jWiÞ
for the control observations. The normalised IPTW estimator12,42 is defined as

 ̂IPTW ¼

PN
i¼1 Ai

Yi

ĝð1jWiÞPN
i¼1

Ai

ĝð1jWiÞ

�

PN
i¼1ð1� AiÞ

Yi

1�ĝð1jWiÞPN
i¼1

1�Ai

1�ĝð1jWiÞ
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Matching estimators are consistent if ĝð�Þ is correctly specified,43 but can have finite sample bias, and
are less precise than a correctly specified regression estimator.19,44 With a correctly specified ĝð�Þ,
IPTW can also provide consistent and efficient estimates.45 However, poor overlap can result in
unstable inverse probability of treatment (IPT) weights, and biased or inefficient estimates of the
ATEs, even when ĝð�Þ is correctly specified.12,21,24,46 In these settings, recommended approaches
include stabilising IPT weights,47 truncating IPT weights at fixed levels48 or percentiles of ĝð�Þ47 as
well as estimating ATEs for a subsample with good overlap.49

2.2.1 Machine learning estimation of the PS

Instead of estimating the PS with a fixed parametric model, flexible approaches have been proposed
to help correctly specify g :ð Þ. These include the series regression estimator,45 and methods from the
machine learning literature, including decision trees, neural networks, linear classifiers and
boosting.8,25,50 This paper considers boosted classification and regression trees (CART), as it has
been shown to reduce bias in the estimated ATE compared to a misspecified logistic regression, and
other machine learning methods such as pruned CARTs.24 When performing boosted CARTs,
regression trees are fit on random subsets of the data, and in each iteration, the data points that
were incorrectly classified with the previous trees receive greater priority. According to general
recommendations,51 the algorithm can be set to select the final PS model that maximises
covariate balance.24,50

2.3 DR methods

DR methods9,52 combine models for Q :ð Þ and g :ð Þ, with most estimators using ĝ :ð Þ to construct IPT
weights.53 The distinctive property of DR estimators is that they are consistent if either (but not
necessarily both) g(�) or Q(�) is correctly specified.9 If both components are correct, the DR estimator
can be a semi-parametric efficient estimator.10,15 A commonly used DR method is the weighted least
squares (WLS) regression,12,13 which weights the covariates in a linear regression, using IPT weights.

In realistic settings such as when there is poor overlap and dual misspecification, weighted
regression can report biased and inefficient estimates of ATEs.12,13,16,54 An ongoing debate
discusses the relative merits of different DR estimators in these circumstances.10,16,55 One
recommendation is to use machine learning methods to estimate g(�).27 A further suggestion is
that DR estimators should have a ‘boundedness property’: they should respect the known bounds
of the endpoint – for example that an HRQoL endpoint ranges from the value for the worst
imaginable health state (�0.59) to that for full health, 156 – so that the estimated parameter will
always fall into the parameter space.10,57 This property can reduce bias and increase precision when
the PS is used as weights, where large weights can lead to estimated values of the endpoint falling
outside of a plausible range.18 Below we discuss a DR estimator, TMLE, that can have this
boundedness property57 and is therefore appealing when overlap is poor.18,58

2.3.1 TMLE

While standard maximum likelihood estimation aims to find parameter values that maximise the
likelihood function for the whole distribution of the data, TMLE focuses on the portion of the
likelihood required to evaluate the parameter of interest.15,59 This is achieved by using information
in the PS to update an initial outcome regression, as described in the next section. The TMLE solves
the efficient influence curve estimating equation, where an influence curve describes the behaviour of
an estimator under slight changes of the data distribution.60 This results in the property of double
robustness, and if both Q(�) or g(�) are correct, in semi-parametric efficiency.14

Kreif et al. 5
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Performing TMLE involves two stages,61 which, for estimating the ATE, are

(1) Obtain an initial estimate of the conditional mean of Y given A and W, by using regression to
predict the potential outcomes Q(1,W) and Q(0,W).

(2) Fluctuate this initial estimate, Q̂0 A,Wð Þ, by exploiting information in the treatment assignment
mechanism.

Here, the fluctuation corresponds to extending the parametric model for Q A,Wð Þ with an
additional covariate h, which is a function of the PS

h A,Wð Þ ¼
A

gðA ¼ 1jWÞ
�

1� A

1� gðA ¼ 1jWÞ

In the extended parametric model, Q1 A,Wð Þ ¼ Q0 A,Wð Þ þ "hðA,WÞ, " is fitted by maximum
likelihood. hðA,WÞ is defined so that the solution of the score equation of this model implicitly
also solves the efficient influence curve estimating equation for the ATE parameter. In practice, this
translates to regressing the observed endpoint on h and an initial estimate cQ0 A,Wð Þ as offset. This
regression can be interpreted as explaining any residual variability after the initial estimate, using
information from the treatment assignment mechanism.

