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Abstract

Fractures are pervasive features within the Earth’s crust and have a significant influence on the multi-physical
response of the subsurface. The presence of coherent fracture sets often leads to observable seismic scattering
enabling seismic techniques to remotely locate and characterise fracture systems. In this study, we confirm
the general scale-dependence of seismic scattering and provide new results specific to shear-wave propagation.
We do this by generating full waveform synthetics using finite-difference wave simulation within an isotropic
background model containing explicit fractures. By considering a suite of fracture models having variable
fracture density and fracture size, we examine the widening effect of wavelets due to scattering within a
fractured medium by using several different approaches, such as root-mean-square envelope analysis, shear-
wave polarisation distortion, differential attenuation analysis and peak frequency shifting. The analysis
allows us to assess the scattering behaviour of parametrised models in which the propagation direction
is either normal or parallel to the fracture surfaces. The quantitative measures show strong observable
deviations for fractures size on the order of or greater than the dominant seismic wavelength within the Mie
and geometric scattering regime for both propagation normal and parallel to fracture strike. The results
suggest that strong scattering is symptomatic of fractures having size on the same order of the probing
seismic wave.

Keywords: explicit fractures, finite-difference, full-waveform synthetics, scattering, shear-wave

1. Introduction

Fractures within the Earth’s crust range in size
over several orders of magnitude, from large-scale
faults (100 kms) observed on the Earth’s surface
down to micro-cracks (µm) observed in core sam-
ples. Since fractures are prevalent features in the
subsurface and vary in size over several orders of
magnitude (e.g., 1), they play a critical role in the
multi-physical response of the Earth, controlling not
only the mechanical and fluid-flow properties but also
the geophysical response. For geo-industrial applica-
tions, fractures can have a significant influence on

the integrity of mine excavations, boreholes and the
caprock integrity of reservoirs and their ability for
maintaining barriers between potable water and hy-
drocarbon, CO2 or radioactive waste. For non-geo-
industrial applications, such as monitoring volcanoes,
landslides and earthquakes, fractures have a signifi-
cant influence on the stability of the rock mass and
so have important implications on geo-hazard assess-
ment.

The imaging of fractures plays a critical role in
terms of reducing the risk of geo-industrial opera-
tions as well as hazard assessment of the rock mass
due to natural tectonic activities (e.g., volcanoes and
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landslides). Seismic imaging of fractures can be used
to infer fracture properties, such as density and size.
The most common approaches to seismically image
fractures are anisotropic velocity model analysis, am-
plitude versus offset and azimuth (AVOA) analysis
and shear-wave splitting (SWS) analysis. Such meth-
ods are based on the fundamental concept that the
coherent orientation of fractures induces directional-
ity or anisotropy of elastic properties. Anisotropy
results from the scale dependence of the wave and
fracture interaction (e.g., 2), where a type of coherent
scattering leads to fracture induced elastic anisotropy
(e.g., 3).
The analysis of the properties of scattered seis-

mic waves is another approach to characterise the
heterogeneous structure of the Earth’s subsurface on
the global, exploration and engineering scales (e.g.,
4; 5; 6; 7). Understanding the scattering process in
a fractured medium potentially allows for the char-
acterisation of fracture properties. If the fracture
size and spacing are substantially small relative to
the seismic wavelength, then coherent fractures can
lead to the rock appearing as an effective anisotropic
medium with a symmetry axis normal to the strike of
fractures (e.g., 8; 2). For such scenarios, application
of seismic anisotropy methods (e.g., amplitude ver-
sus offset and azimuth and shear-wave splitting) can
be used to extract fracture properties, such as frac-
ture orientation and density (e.g., 9; 10; 11). If, how-
ever, the fracture size and spacing are on the order of
the seismic wavelength, then the fractures will lead
to observable scatter in the seismic wavefield caus-
ing complex reverberation or coda in the seismic sig-
nal (6). In the passive seismic monitoring scenario
(e.g., geothermal, volcanoes and petroleum settings),
where the dominant source frequency can be poten-
tially relatively high and hence the dominant wave-
length relatively short with respect to fracture size,
scattering could be a significant and observable seis-
mic attribute.
The scattering strength (i.e., the amount of scat-

tering) of a heterogeneous media depends on the rel-
ative lengths scales of the elastic heterogeneities and
the probing seismic wavefield. The type of scattering
depends on the size (or correlation length) of the het-
erogeneity a compared to the seismic wavelength λ.

