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Abstract: Polyglycidol (or polyglycerol) is a biocompatible polymer with a main chain structure
similar to that of poly(ethylene oxide) but with a –CH2OH reactive side group in every structural
unit. The hydroxyl groups in polyglycidol not only increase the hydrophilicity of this polymer
but also allow for its modification, leading to polymers with carboxyl, amine, and vinyl groups,
as well as to polymers with bonded aliphatic chains, sugar moieties, and covalently immobilized
bioactive compounds in particular proteins. The paper describes the current state of knowledge
on the synthesis of polyglycidols with various topology (linear, branched, and star-like) and with
various molar masses. We provide information on polyglycidol-rich surfaces with protein-repelling
properties. We also describe methods for the synthesis of polyglycidol-containing copolymers and
the preparation of nano- and microparticles that could be derived from these copolymers. The paper
summarizes recent advances in the application of polyglycidol and polyglycidol-containing polymers
as drug carriers, reagents for diagnostic systems, and elements of biosensors.

Keywords: polyglycidol; linear; branched; copolymer; nanoparticles; microparticles; carriers of
bioactive compounds

1. Introduction

Generally, polymers should be chemically stable to ensure the maintenance of their properties
during storage, processing into products, and usage. Typical examples are polyethylene, polypropylene,
and several other vinyl polymers. However, for many applications polymers with special properties
resulting from the presence in their chains of properly selected reactive groups are needed, such as
groups with hydroxyl, carboxyl, aldehyde, and amine functions.

Linear poly(ethylene oxide), one polymer that has found many applications in medicine in
spite of some pros and contras, is sufficiently stable, hydrophilic, and biocompatible; when attached
to surfaces it makes them protein repellent, and provides “stealth” properties to the poly(ethylene
oxide)-modified nanoparticles [1–6]. However, the chains of linear poly(ethylene oxide) cannot have
more than two reactive end-groups, whereas, in many instances, polymers with similar properties,
but bearing multiple functional groups, are needed. Such multifunctional polymers are suitable for
covalent immobilization of various drugs, receptor-targeting moieties, fluorescent labels, and many
other uses.

The closest multifunctional analogue of poly(ethylene oxide) is polyglycidol (see Scheme 1).
The number of hydroxyl –CH2OH groups in the polyglycidol chain is equal to its degree of polymerization.
Thus, polymers with high molar masses provide many options for immobilization and labeling.
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Scheme 1. Poly(ethylene oxide) and polyglycidol constitutional units. 

Poly(ethylene oxide) and polyglycidol are used in medicine as protecting and stabilizing 
agents. Direct intravenous or oral administration of many bioactive drug components, particularly 
nucleic acids and almost all kinds of proteins, is ineffective. Various hydrolases and components of 
molecular and cellular immune system induce degradation and elimination of these species from the 
blood. Digestion accompanies oral administration of unprotected nucleic acids and proteins. 
Moreover, even if some large fragments of partially degraded proteins or nucleic acids administered 
orally succeed in crossing the endothelium barrier of the intestine and reaching the blood stream, the 
immune system would degrade them further and eliminate from the organism. Covalent binding of 
poly(ethylene oxide) to proteins and nucleic acids hinders their degradation by protecting them 
from enzymes, antibodies, and macrophages. Thus, modification of proteins, nucleic acids, and their 
carriers by immobilization of poly(ethylene oxide) significantly increases the circulation of these 
species in the blood [1,3,4,6–9]. This process is usually called pegylation (the term is derived from 
poly(ethylene glycol), denoting poly(ethylene oxide) with low molar mass). 

In many instances, the protection of bioactive compounds by pegylation is insufficient. In some 
cases good results were obtained by using liposome or nanoparticle carriers with a protecting 
external layer rich in poly(ethylene oxide). 

Dense grafting of poly(ethylene oxide) strongly increases the hydrophilicity of surfaces, making 
them resistant to protein adsorption and more biocompatible [2,10]. In the case of diagnostic devices, 
the tailored modification of surfaces with poly(ethylene oxide) reduces the uncontrolled, 
adventitious adsorption of proteins, which is important for the specificity of diagnostic tests [5,11].  

Poly(ethylene oxide) is used for many medical applications. However, polyglycidol equipped 
with hydroxyl groups in each polymeric unit opens a way for many others.  