To ensure the boundedness of the TMLE, for continuous endpoints it is recommended that
known bounds of the endpoint are exploited by rescaling Y to between 0 and 1.18,58 The rescaled
endpoint is defined as Y� ¼ Y�a

b�a
, where a and b are known limits of Y. Using Y*,

Q� A,Wð Þ ¼ Q A,Wð Þ�a
b�a

can be defined. The fluctuation can then be performed on the logistic scale

logit cQ�1 A,Wð Þ
� �

¼ logit cQ�0 A,Wð Þ
� �

þ "̂bhðA,WÞ

Here, "̂ can be estimated by logistic regression, where the mean of the outcome, bounded between 0
and 1, is modelled with a quasi-binomial distribution, by regressing Y� on ĥðA,WÞ with offset
logit cQ�0 A,Wð Þ

� �
: Q̂1ðA,WÞ can be obtained by back-transforming cQ�1 A,Wð Þ to the original

scale. The resulting targeted estimates of the potential outcomes Q̂1ð0,WÞ and Q̂1ð1,WÞ are
applied in the G-computation formula in order to obtain the TMLE

 ̂TMLE ¼
1

N

XN

i¼1

Q̂
1
1,Wið Þ � Q̂

1
0,Wið Þ

TMLE can use predictions from any fixed parametric model for the initial Qð�Þ (e.g. OLS or GLM)
and gð�Þ (e.g. logistic regression). However, with machine learning methods, TMLE has been shown
to reduce bias when the models for the assignment mechanism and the endpoint are misspecified.16

As in the previous sections, we consider super learning for the initial Qð�Þ and boosted CARTs
for gð�Þ.

2.3.2 BCM

It is generally recommended that matching methods are followed by regression adjustment.19,22,44

The idea is similar to regression adjustment in randomised trials: regression is used to ‘clean up’
residual imbalances between treatment groups after matching.51 BCM20,62 adjusts the imputed
potential outcome with the difference in the predicted endpoint that can be attributed to
covariate imbalance between the matched pairs. These predictions are obtained using a regression
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of the endpoint on covariates, stratified by treatment assignment. The bias-corrected predictions of
the potential outcomes are obtained as follows

Ŷ 0,Wið Þ ¼

Yi if Ai ¼ 0

1

M

X

j��MðiÞ

Yj þ Q̂ 0,Wið Þ � Q̂ 0,Wj

� �
if Ai ¼ 1

8
><
>:

Ŷ 1,Wið Þ ¼

1

M

X

j��MðiÞ

Yj þ Q̂ 1,Wið Þ � Q̂ 1,Wj

� �
if Ai ¼ 0

Yi if Ai ¼ 1

8
><
>:

For example, for an individual i who receives control, the imputed potential outcome under the
treatment state is the average observed outcome of the M closest matches from the treatment group
(indexed by j), adjusted with the difference between the predicted outcomes when covariate values
are set to those of its own values, Q̂ 1,Wið Þ and the covariate values of the match, Q̂ 1,Wj

� �
. The

corresponding estimator is the mean difference of these bias-corrected predicted potential outcomes

 ̂BCM ¼
1

N

XN

i¼1

Ŷ 1,Wið Þ � Ŷ 0,Wið Þ

BCM is consistent if Q 0,Wð Þ and Qð1,WÞ are consistently estimated20 or when the PS is correctly
specified. Matching can decrease the sensitivity of estimates to the misspecification of the endpoint
regression model5 and, for moderately non-linear response surfaces, adjustment even with a
misspecified OLS model can reduce bias.19–22 Because an OLS regression, even including non-
linear terms, might not capture highly non-linear response surfaces, we consider super learning
for predicting the potential outcomes, as well as fixed parametric models. We implement 1-to-1
matching because increasing the number of matches would result in larger distances between
matched treated and control units, and therefore increase bias.29,51,63 We match on the linear
predictor of PS with replacement, allowing for ties. We estimate the PS using logistic regression
and also using boosted CARTs.

3 Motivating case study

3.1 Overview

We consider the methods in a case study that evaluates the effect of alternative hip prosthesis types
on the HRQoL of patients with osteoarthritis using an observational database on patients with
THR. THR is one of the most common surgical procedures in the UK, with over 50,000 hip
procedures performed in the National Health Service (NHS) in England and Wales in 2011;64

health care decision makers have a considerable interest in evaluating the effectiveness of different
prosthesis types in routine care.64 A large-scale survey that collects PROMs on all patients who
undergo elective surgery in the NHS provides a key data source for this evaluation. The resulting
observational dataset includes pre- and post-operative HRQoL for patients with THR
procedures.30,31

The dataset measures the HRQoL endpoint as EQ-5D-3L scores.65 The EQ-5D-3L is a generic
instrument with five dimensions of health (mobility, self-care, usual activities, pain and discomfort,
anxiety and depression) and three levels (no problems, some problems, severe problems). The
EQ-5D-3L profiles were combined with health state preference values from the UK general
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population to give utility index scores on a scale ranging from 1 (perfect health), through 0 (death) to
the worst possible health state, �0.59.56 This results in a bounded, semi-continuous distribution of
the endpoint that exhibits a point mass at 1, posing a challenge for the specification of the regression
model.6

A previous analysis of this dataset66 reported the relative effectiveness of common prosthesis
types, such as cemented, cementless and ‘hybrid’ prostheses. The analysis used multivariate
matching and linear regression to adjust for confounding and found a small but statistically
significant advantage of hybrid compared to cementless prostheses.