Rayleigh scattering occurs when λS/a > 1 (λS being
the dominant wavelength of the incident shear-wave)
with the long wavelength approximation (LWA) be-
ing the case when λS/a >> 1 (e.g., 12). In the LWA
regime, the medium response is quasi-homogeneous
and can be represented by an effective elastic medium
where the scattering effects are small. In the Rayleigh
scattering regime, the Born approximation is suffi-
cient to describe the weak fluctuation of the medium
(e.g., 12). The Mie scattering regime occurs when
λS/d → 1, where scattering is strong and occurs at
large angles with respect to the incident wave (e.g.,
12). The geometric scattering regime occurs when
(λS/d < 1), where focusing/defocussing, diffraction
and interference effects are often observed (e.g., 12).
In general there are two approaches to model frac-

tured rock: effective medium models (EMM) and dis-
crete fracture models (DFM). EMM is the most com-
mon approach for modelling the seismic behaviour of
fractured rock (e.g., 13; 14). EMM is a volumetric
approach and models the fractured rock as an effec-
tive elastic medium, such that the elastic constants
are anisotropic (e.g., 15; 16; 17). There are limita-
tions to EMM, specifically the range of applicable
frequencies, the types of fracture properties that can
be examined, and the influence non-uniform or non-
smooth stress-fields (e.g. 18; 2). The main restriction
for EMM is that it is valid only when the dominant
seismic wavelength of the propagating wave is much
greater than the heterogeneity induced by the frac-
tures; this is referred to as the long wavelength ap-
proximation (LWA). Furthermore, EMM assumes the
rock mass is ‘instantaneously’ anisotropic and so does
not allow for the transition from a scattering regime
to an effective anisotropy regime.
An another approach is to model fractures as dis-

crete surfaces that can characterise individual frac-
ture behaviour (e.g. 18). DFM allows relaxing many
assumptions about the model and enables the solu-
tion to simulate the interaction of seismic waves with
fractures systems more accurately. DFM models can
capture the influence of the stress state, as well as
specific fracture properties such as fracture size, fill
and compliance. Furthermore, DFM is not restricted
by the LWA and allows the dominant seismic wave-
length to be greater, less than or equal to the fracture
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size, allowing the characterisation of low-frequency
behaviour (i.e., LWA regime) and high-frequency be-
haviour (i.e., ray theoretical limit). However, it is
generally difficult to determine the spatial geometry
of fracture systems deterministically and often the
computational costs associated with modelling dis-
crete fractures can be a barrier.

In this study, we use the FD algorithm WAVE (18)
because it is capable of modelling fracture networks
as individual fractures defined as explicit discontinu-
ity, where distribution of the fracture network can
be populated randomly. The aim of this study is
to investigate the scattering characteristic of shear-
waves as a function of the scale length of the het-
erogeneity (i.e., fracture size) and is an extension of
the anisotropic shear-wave splitting analysis of (2).
We present the parameters of the numerical models,
and subsequently provide qualitative and quantita-
tive analysis of shear-wave scattering on the mod-
elled synthetic seismograms for different source po-
larisations and propagation paths relative to the frac-
ture orientation. We attempt to address whether
or not analysis of seismic shear-wave scattering can
contribute insight into in situ fracture properties as
an additional seismic attribute to that of shear-wave
splitting anisotropy (e.g., 2).

2. Waveform modelling

We simulate microseismic waves using the 3D
isotropic FD algorithm WAVE (18). Microseismic-
ity associated with geo-industrial applications stems
from failure along pre-existing fracture systems or
newly formed fractures and as such we would ex-
pect fractures to be present within the volume asso-
ciated with the induced seismicity. WAVE computes
the seismic wavefield on an equally-spaced, staggered
orthogonal grid, where the variables stress and ve-
locity are staggered in time. The FD algorithm is
second-order accurate in time and fourth-order accu-
rate in space. Fractures are defined using the DFM
approach, where each fracture is explicitly defined as
a displacement discontinuity and the fracture surfaces
have zero thickness. The difference in displacements
across the two surfaces is related to the stress across

the interface, where the stress and displacement dis-
continuity across the two surfaces are coupled by the
fracture normal and tangential stiffnesses.

We generate a suite of models consisting of a
baseline isotropic homogeneous model and several
isotropic fracture models. All models have the same
background isotropic elasticity with density ρ of 2600
kg/m3, P-wave velocity VP of 5700 m/s and S-wave
velocity VS of 3200 m/s (VP /VS = 1.78). To study
the scattering characteristics and sensitivity of vari-
ous fracture sizes, we vary the fracture fracture size a
and fracture normal (KN ) and tangential (KT ) stiff-
nesses, while keeping the fracture density ǫ and frac-
ture compliance ratio ZN/ZT constant. We choose
a density of ǫ = 0.1 to represent a moderately frac-
tured medium and a compliance ratio ZN/ZT = 0.33
to represent water-filled fractures (e.g., 19; 20). Al-
though we focus on varying the fracture size, based
on the scaling relation of (21), the fracture size a dic-
tates the allowable range of normal compliance (ZN )
and tangential compliance (ZT ). Table 1 summarises
the range of fracture stiffness as a function of fracture
size.

Fracture size (m) KN (Pa/m) KS (Pa/m)
6 6× 1010 2× 1010

10 3× 1010 1× 1010

20 3× 109 1× 109

50 3× 109 1× 109

Table 1: Summary of fracture properties for all models

having ǫ = 0.1 and ZN/ZT = 0.33.