There are thousands of original and review papers devoted to the medical applications of 
poly(ethylene oxide). On the contrary, the knowledge on medical applications of polyglycidol is 
significantly more limited. The aim of this paper is to give an overview of the synthesis of 
polyglycidol and polyglycidol-containing copolymers with varied microstructure and topology and 
some of their medical applications. 

2. Synthesis of Polyglycidol- and Oilyglycidol-Containing Copolymers 

2.1. Monomers 

Glycidol contains two reactive groups in a molecule, epoxide and hydroxyl (Scheme 2). In 
anionic polymerization the epoxide group is involved in propagation, whereas the hydroxyl one is 
responsible for chain transfer reactions. Therefore, the polymerization of glycidol always leads to 
branched polymers. Linear polyglycidol could be synthesized only by polymerization of the 
monomer with blocked –CH2OH groups (e.g., with 1-ethoxyethyl or trityl moieties).  

There are several routes for the synthesis of glycidol (see Scheme 3) [12–21]. Industrial 
production of glycidol is based on the epoxidation of allyl alcohol with hydrogen peroxide or on the 
conversion of glycerol into glycerol monochlorohydrin and its subsequent conversion into glycidol 
under the action of a strong base (e.g., KOH) [12,13]. However, these processes are not 
environmentally friendly, producing significant amounts of harmful waste and causing corrosion of 
equipment. Recently, some researchers concentrated their attention on the much more convenient 
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Poly(ethylene oxide) and polyglycidol are used in medicine as protecting and stabilizing agents.
Direct intravenous or oral administration of many bioactive drug components, particularly nucleic
acids and almost all kinds of proteins, is ineffective. Various hydrolases and components of molecular
and cellular immune system induce degradation and elimination of these species from the blood.
Digestion accompanies oral administration of unprotected nucleic acids and proteins. Moreover, even
if some large fragments of partially degraded proteins or nucleic acids administered orally succeed in
crossing the endothelium barrier of the intestine and reaching the blood stream, the immune system
would degrade them further and eliminate from the organism. Covalent binding of poly(ethylene
oxide) to proteins and nucleic acids hinders their degradation by protecting them from enzymes,
antibodies, and macrophages. Thus, modification of proteins, nucleic acids, and their carriers by
immobilization of poly(ethylene oxide) significantly increases the circulation of these species in the
blood [1,3,4,6–9]. This process is usually called pegylation (the term is derived from poly(ethylene
glycol), denoting poly(ethylene oxide) with low molar mass).

In many instances, the protection of bioactive compounds by pegylation is insufficient. In some
cases good results were obtained by using liposome or nanoparticle carriers with a protecting external
layer rich in poly(ethylene oxide).

Dense grafting of poly(ethylene oxide) strongly increases the hydrophilicity of surfaces, making
them resistant to protein adsorption and more biocompatible [2,10]. In the case of diagnostic devices,
the tailored modification of surfaces with poly(ethylene oxide) reduces the uncontrolled, adventitious
adsorption of proteins, which is important for the specificity of diagnostic tests [5,11].

Poly(ethylene oxide) is used for many medical applications. However, polyglycidol equipped
with hydroxyl groups in each polymeric unit opens a way for many others.

There are thousands of original and review papers devoted to the medical applications of
poly(ethylene oxide). On the contrary, the knowledge on medical applications of polyglycidol is
significantly more limited. The aim of this paper is to give an overview of the synthesis of polyglycidol
and polyglycidol-containing copolymers with varied microstructure and topology and some of their
medical applications.

2. Synthesis of Polyglycidol- and Oilyglycidol-Containing Copolymers

2.1. Monomers

Glycidol contains two reactive groups in a molecule, epoxide and hydroxyl (Scheme 2). In anionic
polymerization the epoxide group is involved in propagation, whereas the hydroxyl one is responsible
for chain transfer reactions. Therefore, the polymerization of glycidol always leads to branched
polymers. Linear polyglycidol could be synthesized only by polymerization of the monomer with
blocked –CH2OH groups (e.g., with 1-ethoxyethyl or trityl moieties).

There are several routes for the synthesis of glycidol (see Scheme 3) [12–21]. Industrial production
of glycidol is based on the epoxidation of allyl alcohol with hydrogen peroxide or on the conversion
of glycerol into glycerol monochlorohydrin and its subsequent conversion into glycidol under the
action of a strong base (e.g., KOH) [12,13]. However, these processes are not environmentally friendly,
producing significant amounts of harmful waste and causing corrosion of equipment. Recently,
some researchers concentrated their attention on the much more convenient approach based on
decarboxylation of glycerol carbonate. Using tetraethylammonium amino acid ionic liquids (TAAILs)
as catalysts allows us to carry out this synthesis in one pot [17,18,20,21].
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Scheme 3. Synthetic routes to glycidol.