For this motivating example, we estimate the ATE on EQ-5D-3L, 6 months after THR in males
patients, aged 65–74 (n¼ 3583) who received hybrid versus cementless hip prostheses. We illustrate
the use of TMLE and BCM with fixed parametric models and then machine learning estimation
techniques, and compared to regression, matching, IPTW and WLS.

3.2 Statistical methods in the case study

Potential confounders include patient characteristics such as age, sex, body mass index, pre-
operative health status (‘Oxford Hip score’ and HRQoL), comorbidities, disability, index of
multiple deprivation and characteristics related to the intervention, such as surgeon experience
(senior surgeon or not) and hospital type (NHS, private sector hospital or treatment centre). Of
the 3583 patients included in the analysis, 70% had a missing value on at least one variable, with
46% having missing values for more than one covariate. Thirty-two per cent were missing data on
post-operative HRQoL and 39% on BMI. Other covariates were complete for over 90% of the
sample. Multiple imputation using chained equations was applied to impute missing covariate and
endpoint values.66 Following recommendations,67 five multiply imputed datasets were created, and
the analysis described below was performed on each dataset. Point estimates and variances were
combined using Rubin’s formulae.68 Fixed parametric approaches for estimating Qð�Þ included OLS
regression and a two-part model which can account for the point mass in the observed distribution
of the endpoint.6,69,70 Here the binary part PðY5 1Þ was modelled with logistic regression, while a
gamma regression was used for modelling the continuous part ðY0 ¼ 1� Y when Y5 1Þ.
Continuous covariate effects were modelled flexibly using smooth functions which are
approximated by a linear combination of known spline basis functions and regression
parameters. Such parameters were estimated by fitting generalised additive models using the R
package ‘splines’, with default degrees of freedom of 4.71

For machine learning estimation of Qð�Þ, we used the R package ‘Super Learner’,72 where the
user-defined library included the following prediction algorithms: ‘glm’ (main terms linear
regression), ‘glm.interaction’ (glm with covariate interactions) and a package that implements
multivariate adaptive polynomial spline regression methods, ‘polymars’.73 Machine learning
estimation of gð�Þ relied on boosted (logistic) CARTs, using the R package ‘twang’,74 with tuning
parameters recommended by the developers.24,50 This implementation aimed to minimise mean
covariate imbalance measured using Kolmogorov–Smirnov tests, reweighted by the estimated IPT
weights.

We applied WLS with IPT weights obtained from the logistic model and also from the boosted
CARTs. TMLE used the known minimum and maximum values of the endpoint as bounds, �0.59
and 1.56 Standard errors and 95% CIs were calculated using the sandwich estimator for IPTW and
WLS, and using the influence curve14 for TMLE. For the matching methods, estimated standard
errors took into account the matching process, but were conditional on the estimated PS, hence did
not account for the uncertainty in the process of estimating the PS.20,44 For the two-part model and
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the super learning regression estimator, standard errors were estimated with the non-parametric
bootstrap.75

3.3 Case study results

Table 1 presents balance on the main pre-operative characteristics of patients who underwent hybrid
versus cementless THR, reported as absolute standardised mean differences. Patients with hybrid
hip replacement were slightly older, had more comorbidities and were less likely to have been treated
by a consultant or in a treatment centre.

There was good overlap between the densities of the estimated PSs for the hybrid and cementless
groups, when gð�Þ was obtained by logistic regression (Figure 1). The plots obtained using boosted
CART for estimating the PS were similar.

Table 1. Balance on pre-operative characteristics, means and % standardised mean differences.

Covariate

Mean hybrid

(n¼ 631)

Mean cementless

(n¼ 2952) SMD (%)

Age 69.7 69.3 15.98

Oxford hip scorea 20.2 19.9 2.83

Pre-operative EQ-5Da 0.401 0.399 0.63

Index of deprivationa 3.26 3.03 15.92

ASA grade 1 (%)a 0.0903 0.120 9.55

ASA grade 2 (%) 0.740 0.738 0.52

Disability score 0.617 0.596 4.19

Obesea 0.270 0.266 0.69

Morbidly obesea 0.104 0.111 4.30

Number of comorbidities 1.00 0.96 4.14

Comorbidities

Heart disease 0.176 0.15 7.86

High bp 0.399 0.422 4.55

Stroke 0.0285 0.0169 7.78

Circulation 0.0777 0.0671 4.08

Lung disease 0.0555 0.0640 3.61

Diabetes 0.130 0.123 2.20

Kidney disease 0.0127 0.0207 6.24

Nervous system 0.00634 0.0118 5.20

Liver disease 0.0951 0.00339 7.65

Cancer 0.0602 0.0515 3.80

Depression 0.0491 0.0373 5.84

Consultant 0.803 0.869 17.64

Treatment centre 0.0491 0.122 26.16

Note: SMD: standardised mean difference. SMD was calculated as d ¼ 100 � j�xh��xc jffiffiffiffiffiffiffi
s2
h
þs2c
2

q , where xh and xc are the means for

the hybrid and cementless group, while the denominator includes the pooled standard deviation of the two groups,

for a given covariate. Variables are dichotomous, with the exception of age, Oxford hip score, pre-operative EQ-5D-