For fracture size, a, we consider values of 6, 10,
20 and 50 m for several reasons and constrained by
the dominant wavelength (λS ≈ 18 m) of the shear-
wave. For crustal rock, the size (or height) of frac-
tures ranges on the order of between 0.01 to 10 m
(e.g., 1; 22). Thus the lower end values of 6 and 10
m represent typical values observed in the field yet
having size that approaches the length scale of the
dominant wavelength. Values above 10 m allow us to
explore the transition from conditions where EMM
would be valid to conditions where EMM for frac-
tures would not be valid.
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Figure 1: Geometry of 3D FD model. The red star shows the
source location, the triangles show the receiver array and the
grey rectangles within the sub-volume schematically represent
the vertical fractures:(a) the linear receiver array is parallel to
the fracture plane and (b) the linear receiver array is normal to
the fracture plane. The receiver spacing in the Parallel model
is 10 m while in the Normal model the receiver are 9, 100 and
150 m far from the source. Note that the Proximal, Exit and
Distal stations for both Parallel and Normal models are 9, 100
and 150 m far from the source.

The geometry of all the models have overall di-
mension of 300× 300× 300 m3. The fracture models
have one set of discrete vertical fractures orientated
along the X-axis with fracture volume having dimen-
sion of 80× 80× 80 m3. The fracture models can be
divided into two sets that differ in terms of the ori-
entation and number of receivers within the model
(see Figure 1). The first fracture model set has a lin-
ear array of 15 three-component (3C) receivers placed
through the centre of model in the X-direction with
receiver spacing 10 m, parallel to fracture strike and
referred to as the Parallel fracture model. The first
receiver is outside the fracture zone in the isotropic
background medium on the source side, the subse-
quent 8 are within the fracture volume and the last
6 are on the outside at the other end. This series
of receivers can be used to evaluate the evolution
of scattering characteristics when S-waves propagate
parallel to the fractured plane (e.g., see 2). The sec-
ond fracture model set has an array of three 3C re-
ceivers placed through the centre of the model in the
Y-direction, normal to fracture strike and referred
to as the Normal fracture model. The first receiver
is outside fracture zone in the isotropic background

(a) (b) (c)

(d) (e) (f)

Figure 2: 2D snapshots of seismic wave propagation in the X-
Y plane at times 33.1 and 48.9 ms in the isotropic medium (a
and b), in the Parallel fracture model (c and d), and Normal
fracture model (e and f).

medium on the source side, the second receiver is
immediately outside the fracture volume on the op-
posite side of the source (equivalent to receiver 10
in the parallel model) and the last receiver is on the
outside of fracture volume 50 m further than the sec-
ond receiver (equivalent to receiver 15 in the parallel
model). We introduce the Normal fracture model to
investigate the behaviour of S-waves as they propa-
gate in the normal direction to the fracture planes
(the models were extended from 2, where only wave
propagation parallel to fracture strike yielded shear-
wave splitting). To allow direct comparison between
the Normal and Parallel fracture models, the frac-
ture geometry is kept constant. However, due to the
constraints imposed from WAVE implementation, re-
ceivers could only be placed outside the fracture zone.
Specifically, to generate a fracture volume using the
algorithm CRACKGEN (23) the receiver locations
are required a priori and thus embedding receivers
within the fracture volume would require creating a
different fracture volume realisation. Here after, we
refer to station 1 as the Proximal station, station 2
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in Normal model and station 10 in Parallel model as
the Exit station and station 3 in the Normal model
and station 15 in the Parallel model as the Distal

station.
Seismic waves are generated using a moment tensor

source having a seismic moment magnitude 1× 1014

dyne cm and a strike-slip double-couple mechanism
with strike of 90◦, dip of 90◦ and slip of 45◦ for the
Parallel fracture model and a strike of 0◦, dip of
90◦ and slip of 45◦ for the Normal fracture model.
These double-couple source mechanisms allow the
source polarisations in the Y-Z and the X-Z planes
to be equally partitioned. The source is located at
(xs, ys, zs) = (100 m, 150 m, 140 m) for the Paral-

lel model and (xs, ys, zs)=(150 m, 200 m, 150 m) for
the Normal model. For each model, a Ricker source
wavelet with a dominant frequency of approximately
180 Hz is used. Thus, based on dispersion and stabil-
ity requirements, a grid spacing of dh = 1 m and time
increment of approximately dt = 0.08 ms are used.
Figure 2 displays snapshots of wave propagation in
the X-Y horizontal plane for the isotropic baseline
model, Parallel fracture model and the Normal frac-
ture model at propagation times 33.1 and 48.9 ms.
The evolution of the scattered energy is highlighted
within the big circle for the fractured models. The
splitting of the shear-waves in the Parallel model is
visible (Figure 2d).

3. Results

We evaluate the scattering characteristics of the
fracture models using different quantitative tech-
niques, such as envelope broadening, amplitude spec-
trum and polarisation analysis. However, before fo-
cusing on the quantitative results, we first examine
the scattered shear waves from a qualitative perspec-
tive to gain insight into the scale dependence of frac-
ture size.