The glycidol molecule contains a chiral carbon atom in the ring. Since for some applications the
enantiomerically pure polyglycidol (or polyglycidol enriched in polymeric units of one enantiomer)
might be needed, some researchers investigated the stereocontrolled synthesis of glycidol. Already in
1991, R. M. Hanson published an extensive review on this subject [12]. The reviewed methods included
synthesis of the optically active monomers from the optically active substrates (e.g., from D-mannitol
or L-serine), syntheses by asymmetric epoxidation, enzymatic transformation of achiral substrates,
and chiral resolution. The latter is especially interesting because it could be based on the already
synthesized glycidol with blocked –CH2OH groups. Using the properly chosen lipase and hydrolysis
conditions allowed synthesis of glycidol with nearly 100% enantiomeric purity (see Scheme 4) [22].
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Synthesis of linear polyglycidol requires a monomer with blocked –CH2OH groups. Otherwise,
the unblocked groups participate in chain transfer, which leads to the branching. Fitton et al. described
synthesis of glycidol in which the hydroxyls were blocked with 1-ethoxyethyl groups [23]. The blocked
monomer was synthesized in a simple reaction of glycidol with vinyl ethyl ether. The process was
catalyzed with p-toluenesulfonic acid (see Scheme 5).
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2.2. Synthesis of Linear Polyglycidol

In 1994 N. Spassky and co-workers provided the first reliable data on the synthesis of linear
polyglicidol with molar masses up to 30,000 [24]. The polymer was obtained by anionic polymerization
of 1-ethoxyethylglycidyl ether (blocked glycidol) initiated with cesium hydroxide and by deblocking
removing protecting groups at acidic conditions.

Mono- and difunctional potassium alkoxides and sec-BuLi/phosphazene base were used later as
initiators [25–30]. However, detailed studies of the anionic polymerization of 1-ethoxyethylglycidyl
ether revealed that in these processes propagation is accompanied by chain transfer, which leads to
polymers with decreased molar masses (see Scheme 6 [28]).
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Polymers with higher molar masses (up to 85,000 for poly(1-ethoxyethylglycidyl ether)
and 53,000 for poly(tert-butyl glycidyl ether)) were obtained by monomer-activated anionic
polymerization initiated with tetraoctylammonium bromide or tetrabutylammonium azide initiators
and a triisobutylaluminum catalyst [29,31]. Deblocking of hydroxyl groups in the abovementioned
polymers gave polyglycidol samples with Mn = 74,000 and 30,200, respectively. The mechanism of
initiation and propagation for the polymerization of 1-ethoxyethylglycidyl ether in a process with
tetrabutylammonium azide initiator and triisobutylaluminum catalyst (monomer activator) is shown
in Scheme 7.
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Activation of the monomer molecule with Al(i-Bu)3 leads to formation of a partial positive charge
at the endocyclic –CH2– group, which facilitates the nucleophilic attack during the initiation and
propagation steps.

Polymerization of 1-ethoxyethylglycidyl ether and deblocking of –OH groups is not the only
pathway to creating linear polyglycidol. Other monomers, like trimethylsilylglycidyl ether and
t-butylglycidyl ether, could also be used for this purpose [32]. It is worth noting that t-butylglycidyl
ether is commercially available. However, the advantage of synthesis via polymerization of
1-ethoxyethylglycidyl ether consists is the easy deblocking of –OH groups by removal of acetal
moieties in mildly acidic conditions.

In some instances the difference in deprotection rates for acetal and t-butyl groups could be beneficial.
For example, in Section 2.7 (on functionalized polyglycidol and polyglycidol-containing copolymers) we
discuss the synthesis of polyglycidol derivatives with different labels, based on the selective removal of
acetal and t-butyl groups in poly(1-ethoxyethylglycidyl ether)-b-poly(t-butylglycidyl ether).

2.3. Synthesis of Star-Like Polyglycidol

Polymerization of blocked glycidol with multifunctional initiators leads to star-like polymers,
which after deblocking yield star-like polyglycidols [26,33].

Examples of multifunctional initiators are shown in Scheme 8.
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Scheme 8. Multifunctional initiators used for polymerization of blocked glycidol.