3L score, index of deprivation and number of comorbidities.
aVariables with missing values. Here, SMDs were combined using Rubin’s formulae.
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Figure 2 shows the point estimates and 95% CIs after combining the estimates obtained for the
imputed datasets. All methods reported a small positive advantage in mean EQ-5D-3L scores for
hybrid versus cementless prostheses, but with CIs that included zero.

4 Simulation study

4.1 Overview

The simulation study compares the performance of BCM and TMLE, in estimating the ATE of
a binary treatment on an endpoint with a non-linear response surface. As in the case study, we
compared these methods to regression, PS matching, IPTW and WLS, and for each method, we
considered fixed parametric models and machine learning estimation for Qð�Þ and gð�Þ.
Motivated by the case study and previous simulation studies,6,16,26 we considered DGPs with
non-linear response surfaces; normal, gamma-distributed and semi-continuous endpoints; good
and poor overlap and with moderate and strong association between confounders and the
endpoints. These DGPs (Table 2) were selected to highlight the differences between the

0.1 0.2 0.3 0.4 0.5 0.6

0

2

4

6

Figure 1. Densities of the estimated PS using logistic regression, hybrid versus cementless THR. Hybrid (dashed

line) versus cementless (black line).
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performances of the methods under realistic circumstances, by investigating the following
hypotheses:

(1) Reweighting methods are anticipated to outperform BCM when overlap is good.21 In such
scenarios, TMLE is expected to outperform BCM in terms of bias and efficiency.

–0.02 –0.01 0.00 0.01 0.02 0.03 0.04

BCM (SL + boosted CART)

BCM (2pt + logistic)

BCM (OLS + logistic)

TMLE (SL + boosted CART)

TMLE (2pt + logistic)

TMLE (OLS + logistic)

WLS (boosted CART)

WLS (logistic)

IPTW boosted CART

IPTW logistic

PS matching (logistic)

Regression (SL)

Regression (2 part model)

 Regression (OLS)

Unadjusted

Point estimates and 95% CIs

Figure 2. Point estimates and 95% CIs of ATE in terms of EQ-5D-3L score, hybrid versus cementless THR, across

statistical methods. SL: super learner.

Table 2. Summary of DGPs used in the simulation study.

Overlap

Confounder–endpoint

association Endpoint distribution

DGP 1 Good Moderate Normal

DGP 2 Good Strong Normal

DGP 3 Poor Strong Normal

DGP 4 Poor Strong Gamma

DGP 5 Poor Strong Semi-continuous
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(2) When overlap is poor, BCM is expected to outperform TMLE, because matching can
be less sensitive than weighting to extreme PS values and to the misspecification
of gð�Þ.21,24,43

(3) Using appropriate machine learning methods is anticipated to reduce bias compared to using
misspecified parametric models for Qð�Þ and gð�Þ,16,26 across all methods considered.

We assumed a PS mechanism that generated good overlap of the densities of the true PS (DGP 1 and
2) and one that generated poor overlap (DGP 3–5). We considered moderate (DGP 1) and strong
(DGP 2–5) association between the confounders and the endpoints. DGPs 1–3 considered a normal
endpoint with an identity link function between the linear predictor and the endpoint, DGP 4
considered an endpoint which followed a gamma distribution with a log link, while DGP 5
considered a semi-continuous distribution, with a mixture of a beta-distributed random variable
and values of 1.

For each DGP, five scenarios were considered: (a) when fixed parametric models were used for
both the PS and the endpoint regression, and these were correctly specified, (b and c) when one
of the two was misspecified and (d) when the correct specification for both models was unknown.
Scenario (d) had two sub-scenarios, differentiated by the implementation of the methods: in
scenario (d1), we considered misspecified, fixed parametric models, while for scenario (d2) we
considered machine learning estimates of Qð�Þ and gð�Þ. Here, similarly to (d1), the correct
parametric models were unknown for the investigator and were not included among the
candidate prediction algorithms. For DGP 1, we report results from each of the five
scenarios, while for DGPs 2–5, we only report the results for scenarios (d1) and (d2), as these
were a priori judged the most realistic. The results for the remaining scenarios are available upon
request.

Bias, variance, RMSE and the coverage rate for nominal 95% CIs of the estimated ATEs were
obtained. Relative bias was calculated as the percentage of the absolute bias of the true parameter
value, where absolute bias is the difference between the true parameter value and the mean of the
estimated parameter. The RMSE was taken as the square root of the mean squared differences
between the true and estimated parameter values.