3.1. Qualitative analysis of shear-wave coda

Figure 3 shows the 3C seismograms from the Par-

allel fracture models for all fracture sizes. Although
the MT source prescribes initial polarisations of equal
magnitude on the Y- and Z-components for the Par-

allel models, small forward scattered energy can be

observed on the X-component due to edge and tip
diffractions. As expected, the Y- and Z-components
are initially equal at the Proximal station, but with
increasing distance from the source there are signifi-
cant changes in the waveforms, especially for a = 20
m, where λS ≈ 18 m. We observe a transition from
the long wave approximation (LWA) or Rayleigh scat-
tering (where λS/a > 1) for a = 6 and 10 m to the
Mie scattering regime (where λS/a → 1) for a = 20
m. For fracture size a=50m, the scattering regime
falls under the geometric regime.

Figure 3: Three-component waveforms observed at the Proxi-

mal, Exit and Distal stations in the Parallel model with frac-
tures size 6, 10, 20 and 50 m. Hereafter the components are
depicted: X-component (red color), Y-component (blue) and
Z-component (black).The arrows for the station 6 show the P-
and S-wave signals. Amplitude is particle velocity in mm/s.

Figure 4 displays the 3C seismograms for the Nor-

mal fracture models for all desired fracture sizes a =
6 m, 10 m, 20 m and 50 m. For the Normal model,
the MT source prescribes initial polarisations of equal
magnitude on the X- and Z-components. As in the
case for the Parallel model, small forward scattered
energy can be observed on the Y-component due to
edge and tip diffractions. For the Proximal station,
as the fracture size increases from 6 m to 50 m, we
observe an increase in signals arriving after the pri-
mary wave. These signals are related to increasing
specular reflections from the fracture zone as the frac-
ture surface becomes larger with respect to the dom-
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Figure 4: Three-component waveforms observed at the Proxi-

mal, Exit and Distal stations in the Normal models with frac-
ture size 6, 10, 20 and 50 m.

inant seismic wavelength. For the Exit station, we
observe a substantial amount of scattering, specifi-
cally when the fracture size is comparable or larger
than the wavelength of the S-wave (λS ≈ 18 m) at
a = 20 m and 50 m.

3.2. RMS envelope analysis

To evaluate the time widening effect of wavelets
due to scattering within the fractured medium, we
compute the root-mean-square (RMS) waveform en-
velopes. The envelope width approach has been used
previously to characterise random heterogeneities in
the crust by (24), where the width can be qualify
by the parameter tq and depends on the intensity of
velocity fluctuation, scale length of the random het-
erogeneity as well as attenuation factor Q−1. The
RMS envelope is estimated using the following steps:

1. Calculate the square amplitude of the waveform,

2. Average the square amplitude trace using a mov-
ing time window (we use a time window of length
7.9 ms which is approximately greater than the
width of the source envelope),

3. Calculate the square root of step (2), and

4. Smooth the result in step (3).

The strength of excitation of the scattered waves can
be quantified by measuring the envelope width tq.

The envelope tq is defined by the interval time from
the onset of the shear wave to the time when the
RMS envelope amplitude decreases to the half of its
maximum value.

Figure 5: Three-component RMS envelopes observed at the
Proximal, Exit and Distal stations in the fractured medium
(Parallel) with fracture size 6, 10, 20 and 50 m. The black
dashed line shows the maximum RMS envelope, and thick grey
line depicts the envelope width time tq .

Figure 5 shows the three 3C RMS envelopes of
the Parallel fracture model for all fracture sizes. As
expected, the RMS amplitude of the X-component
is smaller by one order of magnitude than the Y-
and Z-components. As the shear-wave propagates
through the fracture volume we observe a gradual
decrease in the amplitude of the envelopes with mi-
nor changes in the shape of the envelope for the Y-
and Z-components and more drastic changes for the
X-component. Figure 6 shows the three 3C RMS
envelopes for Normal fracture models for all frac-
ture sizes. Similar to Figure 5, the components

6



normal to wave propagation (X- and Z-components)
have approximately the same initial RMS amplitude,
whereas the component along the direction of prop-
agation (the Y-component) displays initial RMS am-
plitude one order of magnitude smaller than the X-
and Z-components as well as drastically different en-
velope shapes. The RMS envelopes for the X- and Z-
components show significant change for fracture sizes
a = 20 and 50 m.

Figure 6: Three-component RMS envelopes observed at the
Proximal, Exit and Distal stations in the fractured medium
(Normal) with fracture size 6, 10, 20 and 50 m. The black
dashed line shows the maximum RMS envelope, and thick grey
line depicts the envelope width time tq .

To remove the effect of geometrical spreading, the
tq values for each station in the Parallel and Normal

models are divided by the tq values of the correspond-
ing isotropic homogeneous baseline model. As the
effective seismic moment tensor source radiation pat-
tern is equivalent in the Parallel and Normal mod-
els, the results of the tq values for the three primary
axes of polarisation, X-, Y-, and Z-axes are compa-

rable. In Figure 7, the tq results for the X- and Z-
components from the Normal model and the Y- and
Z-components from the Parallel model are shown to-
gether. For the Proximal station in both the Parallel
and Normal models, the tq values are approximately
1.0 as would be expected of the wavefield prior to
entering the fracture zone (i.e., no scattering). Also
shown are the values for the Exit and Distal stations,
which show the results of the wave after exiting the
fracture volume. At the Exit station, the tq values
increase above 1.0, with a more significant increase
for a > 10 m. The tq values between a = 20 to 50 m
decrease for the Normal model at the Distal station
in comparison with those at the Exit station with
the exception of the Z-component. In general, the tq
values for the Normal model, with propagation di-
rection normal to the fracture plane, are larger than
those for the Parallel model. This can be explained
by the fact that for propagation in the direction nor-
mal to the fractures the wavefront interacts to a much
larger extent with the fracture surfaces and so expe-
riences much greater edge and tip diffractions than
for wave propagation parallel to the fractures.