The number of arms in the star-like polyglycidol is equal to the number of hydroxyl groups in the
alcohol used for synthesis of the initiator.

2.4. Synthesis of Branched Polyglycidol

In anionic polymerization of glycidol, the propagation step consists of the nucleophilic attack of
the alkoxide active center on the endocyclic CH2 group and the scission of the CH2–O bond. As a
result, the newly added unit contains the primary hydroxyl side group (see Scheme 9).
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However, the intramolecular chain transfer leads to formation of the primary alkoxide propagating
species (see Scheme 10) [34].
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Because in polymer chains the primary and secondary hydroxyl side groups can be converted
into propagating alkoxide species, branching is inevitable (see Scheme 11) [34]. It is worth noting that
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not all hydroxyl groups participate in the chain transfer leading to branching. Thus, after completion
of the polymerization process and the killing of the active species, the branched macromolecules may
contain primary and secondary hydroxyl groups not only at the chain ends but also along the chains,
inside the branches.
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It has been established that the slow addition of glycidol allows for obtaining branched
polymers with a narrow molar mass distribution [35–37]. The following considerations explain
these observations.

Alkoxides of primary and secondary alcohols differ with respect to their reactivity. Thus, a narrow
molar mass distribution is possible only when at any time in each growing macromolecule the primary
and secondary propagating species are present with the same probability, i.e., when for each growing
chain the apparent rate of propagation is the same. Every addition of a monomer molecule leads
to formation of the propagating specie containing an alkoxide of secondary alcohol and a primary
hydroxyl side group. Thus, to maintain the same probability of –CH2O´ and =CHO´ in every
macromolecule, the average time between the addition of monomer molecules should be longer than
the time needed for establishing equilibrium between the abovementioned alkoxides. Such conditions
could be assured by slow monomer additions, maintaining low monomer concentration during the
whole polymerization process.

Glycidol also polymerizes by cationic means. Cationic polymerization of oxiranes proceeds
according to the active chain-end (ACE) and/or activated monomer (AM) mechanisms [38].
In polymerization proceeding by ACE mechanism, the active species are tertiary oxonium ions located
at the ends of growing chains. For glycidol, the propagation by the ACE mechanism, independently of
the ring-opening mode during propagation, leads exclusively to polymers with primary side hydroxyl
groups (see Scheme 12).
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Propagation according to the AM mechanism consists of a reaction of protonated monomer
molecules with the hydroxyl end-groups of the growing chains. Depending on the mode of ring
scission in the activated monomer molecule, the primary and secondary hydroxyl groups are formed.
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A study by S. Penczek et al. revealed that in the cationic polymerization of glycidol initiated with
Brønsted acids the AM mechanism plays an important role [38]. Because activated glycidol also reacts
with hydroxyl groups along the polyglycidol chains, branching is inevitable.

The polymer formed after the complete monomer conversion contains the primary and secondary
hydroxyl groups. The primary hydroxyl groups are the exocyclic groups remaining from the monomer.
The secondary hydroxyl groups are formed as a result of propagation along the pathway, as shown in
Scheme 13.
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2.5. Synthesis of Polyglycidol with Varied Topology by Grafting from the Linear Polyglycidol

Linear polyglycidol containing hydroxyls not only as the end groups but also along the chain could
be functionalized and modified in various ways. Recently Frey discussed this subject in a detailed
manner [32]. Equilibration of low molar mass metal alkoxides with polyglycidol converts some
hydroxyl groups along the polymer chain into alkoxides, which are able to initiate the polymerization
of oxiranes and cyclic esters (see Scheme 14). Alkoxide anions along the polyglycidol chain could also
be formed by contact of the polyglycidol solution with sodium or a potassium mirror. Since reactions
of alkoxide and hydroxyl groups are reversible, a new chain may be grown from practically every
hydroxyl group.
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The structure of the obtained polymer depends on the monomer used for the synthesis of the grafts.
For example, formation of grafts from linear polyglycidol carried out by polymerization of blocked
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glycidol (e.g., 1-ethoxyethylglycidyl or tert-butylglycidyl ether) yields polymers with a comb-like
structure, whereas grafting of glycidol would result in hyperbranched grafts. The abovementioned
processes are shown in Schemes 15 and 16, illustrating syntheses of polyglycidol with linear and
hyperbranched grafts, respectively.
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2.6. Synthesis of Polyglycidol-Containing Copolymers