4.2 DGPs

For each DGP, we generated 1000 datasets of n¼ 1000, with binary (W1 to W5) and
standard normally distributed covariates ðW6 to W8Þ. This mix of binary and continuous
covariates reflects the case study. The correlation coefficients between the covariates were
set between 0.075 and 0.6. All covariates were true confounders, i.e. they influenced both
the treatment assignment and the endpoint. Treatment was assigned according to a true PS
that, like previous simulation studies, included main terms, higher order terms and
interactions.26,43

For DGP 1, the PS model resulted in a good overlap of the true PS (see Figure 3)

logit PSð Þ ¼ �1þ k1ð0:3W1 � 0:1W2 � 0:2W3 þ 0:4W4 þ 0:7W5

þ 0:2W6 þ 0:2W7 � 0:25W8 þ 0:8W2
6 � 0:3W2

7

� 0:3W2
8 � 0:05W1W2 � 0:05W1W3Þ

where k1 ¼ 0:3.
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The treatment variable A was drawn from a Bernoulli distribution, using the PS as the parameter
of success probability. The endpoint was drawn from a normal distribution with mean

�norm ¼ 15þ 0:4Aþ k2ð1W1 � 0:1W2 þ 0:1W3 � 0:1W4 þ 0:1W5

� 0:1W6 þ 0:1W7 þ 0:1W8 � 0:2W2
6 � 0:1W2

7 � 0:1W2
8

þ 0:2W3
6 þ 0:1W3

7 þ 0:1W3
8 � 0:1W1W2 þ 0:5W1W7Þ

standard deviation of 1 and k2 ¼ 1.
In DGP 2, setting k2 to 4 increased the strength of the confounder–endpoint association. In

DGP 3, changing k1 to 1 created a poor overlap of the true PS distributions (see Figure 3).
In DGP 4, the endpoint was drawn from a gamma distribution, with a log link, shape parameter

of 100 and a scale parameter of
�gam

100
, where the linear predictor was

logð�gamÞ ¼ 3þ 0:2A� 0:2W1 þ 0:2W2 � 0:2W3 þ 0:5W4 � 1W5 þ 0:5W6 � 0:5W7 þ 0:2W8

� 0:2W2
6 � 0:01W2

7 � 0:01W2
8 � 0:01W3

6 � 0:01W3
7 � 0:01W3

8 � 0:01W1W2 � 0:4W6W7

Figure 3. Densities of the true PS in the simulations for a typical sample (n¼ 10,000). Treated (dashed line) versus

control (black line). (a) Good overlap (DGP 1 and 2), (b) poor overlap (DGP 3–5).
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In DGP 5, motivated by the case study and previous simulation studies,6 the endpoint was generated
as a mixture of a beta distributed continuous variable Y0 and 1, using a Bernoulli distribution with
parameter p to select between values from the two distributions

Y � 1� pð Þ � 1þ pð1� Y0Þ

where

logit pð Þ ¼ 4� 1A� 0:2W1 þ 0:5W2 � 0:5W3 � 1W4 � 0:3W5

þ 0:2W6 þ 0:5W7 � 0:5W8

Y0 � Beta �beta � phi,�beta � 1� phið Þð Þ,

logitð�betaÞ ¼ �1� 0:2A� 0:5W1 � 0:5W2 � 0:5W3 þ 0:5W4 � 0:5W5 � 0:5W6

� 0:5W7 � 0:5W8 � 0:2W2
6 � 0:2W2

7 � 0:2W2
8 � 0:2W3

6 � 0:2W3
7 � 0:2W3

8

� 0:2W1W2 � 0:2W6W7Þ

The resulting semi-continuous distribution with a point mass at 1 reflects the observed endpoint in
the case study. The true ATE was 0.4 in DGP 1–3, it was 9.98 for DGP 4 and 0.062 for DGP 5.
While for DGPs 1–3 the treatment effect was constant across individuals, for DGP 4 and 5, the true
ATE was obtained by simulating both potential outcomes for each individual, and taking the mean
of the individual-level additive treatment effects.

4.3 Implementation of the methods

Correct specification was defined as applying a fixed parametric model according to the known
features of the true DGP, such as the link function, the functional form between the covariates
and the linear predictor, and the error distribution. For each DGP, the misspecified parametric
gð�Þ and Qð�Þ models were logistic and OLS regressions with main terms only. Machine learning
estimation of gð�Þ and Qð�Þ was as described in Section 3. The WLS estimator was implemented
with main terms only, hence in this estimator the Qð�Þ component is misspecified. For the
DGPs with poor overlap, in a sensitivity analysis we modified the IPTW, WLS and TMLE
estimators, and used weights based on gð�Þ truncated at fixed levels of 0.025 and 0.975. For
calculating coverage rates of nominal 95% CIs, standard errors were obtained as described in
Section 3.