Figure 7: Plot of the normalised envelope width tq against ka
for the fracture sizes 6, 10, 20 and 50 m for both the Parallel

and Normal models.

3.3. Distortion of shear-wave polarisation

In a homogeneous isotropic medium, the particle
motion of the P-wave is normal to the spherical wave-
front and the polarisation of the S-wave is confined
to within the wavefront (i.e., normal to the propa-
gation direction) and prescribed by the source radi-
ation pattern. However, in a heterogeneous medium,
P-wave particle motion and S-wave polarisation can
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deviate from linearity. The deviation from linearity
(or waveform distortion) can be assessed by tracking
the trajectory of the waveform particle motion. The
shape of the time evolution of the particle motion (or
hodogram) can be diagnostic of the seismic waveform
distortion. A number of earlier studies have shown
the usefulness of hodograms for detecting heterogene-
ity (e.g., 25; 26; 27).

Figure 8: Particle motion of S-waves in the Y-Z plane for the
Parallel model with fracture sizes 6, 10, 20 and 50 m. Here
and in Figure 9, the time window is set from the onset of the S-
wave and has a time length two times the period of the Ricker
source wavelet.

Figure 8 displays the particle motion of the direct
S-waves in the Y-Z plane for the Parallel model for
all fracture sizes at the 3 stations. The Proximal

station shows a linear particle motion as expected
for wave propagation in a homogeneous isotropic
medium. With increasing distance from the source,
the waveforms become increasingly distorted and de-
viate from linear motion. For fracture sizes a= 6 and
10 m, the particle motion of the S-wave components
display a characteristic pattern typical of shear-wave
splitting with orthogonal fast and slow shear-waves
(e.g., see 2). For fracture sizes a= 20 and 50 m, the
polarisation is not consistent with that of shear-wave
splitting and shows a more random behaviour.
Figure 9 displays the particle motion for the Nor-

mal model for all fracture sizes at the 3 stations. For

Figure 9: Particle motion of S-waves in the X-Z plane for the
Normal model with fracture sizes 6, 10, 20 and 50 m.

all fracture sizes at the Proximal station, the particle
motions are linear as expected. At the Exit and Dis-

tal stations, with increasing fracture size the distor-
tion from linearity also increases. For wave propaga-
tion normal to the fracture planes shear-wave split-
ting will not develop. Although the waveform en-
velopes have been shown to increase, the actual po-
larisation of the shear-waves remain relatively unaf-
fected for scenarios where ka 6 3. For ka > 3, we
observe significant deviation from linearity, primarily
as a result of the multiple reverberations due to spec-
ular type reflections from the interaction of the spher-
ical wavefront and the fracture surfaces (i.e., stronger
coherent scattering).
To quantitatively evaluate the distortion of the di-

rect shear-waves, the RMS amplitude ratio between
the Y- and Z-components for Parallel models, and
the X- and Z-components for Normal models are cal-
culated. The RMS amplitude ratios are calculated
according to

χParallel =

√

∑

i RMSzi
∑

i RMSyi

, (1)

χNormal =

√

∑

i RMSzi
∑

i RMSxi

, (2)
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where RMSxi
, RMSyi

and RMSzi are the RMS am-
plitudes of X, Y and Z components at time ti, respec-
tively. The summation is evaluated over a time win-
dow that is two times the dominant period (11 ms)
of the S-wave source from the onset.

Figure 10: Plot of the RMS ratio χParallel (top) and χNormal

(bottom) against ka for the fracture sizes 6 m (ka=2.1), 10 m
(ka=3.6), 20 m (ka=7.2) and 50 m (ka=17.9).

Figure 10 shows the RMS amplitude ratio for
χParallel and χNormal against ka for all fracture
sizes. For a = 6 m and all stations the values of
χParallel and χNormal are very close to 1.0, which
indicates that the same amount of the energy is par-
titioned into the Y- and Z-components and X- and
Z-components for the Parallel and Normal fracture
models, respectively. For fracture sizes a = 10, 20
and 50 m, the values of χParallel are noticeably larger
than 1.0. For the Exit station, the χParallel value
is highest for a=10 m at approximately 1.75 and
roughly 1.25 for a > 10 m. For the Exit station,
the χNormal value is highest for a= 20 m at approx-
imately 1.8 and roughly 1.2 for a= 10 and 50 m. At
the Distal stations, the χParallel and χNormal values
appear more stable and fluctuate between 1.1 and 1.4
for both the Parallel and Normal models. It can seen
that the largest distortion occurs when the fracture
size a is comparable to or larger than the dominant
wavelength λS (i.e., a =20 m) in the Mie and geo-
metric scattering regime. Since the fracture models

used in WAVE are generated using random fracture
assemblies given a range of fracture size and frac-
ture density (18), the results from Exit station repre-
sent behaviour of the wavefield highly dependent on
the specific random realisation of the fracture model.
Thus the results capture the wavefield prior to wave-
front healing (e.g., 28). It would be expected that
an ensemble of several hundred fracture realisations
would yield behaviour consistent with the Distal sta-
tion.