The presence of hydroxyl groups (which may be protected or not) in glycidol and glycidol-related
monomers opens possibilities for the synthesis of a variety of polyglycidol-containing copolymers.
Generally, the possible routes include:

a synthesis of the linear di-block copolymers by polymerization of glycidol with blocked hydroxyl
groups in the process initiated with macroinitiator, i.e., with other polymers containing active
centers at the ends of their chains;

b synthesis of the linear di-block copolymers using polyglycidol with blocked hydroxyl groups
along the chain and active end groups, as an initiator for the polymerization of other comonomers;

c synthesis of the linear tri-block copolymers using di-block copolymers with active end groups
(obtained by routes a or b) as macroinitiatiors for the polymerization leading to addition of the
third block;
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d synthesis of the linear tri-block copolymer by polymerization of glycidol with a blocked hydroxyl
group, initiated by a di-functional initiator and using the synthesized di-block macroinitiator for
the polymerization of other monomers, resulting in the addition of new blocks at both ends;

e synthesis of the linear tri-block copolymer in a way similar to route d but by using glycidol with
blocked hydroxyl groups as a second comonomer;

f synthesis of a comb-like copolymer by using polyglycidol (with unprotected hydroxyl groups)
as a macroinitiator and catalyst (e.g., Sn(Oct)2) for polymerization of other comonomers;

g synthesis of the branched copolymer in a way similar to route f but using hyperbranched
polyglycidol as a macroinitiator;

h synthesis of the linear-hyperbranched copolymer in a way similar to route a but using glycidol
(i.e., a monomer with unblocked hydroxyl groups) as a second monomer;

i synthesis of the hyperbranched copolymer by polymerization of glycidol from reactive groups in
the corona of another hyperbranched copolymer.

Schemes 17 and 18 illustrate some of the abovementioned routes.
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Not all routes shown in Schemes 17 and 18 were verified experimentally. However, taking into
account our present knowledge, they all should allow for synthesis of the desired products. Below are
listed some examples of copolymer synthesis.

Möller et al. synthesized polystyrene-b-polyglycidol in a sequential polymerization of styrene and
1-ethoxyethylglycidyl ether (blocked glycidol) with subsequent deprotection of hydroxyl groups, using
concentrated HCl or acidic ion-exchange resins [39,40]. It should be mentioned that polystyrene and
polydiene blocks are usually obtained using lithium initiators. This is especially important in the case
of dienes like butadiene and isoprene, when a high content of 1–4 units is required. Polystyrene–Li
and polydiene–Li active species are sufficiently reactive to add epoxide molecules. However, lithium
alkoxides formed as a result of the abovementioned additions are much less reactive and are unable to
add subsequent monomer molecules [41,42]. As a result, the one-pot chain extension of polyvinyl block
with poly(1-ethoxyethylglycidyl ether) is ineffective. Thus, before continuation of the synthesis the
exchange of Li+ for K+ or Cs+ cations is necessary, making the synthesis more tedious. The problem was
solved when the polymerization of epoxides promoted by phosphazene base P(4)-t-Bu (see Scheme 19)
strongly complexing Li+ was developed [43,44].
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Addition of P(4)-t-Bu at the beginning of the synthesis of the second block (i.e., at the beginning of
the polymerization of epoxides) results in the complexation of Li+ cations. Formation of a Li+/P(4)-t-Bu
complex shifts the equilibrium between the covalent lithium alkoxides and the much more reactive
ionic species towards the latter ones. This approach allowed for obtaining polystyrene-b-polyglycidol
copolymers with degrees of polymerization ranging from 40 to 160 and from 70 to 220 for polystyrene
and polyglycidol blocks, respectively [40].

Macroinitiators obtained in the reaction of poly(styrene-co-butadiene-co-isoprene)–OH with
potassium hydride were used for the synthesis of copolymers containing polyvinyl and
poly(1-ethoxyethylglycidyl ether) blocks. The successful deprotection with concentrated HCl yielded
copolymers with polyglycidol blocks [45].

Especially interesting are copolymers containing the hydrophobic biodegradable polyester
and the hydrophilic polyglycidol blocks. These copolymers are considered candidates for the
preparation of drug carriers. To this class belong poly(ethylene oxide)-b-polyglycidol-b-poly(L-lactide)
tri-block copolymers, which were synthesized by a sequential polymerization of ethylene oxide,
1-ethoxyethylglycidyl ether and L-lactide and by deprotection converting acetal groups in
poly(1-ethoxyethylglycidyl ether) into hydroxyl groups (Scheme 20) [46].
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polylactide blocks.