4.4 Simulation study results

Tables 3 to 5 report the relative bias (%), variance, RMSE and 95% CI coverage for the estimators
considered, and Figure 4 presents the distribution of the estimated ATEs with box plots.

Table 3 reports results for DGP 1, when there was good overlap, with a moderate association
between the confounders and a normally distributed endpoint. When both Qð�Þ and gð�Þ were
correctly specified, all methods reported minimal bias, with parametric regression (OLS with non-
linear terms) and TMLE reporting the lowest RMSE. Regression, TMLE and BCM all provided
coverage at the nominal 95%, while IPTW and PS matching reported coverage rates higher (98 and
99%) than the nominal level. When only one of the PS or endpoint model was misspecified, BCM
and both DR methods (WLS and TML) remained unbiased. With dual misspecification, each
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method reported moderate levels of bias, but when machine learning estimation was used for Qð�Þ

and gð�Þ, bias was reduced to close to zero for all the methods that combined these components, with
WLS and TMLE providing estimates with the lowest RMSE.

In DGP 2, with misspecified fixed parametric methods, stronger association between the
confounders and the endpoint led to higher biases, but with machine learning estimation the bias
for the methods that combined gð�Þ and Qð�Þ was again below 10% (Table 4). WLS and TMLE
reported lower bias and RMSE than BCM. In DGPs 3–5, where there was poor overlap, with
misspecified fixed parametric models, each method reported high bias. For each of these DGPs,
machine learning estimation improved performance of the methods that combined gð�Þ and Qð�Þ.

Table 3. Simulation results for DGP 1, over 1000 replications: normal endpoint, moderate association confounder–

endpoint association, good overlap.

Scenario Relative bias (%) Variance RMSE 95% CI coverage (%)

(a) Q correct – g correct

OLS �0.1 0.005 0.070 95

IPTW 0.5 0.008 0.091 99

PS matching 1.2 0.011 0.106 98

TMLE �0.1 0.005 0.071 95

BCM �0.1 0.007 0.082 95

(b) Q correct – g misspecified

OLS �0.1 0.005 0.070 95

IPTW �15.0 0.008 0.110 97

PS matching �8.1 0.013 0.117 96

TMLE �0.2 0.005 0.070 94

BCM 0.7 0.007 0.085 93

(c) Q misspecified – g correct

OLS �11.7 0.008 0.098 90

IPTW 0.5 0.008 0.091 99

PS matching 1.2 0.011 0.106 98

WLS 0.6 0.008 0.087 95

TMLE 0.6 0.008 0.087 95

BCM 0.7 0.009 0.097 95

(d1) Q and g misspecified parametric

OLS �11.7 0.008 0.098 90

IPTW �15.0 0.008 0.110 97

PS matching �8.1 0.013 0.117 96

WLS �12.7 0.008 0.103 90

TMLE �12.9 0.008 0.104 90

BCM �7.4 0.011 0.108 93

(d2) Q and g machine learning

Regression (Q super learner) �3.1 0.006 0.079 95

IPTW (g boosted CART) 10.2 0.007 0.091 98

WLS (Q OLS, g boosted CART) 0.5 0.006 0.076 97

TMLE (Q SL, g boosted CART) 1.1 0.006 0.074 94

BCM (Q SL, g boosted CART) 2.1 0.008 0.092 95

Note: In DGP 1 the true ATE was 0.4 and the bias using a naive estimator based on the mean difference was 20%. WLS is

implemented as main terms only in regression; hence it is reported as a misspecified estimator.
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In DGP 3, TMLE provided the lowest bias and RMSE, albeit with CI coverage that was lower than
the nominal level (Table 4). In DGP 4 where we considered an endpoint with a gamma distribution,
with machine learning approaches BCM showed less relative bias (2.5%) and RMSE than TMLE
(20.7%), however higher variance (Table 4). In DGP 5, where we considered an endpoint with a
semi-continuous distribution, TMLE and BCM with machine learning estimation performed best;
BCM gave the lowest relative bias (1.1% versus 7.2%) and best CI coverage whereas TMLE
reported the lowest RMSE and variance (Table 5).

IPTW using machine learning weights often reported high bias: for example for DGP 5, it
reported higher bias than using a misspecified, fixed logistic regression. This indicated that using
boosted CARTs for estimating the PS was insufficient to eliminate bias. For DGPs 3–5, where
overlap was poor, truncating the weights for IPTW and TMLE for either the logistic or the
boosted PS models did not change the results.

Table 4. Simulation results for DGP 2 and 3, over 1000 replications: normal endpoint, strong confounder–endpoint

association, good and poor overlap.