3.4. Differential attenuation analysis

There are several techniques to measure wave
attenuation, such as the centroid frequency shift
method (e.g., 29), the dominant frequency shift
method (e.g., 30) and the spectral ratio method (e.g.,
31). We first consider the waveform frequency con-
tent of both the Parallel and Normal models and
then discuss and implement the spectral analysis
method to quantify attenuation.

3.4.1. Amplitude spectrum analysis

A Hanning window has been used to taper the
shear-waves prior to Fourier transformation into the
frequency domain. The window length varies depend-
ing on the model fracture size. As well, the effect of
geometrical spreading is eliminated for each compo-
nent by normalising the amplitude spectrum by its
corresponding station component in the unfractured
isotropic medium. We compute the peak (maximum)
frequency as well as the dominant frequency at each
station and for each component. The dominant fre-
quency is given (30)

f2

d =

∫

∞

0
f4P (f)df

∫

∞

0
f2P (f)df

, (3)

where fd is the dominant frequency and P (f) is the
power spectrum.
Figure 11 shows the amplitude spectrum for the

Parallel models for all fracture sizes for the Z- and
Y-components. For all fracture sizes, the amplitude
spectrum of the Y-component is more attenuated at
higher frequencies than Z-component. This is ex-
pected as the Y-component is polarised normal to
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Figure 11: Fourier amplitude spectrum for all fracture sizes
for the Parallel model. The solid black line depicts the Z-
component, the blue dashed line depicts the Y-components,
and the small green and magenta bars, respectively show the
dominant and peak frequencies of spectra.

the fracture surface whereas the Z-component is po-
larised parallel to the fracture surface. Figure 12
shows the amplitude spectra for the Normal mod-
els at the 3 stations for all fracture sizes. With the
exception of the Proximal station (where the spec-
tra results are very closely equal) the remaining sta-
tions reveal that the Z-component is more attenuated
at higher frequencies than the X-component. For
both components, the peak frequencies have shifted
to lower frequencies; the shift being greatest for mod-
els with larger fracture size.

3.4.2. Amplitude spectral ratio

Since fractures form within coherent and sub-
parallel patterns, seismic velocity will be depen-
dent on the direction of wave propagation. For in-
stance, P-waves propagating parallel to the fracture
planes will travel faster than P-waves propagating
normal to the fracture planes. The velocity be-
tween these two directions depends on several vari-
ables, such as the medium elastic constants, pore-
fluid properties and saturation, the fracture density
as well as the distribution and shape of fractures
(e.g., 32). The presence of aligned fracture sets of-

Figure 12: Fourier amplitude spectrum for all fracture sizes for
the Normal model. The solid red line depicts the X-component
and the black dashed line depicts the Z-components.

ten results in seismic anisotropy, although there is
a transition where a fractured medium evolves from
a scattering to anisotropic regime (e.g., 2). Veloc-
ity anisotropy is theoretically formulated for various
types of anisotropic symmetries, such as transverse
isotropy (TI), azimuthal anisotropy and fracture-
induced anisotropy. Yet, velocity anisotropy alone
is not sufficient to reveal the reasons that lead to
elastic anisotropy. For instance, crystal scale lat-
tice preferred orientation (LPO) and aligned frac-
tures can theoretically result in the same observed
anisotropy. However, attenuation anisotropy can dif-
fer between these two causes of observed anisotropy
and this is due to frequency-dependent mechanisms
(e.g., 33; 34). For instance, when the scale length of
heterogeneity is smaller than the seismic wavelength,
low frequency waves will accrue longer splitting times
than high frequency waves (e.g., 32). For media
where the wave velocity is frequency-dependent, the
medium elasticity is required to be dispersive.

There is a relation between dispersion and intrinsic
attenuation (e.g., 35; 36). (36) studied velocity and
attenuation anisotropy of vertically fractured media
with low fracture density and introduced a model
valid in the high frequency limit, where wavelengths
are larger than fracture size. The (36) model predicts
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that the slow shear-wave will be more attenuated
at higher frequencies relative to the fast shear-wave.
(33) extended the (36) model and showed the depen-
dency of shear-wave splitting on waveform frequency
and fracture size. (32) tested the (36) model on sev-
eral microseismic datasets of shear-waves splitting to
predict attenuation of the split shear-waves. How-
ever, (32) observed that sometimes the fast shear-
wave was more attenuated at higher frequencies than
the slow shear-wave.