A linear tri-block copolymer with central polyglycidol and side polylactide blocks
was synthesized by one-pot polymerization of 1-ethoxyethylglycidyl ether initiated with
HOC(CH3)2CH2CH2C(CH3)2O´K+ (a derivative of 2,4-dimethylhexane-2,4-diol), with subsequent
(when the first monomer was consumed) polymerization of L-lactide [30]. Due to the proton exchange,
L-lactide polymerized at both ends. Deprotection of hydroxyl groups, carried out using AlCl3¨6H2O,
was highly selective. Only the acetal groups were cleaved, leaving the ester groups in the poly(L-lactide)
blocks intact.

It should be noted that in the synthesis of linear copolymers with polyglycidol and polylactide blocks
the sequence of block synthesis is important. At least for K+ counterions, the poly(1-ethoxyethylglycidyl
ether) block should be synthesized first. This is because the . . . -CH[CH2OCH(CH3)OCH2CH3]O´K+

growing species, located at the ends of living poly(1-ethoxyethylglycidyl ether), initiate the
polymerization of L-lactide, whereas . . . -C(O)CH(CH3)O-K+ species of living polylactide are inefficient
as initiators of the polymerization of 1-ethoxyethylglycidyl ether. However, such a limitation does not
apply to the copolymerization of tert-butyl glycidyl eter with ε-caprolactione, initiated with benzyl
alcohol/ P(4)-t-Bu system, for which it was possible to obtain random copolymers [47]. Molar masses of
synthesized copolymers were in the range of 13,000 to 49,200. Hydrolysis of t-Bu–O–CH2– groups in
copolymers yielded polyglycidol units.

Pluronic-type copolymers in which polyglycidol constituted the external blocks were also
synthesized [48]. The synthesis began with activation of both ends of the hydroxyl-terminated
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poly(propylene oxide) with CsOH¨ H2O. Water produced at this stage was removed by the
addition of dry benzene and azeotropic distillation, yielding a poly(propylene oxide) di-functional
macroinitiator containing Cs+ alcoholate active enters. The macroinitiator initiated polymerization
of 1-ethoxyethylglycidyl ether and the tri-block copolymer—poly(1-ethoxyethylglycidyl ether)-b-
poly(propylene oxide)-b-poly(1-ethoxyethylglycidyl ether) was obtained. Acetal groups in poly(1-
ethoxyethylglycidyl ether) were cleaved with AlCl3¨6H2O, yielding the polyglycidol- b-poly(propylene
oxide)-b-polyglycidol tri-block copolymer.

There are reports on the synthesis of polyglycidol-containing graft copolymers with branched
polyglycidol grafts or with branched polyglycidol cores [49,50].

A polystyrene main chain was synthesized by RAFT copolymerization of styrene and
4-acetoxystyrene initiated by S-1-dodecyl-S”-(α,α’-dimethyl-α”-acetic acid) trithiocarbonate as a
chain-transfer agent [49]. Hydrolysis of acetoxy groups yielded poly(p-hydroxystyrene) units.
The activation of hydroxyl groups with diphenylmethyl potassium (DPMK) yielded a macroinitiator
initiating polymerization of glycidol. At this step the branched polyglycidol grafts were formed.
The process is illustrated in Scheme 21.
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Scheme 21. Synthesis of polystyrene with branched polyglycidol grafts.

The branched polyglycidol core of copolymer with poly(L-lactide) multi-arms was synthesized by
ring-opening polymerization of glycidol catalyzed/initiated with Sn(Oct)2. The addition of D-lactide
after complete conversion of glycidol leads to formation of the external poly(L-lactide) arms [50].
This copolymerization conforms to route g in Scheme 18, with M denoting D-lactide.

2.7. Functionalized Polyglycidol and Polyglycidol-Containing Copolymers

Functionalized polyglycidol could be obtained by the introduction of required functional groups
during initiation, termination, or as a result of reactions with polyglycidol –CH2OH side groups.

For example, the synthesis of branched polyglycidol with primary amine groups was performed
in a process that consisted of the following steps [51]:

‚ initiation of the polymerization of ethylene oxide with cesium dibenzyl-2-aminoethanolate;
‚ using obtained macroinitiator for initiation of the polymerization of 1-ethoxyethylglycidyl ether;
‚ deblocking of hydroxyl groups in poly(1-ethoxyethylglycidyl ether), activation of hydroxyl groups

with CsOH;
‚ polymerization of glycidol initiated with . . . –CH2O´Cs+;
‚ conversion of the dibenzyl-2-aminoethyl-O– . . . groups into the NH2CH2CH2O– . . . groups.