Relative bias (%) Variance RMSE 95% CI coverage (%)

DGP 2: Normally distributed endpoint, strong confounder–endpoint association, good overlap

(d1) Q and g misspecified parametric

OLS regression �45.9 0.052 0.292 86

IPTW �59.1 0.067 0.350 98

PS matching �34.0 0.099 0.342 96

WLS �50.2 0.059 0.315 87

TMLE �45.7 0.041 0.272 86

BCM �31.4 0.074 0.299 90

(d2) Q and g machine learning

Regression (Q super learner) �8.6 0.025 0.162 96

IPTW (g boosted CART) 41.0 0.036 0.251 99

WLS (Q OLS, g boosted CART) 2.6 0.022 0.149 100

TMLE (Q SL, g boosted CART) 3.1 0.011 0.106 95

BCM (Q SL, g boosted CART) 9.8 0.029 0.174 98

DGP 3: Normally distributed endpoint, strong confounder–endpoint association, poor overlap

(d1) Q and g misspecified parametric

OLS regression �119.2 0.050 0.527 40

IPTW �160.6 0.082 0.703 71

PS matching �81.1 0.100 0.453 84

WLS �137.9 0.063 0.606 39

TMLE �129.7 0.046 0.561 35

BCM �73.8 0.072 0.399 74

(d2) Q and g machine learning

Regression (Q super learner) �22.0 0.046 0.233 94

IPTW (g boosted CART) 100.6 0.034 0.442 82

WLS (Q OLS, g boosted CART) �12.8 0.025 0.165 99

TMLE (Q SL, g boosted CART) 5.6 0.019 0.139 87

BCM (Q SL, g boosted CART) 12.3 0.034 0.191 98

Note: In DGPs 2 and 3, the true ATE was 0.4 and the biases, using a naive estimator based on the mean difference, were 80 and

190%, respectively.
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5 Discussion

This paper finds that in circumstances when the parametric models for both the endpoint regression
function and PS are misspecified, both TMLE and BCM can reduce bias when coupled with
machine learning methods.

We considered these methods, alongside more traditional PS, regression and DR methods in a
case study that evaluated the effect of alternative types of THR for patients with osteoarthritis. This
study illustrates a general challenge which is to specify a regression model for a non-normal
endpoint (HRQoL), with a non-linear response surface. In the simulation studies, grounded in
the case study, we generated endpoints data with normal, skewed and semi-continuous
distributions, with non-linear covariate–endpoint relationships. In the simulated scenarios, where
there was dual misspecification, and machine learning techniques were used to estimate the endpoint

Table 5. Simulation results for DGP 4 and 5, over 1000 replications: Normal and gamma endpoints, strong

confounder–endpoint relationship, poor overlap.

Relative bias (%) Variance RMSE 95% CI coverage (%)

DGP 4: Gamma endpoint, strong confounder–endpoint association, poor overlap

(d1) Q and g misspecified parametric

OLS �93.3 10.175 9.843 16

IPTW �102.7 11.850 10.817 34

PS matching �85.6 19.120 9.595 59

WLS �96.9 11.475 10.252 19

TMLE �96.4 10.303 10.140 17

BCM �80.7 17.642 9.085 37

(d2) Q and g machine learning

Regression (Q super learner) �11.8 7.600 2.998 90

IPTW (g boosted CART) �80.1 16.585 8.974 62

WLS (Q OLS, g boosted CART) �32.1 11.024 4.612 81

TMLE (Q SL, g boosted CART) �20.7 6.115 3.224 70

BCM (Q SL, g boosted CART) �2.5 6.755 2.610 98

DGP 5: Semi-continuous endpoint, strong confounder–endpoint association, poor overlap

(d1) Q and g misspecified parametric

OLS 26.0 0.0002 0.022 78

IPTW 15.0 0.0003 0.019 99

PS matching 26.9 0.0004 0.026 93

WLS 23.9 0.0003 0.022 83

TMLE 17.9 0.0002 0.019 90

BCM 27.1 0.0003 0.024 82

(d2) Q and g machine learning

Regression (Q super learner) 13.5 0.0002 0.017 91

IPTW (g boosted CART) 59.4 0.0003 0.041 72

WLS (Q OLS, g boosted CART) 12.9 0.0002 0.017 90

TMLE (Q SL, g boosted CART) 7.2 0.0002 0.016 87

BCM (Q SL, g boosted CART) �1.1 0.0004 0.019 95

Note: In DGPs 4 and 5, the true ATE was 9.98 and 0.062, respectively. The bias using a naive estimator based on the mean difference

was 170 and 150%, respectively.
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Figure 4. Estimated ATEs in the simulations. The boxplots show bias and variation, as median, quartiles and 1.5

times interquartile range for the estimated ATEs across 1000 replications. The dashed lines are the true values. The

left panel provides results for when the PS model and endpoint were estimated with misspecified fixed parametric

methods (d1), the right panel for when machine learning estimation (d2) was used. (a) DGP 3, (b) DGP 4, (c) DGP 5.
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regression function and the PS, both TMLE and BCM could greatly reduce bias, in contrast to the
high bias where misspecified fixed parametric models were used.