To study the differential shear wave attenuation,
we implement the spectral ratio method for the Y-
and Z-components for the Parallel models and the
X- and Z-components for the Normal models. To
do this, the intrinsic attenuation Q−1 is assumed
to be a constant. For our models, this assumption
is adequate since the background elasticity is non-
attenuative. For the Parallel models, where the prop-
agation direction is along the strike of the fracture
planes and for the initial prescribed source polarisa-
tion orientation, shear-wave splitting has the poten-
tial to develop in the synthetic data. Hence, the cal-
culation of differential attenuation ∆Q−1

Z−Y for the
Parallel models might provide a measure of shear-
wave scattering attenuation. Differential attenuation
is the difference in the loss of energy per cycle experi-
enced by pairs shear-components along the fractured
part of the ray path. The measurement of the qual-
ity factor is not a true value, rather it approximates
Q−1, and is referred to as specific attenuation.

The amplitude of the shear-wave can be written as
a function of frequency f ,

An(f) = Gn(f)Sn(f)Rn(f)exp(
−πtnf

Qn

), (4)

where An(f) is the amplitude spectrum at a particu-
lar station, n is the component (i.e., X, Y or Z),Gn(f)
is the transfer function between source and station,
Sn(f) is the amplitude at the source, Rn(f) is the
effective transfer function of the receiver (i.e., includ-
ing rotation, the coupling, the impulse response of
the receiver and the recording system response) and
t is the traveltime between source and receiver.

Assuming the pairs of shear-wave components have
the same transfer function, the same effective trans-

fer function and the same spectral frequency at the
source, then the spectral ratio method (31) can pro-
vide a measure of the relative attenuation between
two orthogonal components. The calculation of the
log amplitude spectral ratio (LASR) for the Parallel

and Normal models, respectively, are formed,

ln

(

AZ(f)

AY (f)

)

= −π

(

tZ
QZ

−

tY
QY

)

f + c. (5)

ln

(

AZ(f)

AX(f)

)

= −π

(

tZ
QZ

−

tX
QX

)

f + c. (6)

(31). The c term is a constant value that results from
the frequency-independent differences in the Gn, Sn

and Rn values in Equation 4. The tn values for the
Parallel and the Normal model represent the arrival
time for each component. For the Parallel model
tZ 6 tY (tZ = tY if no shear-wave splitting and
tZ < tY if there is shear-wave splitting, where the
Z-component is the fast shear-wave). For the Normal

model the tZ = tX . If attenuation Q is constant, the
LASR should be approximately linear with frequency
over the signal bandwith. Regression is performed
over a limited bandwidth (black dashed line). The
differential attenuation for the Parallel and Normal

models, respectively, can be defined as

∆Q−1

Z−Y = πtZ

(

tY
tZQY

−

1

QZ

)

(7)

∆Q−1

Z−X = πtZ

(

tX
tZQX

−

1

QZ

)

. (8)

The term πtZ is positive, so the remaining term can
be either positive or negative. If equation 7 is neg-
ative, the Z-component is more attenuated than the
Y-component since tY /tZ is greater than or equal to
one. However, when Equation 7 is positive, we can
not strictly say which component has been more at-
tenuated. Without a measurement of either Q−1

Z or
Q−1

Y , it is not possible to know which component has
experienced more attenuation at high frequencies due
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to the trade-off between the additional travel time of
the slow shear-wave spent in the attenuative medium
and the magnitude of attenuation affecting the slow
component being larger than the fast component (i.e.,
the slow shear-wave has experienced a greater atten-
uation per cycle).

Previously, we showd that the Y-component (slow
shear-wave) experiences larger attenuation than the
Z-component (fast shear-wave), which is consistent
with results of (36). However, (32) observe that
the fast shear-wave can experience larger attenuation
than the slow shear-wave, and suggest that the rela-
tive peak amplitude of the split shear-waves are de-
pend more on the initial polarization of the incident
shear-wave than on the relative levels of frequency-
dependent attenuation.

Figure 13: Amplitude spectral ratio of Y- and Z-axis
Loge(AZ(f)/AY (f)) of Parallel for fracture sizes 6, 10, 20,
and 50 m. Here and in Figure 14 the dashed line shows the
regression line over limited bandwidth.

Figure 13 shows the LASR for Parallel models
for all fracture sizes. The regression lines (black
dashed lines) reveal a positive gradient over the
bandwidth of 0-200 Hz. The positive gradient sug-
gests that the Y-component is more attenuated than
the Z-component. The difference between peak fre-
quency of the shear-waves is positive (fpZ

− fpY
> 0)

also indicating that the Y-component is more at-

tenuated. However, it is not possible to determine
whether QZ > QY or whether QZ ≈ QY sine the
Y-component could be more attenuated due to the
longer travel time in the fractured medium.

Figure 14: Amplitude spectral ratio of Y- and Z-axis
Loge(AZ(f)/AY (f)) of Normal for fracture sizes 6, 10, 20,
and 50 m.