Details of the synthesis are shown in Scheme 22.
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Scheme 22. Synthesis of branched polyglycidol with primary amine groups.

It was also possible to obtain the sulfonate derivative of the abovementioned polymer [51].
The amine groups in branched polyglycidol, shown in Scheme 22, were further modified by

reaction with 1-pyrene-butyric acid pentafluorophenyl ester. The reaction resulted in the addition
of the pyrene moiety. The pyrene labels promoted adsorption of the strongly hydrophilic, branched
polyglycidol onto the multi-walled carbon nanotubes, ensuring their solubilization with water [51].

End-capping of the living poly(1-ethoxyethylglycidyl ether) with p-chloromethyl styrene yielded
α-t-butoxy-ω-vinylbenzyl-poly(1-ethoxyethylglycidyl ether), which after deprotection with formic
acid gave α-t-butoxy-ω-vinylbenzyl-polyglycidol [52]. The macromonomer was used as a surfmer,
stabilizing microspheres synthesized in the radical emulsion polymerization of styrene [53].

Functionalization of polyglycidol blocks in the tri-block copolymers (see Scheme 20) was
conveniently performed by esterification of its hydroxymethyl groups with acid chlorides or with
cyclic anhydrides [54]. These functionalization processes are illustrated in Scheme 23.
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Scheme 23. Synthesis of tri-block copolymer with poly(ethylene oxide), polyglycidol and polylactide
blocks with carboxylic acid and 4-(phenyl-azo-phenyl) groups.

In 2010 Möller developed an elegant route for the synthesis of polyglycidol with some blocks
labeled with side C12, C14, and C16 alkyl chains [55]. The route was based on observation
that in acidic conditions the deblocking of hydroxyl groups in poly(t-butylglycidyl ether)-b-poly
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(1-ethoxyethylglycidyl ether) does not proceed at the same rate. Hydrolysis of acetal groups is much
easier than hydrolysis of t-butyl ether groups. However, it is worth noting that selective deprotection of
hydroxyl groups in random copolymers of t-butylglycidyl ether and 1-ethoxyethylglycidyl ether was
not successful [56]. Apparently, the neighboring group effect facilitated the hydrolysis of t-butyl ether
groups adjacent to the solvated hydroxyls, which were formed by fast hydrolysis of acetal groups [56].
Thus, the synthesis of polyglycidol, in which the units labeled with alkyl chains constituted a separate
block, was performed by the following sequence of reactions:

‚ sequential polymerization of 1-ethoxyethylglycidyl ether and t-butylglycidyl ether initiated with
C6H5–(CH2)3O´K+;

‚ deblocking of hydroxyl groups in poly(1-ethoxyethylglycidol ether) with hydrochloric acid (the
concentration of HCl and time of deblocking were optimized);

‚ labeling of polyglycidol with alkyl chains in reaction between –CH2OH groups of polyglycidol
and alkyl chains with isocyanate end-groups;

‚ deprotection of hydroxyl groups in poly(t-butylglycidyl ether) block using trifluoroacetic acid.

The process of synthesis is illustrated in Scheme 24.
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Scheme 24. Synthesis fof polyglycidol with C12, C14, and C16 alkyl side chains.

Polyglycidol and polyglycidol-containing copolymers could also be conveniently functionalized
by click reaction [56]. The process consists of the addition of propargyl moieties in a reaction of
propargyl bromide with KOH-activated –CH2OH groups of polyglycidol. The obtained poly(glycidyl
propargyl ether-co-glycidol) is ready for further functionalization by Cu(I) controlled (2 + 3)
cycloaddition of compounds with azide groups. Scheme 25 gives an example of the addition of
a sugar moiety.
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Scheme 25. Polyglycidol labeled with sugar moieties.

The above-described modifications of polyglycidol and polyglycidol-containing copolymers
yielded a variety of amphiphilic polymers, which, depending on the details of the structure of the
hydrophilic and hydrophobic components, are often able to self-organize into nanoparticles, liposomes,
and other polymer aggregates suitable for encapsulation or solubilization of hydrophobic compounds.
The presence of reactive groups in polyglycidol and polyglycidol-functionalized derivatives allows
their labeling with fluorescent labels [51,54].