We found that the relative advantage of TMLE versus BCM was dependent on the features of the
DGPs considered. In favourable settings such as good overlap and moderate association between the
confounder and the endpoint, TMLE outperformed BCM in terms of bias and precision. This result
corresponds to previous work that found that reweighting estimators outperformed BCM under
good overlap.21 In a more challenging setting, when overlap was poor, and there was a strong
association between the confounders and the endpoint, we found a bias–variance trade-off
between the methods under comparison: for non-normal endpoints, BCM showed less bias, but
was more variable than TMLE. We followed recent recommendations when reporting CIs for
matching estimators,44 and like previous studies, we found that they reported somewhat higher
than nominal coverage.20

Our work extends the previous literature in several aspects. First, this is the first paper that
compares the relative performance of BCM and TMLE, and also compares these methods to
traditional approaches. Second, while BCM has been proposed with flexible approaches for
estimating the endpoint regression function, previous studies used OLS for adjustment.20,21 This
study considers super learning, a machine learning method for bias correction, and finds that
when matching is based on a PS that was also estimated using machine learning (boosted
CARTs), the bias due to model misspecification was greatly reduced. We find this result across
a range of DGPs including highly non-linear response surfaces. Third, unlike previous studies
that used machine learning only for selected combined methods such as TMLE,16 this paper
took a systematic approach and evaluated the impact of using machine learning estimation for
single methods, such as regression and IPTW, and for combined methods, such as TMLE
and BCM.

Similarly to Kang and Schafer (2007),12 we find that combining the PS and endpoint regression
from misspecified fixed parametric models does not reduce bias compared to using these models in
single methods such as IPTW. In the scenarios considered in this study, it was the combined use of
machine learning approaches for estimating the endpoint regression and the PS that helped eliminate
most of the bias due to observed confounding.

This work has some caveats. The methods considered and the simulation settings all assume ‘no
unobserved confounding’. Machine learning methods can augment but not necessarily replace
subject-matter knowledge when selecting the set of confounders that need to be controlled
for.76 In the case study, while we used a rich set of measured cofounders suggested by previous
literature and clinical expert opinion,66 some unobserved confounders such as unobserved patient
preferences for prosthesis types may prevail. The scope of this paper did not extend to comparing
alternative machine learning approaches. We found that boosted CARTs for estimating the PS, a
method that has been found to outperform logistic regression and alternative machine learning
approaches,24 did not consistently reduce bias compared to misspecified logistic regression.
Further machine learning approaches may be considered for the PS, such as random forests24

or neural networks.8 These approaches also have promising application for estimating the
endpoint regression function.26 Any machine learning method relies on subjective choices of the
user. For boosted CARTs, tuning parameters such as the shrinkage parameter needs to be
selected.50

For estimating the outcome regression, we demonstrated the use of the super learner.38 A
distinguishing feature of this ensemble prediction approach compared to other model selection
approaches is that it combines many estimators, by selecting a combination of predictions from
alternative prediction algorithms. That is, the super learner aims to provide a better fit to the data
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than relying on any one prediction algorithm. In the simulation study, in order to mimic a situation
where the investigator does not know the true DGP, we required the super leaner to consider the
same, restricted range of prediction algorithms (including GLMs, generalised additive models and
multivariate adaptive polynomial spline regression) for each DGP. In practice, we recommend that
the analyst requires the super learner to consider a richer set of prediction algorithms; a wide range
of models and prediction algorithms should be proposed according to subject-matter knowledge to
encourage the consistent estimation of the regression function albeit at the expense of increased
computational time.39 These prediction algorithms can include advanced model selection methods
such as fractional polynomials77 or penalised model selection approaches.78

This paper considered continuous and semi-continuous endpoints motivated by the case study.
The approaches presented are in principle applicable to binary, count or survival outcomes and
other parameters such as the odds ratio, risk ratio or hazard ratio. TMLE has been demonstrated to
have good finite sample performance for binary and survival endpoints.17,59 While matching
estimators have also been proposed for estimating risk ratios and odds ratios,46,79 BCM
estimators for these parameters have not yet been developed.

In the simulations, each method is adjusted for the observed covariates known to be predictive of
both treatment assignment and of the outcome. In practice, this feature of the DGP is not known,
and subject-matter knowledge should be used to select for adjustment of those potential confounders
that are measured before treatment, and are both predictive of treatment selection and the
endpoint.1 The inclusion of those covariates which influence treatment assignment, but not the
endpoint in the PS can lead to estimates that are statistically inefficient.80–82

This work also opens up areas for future research. In the common settings of poor overlap, an
extension of TMLE, collaborative maximum likelihood estimation (C-TMLE)55,83 can outperform
TMLE. C-TMLE uses machine learning to select a sufficient set of covariates for inclusion in gð�Þ

that reduces bias while minimising overall mean squared error.
We conclude that both TMLE and BCM have the potential to reduce bias due to observed

confounding, in common settings of dual misspecification, if coupled with machine learning
methods for estimating the PS and the endpoint regression function. TMLE is implemented as a
readily available software package.61 For BCM, the available packages currently allow for
regression adjustment using OLS only.62,84 In order to facilitate the uptake of the methods,
the Supplementary Appendix provides code for the implementation of TMLE and BCM with
machine learning.
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