The LASR for the Normal model can be simplified
based on the assumption that the shear-wave onset
times will be equal (tX = tZ)

∆Q−1

Z−X = πtZ

(

1

QX

−

1

QZ

)

. (9)

The term πtZ is positive and the remaining term in
brackets can be either positive or negative. If Equa-
tion 9 is positive, the X-component is more attenu-
ated than Z-component (Q−1

X > Q−1

Z ). Equation 9
intuitively reveals that differences in attenuation be-
tween the X- and Z-components in the Normal model
are not influenced by differential travel times. The
LASR for the Z- and X-components of the Normal

model is shown in Figure 14, where the regression
gradient lines (black dashed line) for almost all the
stations is negative. The negative regression line im-
plies that Q−1

Z > Q−1

X . However, with the exception
of a few frequency notches, the slopes are approxi-
mately horizontal. We would expect that the X- and
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Z-component attenuation to be identical and so the
results are likely influenced by focusing and defocus-
ing of discrete frequency bands due to the specific
random realisation of the fracture volume. Combin-
ing the results from several hundred random fracture
realisations would likely yield equal attenuation of
both components.

Figure 15: Differential attenuation plotted against difference
in peak frequency, fpZ − fpY for the Parallel (a) model and
fpZ − fpX for the Normal model (b).

Figure 15 depicts the differential attenuations
(∆Q−1

Z−Y and fpZ
− fpY

) against the difference in
the peak frequencies fpZ

− fpY
and the dominant

frequency fdZ
− fdY

respectively. It can be seen

that the differential attenuation in the Parallel model
∆Q−1

Z−Y > 0 is consistent with the observation of a
shift in the peak frequency fpZ

−fpY
> 0. However, it

can be seen that for the Normal model the differential
attenuation ∆Q−1

Z−X < 0, while fpZ
−fpX

6 0. These
results imply that the differential attenuation method
is adequate to examine the attenuation of each com-
ponent individually, except when ∆Q−1

Z−Y > 0. In
addition, differential attenuation is an appropriate
method and is compatible with method of peak fre-
quency shift.

4. Discussion

The results of the shear-wave scattering analysis
suggest that there are qualitative and quantitative
differences in scattering behaviour for the various
fracture sizes. Very little scattering is observed for
fracture size a = 6 m within the Rayleigh scatter-
ing regime. (2) observe that shear-wave anisotropy is
strongest and more coherent in the Rayleigh regime,
such that seismic anisotropy is an appropriate tech-
nique to characterise fracture properties with this
regime. The most noticeable scattering effects are
observed for fracture sizes a = 20 and 50 m, within
the Mie scattering and transition to geometrical scat-
tering regime. The quantitative measures all indicate
strong deviation from the background for both prop-
agation parallel and normal to the fracture surfaces.
However, for the Parallel model the largest tq (enve-
lope width) was obtained for the largest fracture size
(a = 50 m), while for the Normal model the largest
tq occurred for fracture size, a = 20 m (where a is ap-
proximately equal to the λS). (37) and (38) theoreti-
cally examined the scattering characteristics of shear-
waves of planar cracks of finite width for ka > 3.
Based on their results, scattering is prominent when
the shear-wave propagates perpendicular to the frac-
ture planes. In general, the average tq values for the
Normal model were generally larger than the Paral-

lel model. This is consistent with theory and is likely
due to the wavefront interactions with fracture sur-
faces that result in diffraction from fracture tips and
edges.
Previous studies have shown that cracks intro-

duce a frequency dependent elastic response (e.g.,
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39; 40; 3; 41; 14), where the frequency dependence
is explained by squirt-flow mechanisms due to wave-
induced fluid flow in fractured porous rocks (e.g., 33)
and/or scattering mechanisms due to wave propaga-
tion through rough fracture surfaces having hetero-
geneous stiffness distributions (e.g., 39; 18). In this
study, we have only focused on the scale-dependence
of shear-wave scattering and notice very little fre-
quency dependence with the exception of a general
attenuation of higher frequencies as the shear-wave
propagates through a fracture volume. Although
the results from this chapter remain inconclusive in
terms of using shear-wave scattering phenomena as
means of imaging fracture properties, such as frac-
ture size, previous works suggest that considering the
frequency-dependent response can provide constraint
of fracture size and fracture infill (e.g., 33; 34; 14).
However, it should be noted that in real passive seis-
mic data, there will be a range of seismic source
sizes depending on the strength of the stress redis-
tribution as well as the length scales of the internal
material weaknesses. In theory, low-magnitude mi-
croseismic events typically have a higher dominant
frequency than larger magnitude events and this re-
lates to the size of the rupture surface initiated by
failure. As such, passive seismic data will contain a
wide range of illumination sources displaying differing
scale-dependent interaction with the in situ fractures.

5. Conclusion

We examined the widening effect of wavelets due
to scattering within a fractured medium by using sev-
eral different approaches. The examination was per-
formed by implementing numerical modelling of wave
propagation in discrete fracture models with a de-
sired fracture density and for various fracture sizes.
We used different methods including the RMS en-
velope analysis, shear-wave polarisation distortion,
differential attenuation analysis and peak frequency
shifting to assess the scattering behaviour of those
parametrised models in which the propagation direc-
tion is either normal or parallel to the fracture sur-
faces. The quantitative measures show strong observ-
able deviations for fractures size on the order of or
greater than the dominant seismic wavelength within

the Mie and geometric scattering regime for both
propagation normal and parallel to fracture strike.
The results suggest that strong scattering is symp-
tomatic of fractures having size on the same order of
the probing seismic wave.
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