The functional derivatives of polyglycidol can be used as building blocks for the preparation of
nano-objects useful for various applications in medicine.

3. Applications of Polyglycidol and Polyglycidol-Containing Polymers in Medicine

3.1. Biocompatibility

Biocompatibility of polymers is indispensable for using these materials in medicine as drug
carriers, implants (regardless whether permanent or resorbable), and various elements of equipment.
Thus, the issue of the biocompatibility of polyglycidol is of primary importance.

Efficient protein adsorption, accompanied by conformational changes resulting in the
denaturation of adsorbed proteins, usually triggers undesired effects including immune response
and clot formation, and has a deleterious influence on the biological functions of adsorbed proteins.
Extensive studies carried out in our laboratory revealed that the incorporation of polyglycidol into the
interfacial layer of the polystyrene microspheres and surfaces of carbon glass, gold, and stainless steel
flat substrates leads to a strong reduction of protein adsorption [57–62]. However, the activation of
polyglycidol hydroxyl groups with 1,3,5-trichlorotriazine allows for efficient covalent protein binding
(see Scheme 26) [57,59,61,62].
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Studies of interactions of linear and branched polyglycidols and polyglycidol-containing
copolymers with cell cultures and living organisms revealed that these compounds:

‚ do not interact with the DNA of the Chinese hamster B14 cell line (linear and arborescent polymers
with poly(ethylene oxide) and polyglycidol units) [63];

‚ are not toxic towards peripherial blood mononuclear cells (hyperbranched) [64];
‚ are hemocompatible (hyperbranched polyglycidol and hyperbranched copolymer of glycerol and

sebacic acid) [65,66];
‚ and are well tolerated even if injected in high doses [65].

It was also found that dendritic polyglycidol with terminal sulfate end groups has
anti-inflammatory properties [67]. These observations support the attempts to use polyglycidols
with various architectures as well as their copolymers as materials for medical applications.

3.2. Polyglycidol-Based Drug Carriers

Many papers on drug carriers based on polyglycidol and polyglycidol derivatives have already
been published. A comprehensive discussion of particular systems exceeds the scope of this paper.
We will only present a list providing brief information on encapsulated bioactive compounds, the
chemical composition of nano- or micro-carriers, and methods used for their preparation. The data are
listed in Table 1.
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Table 1. Drug carriers based on polyglycidol and polyglycidol derivatives.

Encapsulator
bioactive compound Carrier Method of encapsulation Reference

Proteins

BSA Polylactide-hyperbranched polyglycidol nanoparticles Nanoprecipitation [68,69]

Insulin β-cyclodextrin labeled polyglycidol nanoparticles Coprecipitation [70]

Insulin β-cyclodextrin labeled polyglycidol hydrogel Gelation [71]

Asparaginase Nanogels from dendritic polyglycidols with azide and
-p-propargyloxy-benzacetale Inverse nanoprecipitation [72]

transglutaminase 1 Poly(N-isopropylacrylamide)-
polyglycerol-based nanogels

Nanogel swelling in
protein solution [73]

Nucleic acids

DNA Quarternized a poly(glycidol-co-ethylene oxide) Nanoprecipitation [74]

pDNA
Quarternized branched

poly(glycidol-co-2,3-epoxypropyldiethyl-amine)
and DNA polyplexes

Incubation of polymer and nucleic
acid solution [75]

siRNA Polyplexes of corona aminated hyperbranched
polyglycidol and siRNA

Incubation of polymer and nucleic
acid solution [76]

siRNA Polyplexes of hyperbranched polyglycidol modified with
glycine and siRNA

Incubation of polymer and nucleic
acid solution [77]

siRNA
Polyplexes of amphiphilic copolymer containing

hyperbranched polyglycidol end-capped with
amines and siRNA

Incubation of polymer and nucleic
acid solution [78]

pDNA
Polyplexes of adamantane-modified hyperbranched

polyglycerol end-capped with cationic
β-cyclodextrin and pDNA

Incubation of polymer and nucleic
acid solution [79]

pDNA
Polyplexes of polyglycidol-pluronic-poly-glycidol with

2-(N,N-dimethylaminomethyl)-5-aminomethyl
phenylboronic acid groups and pDNA

Incubation of polymer and nucleic
acid solution [80]

pDNA
Polyplexes of poly(ethylene oxide)-(branched

polyglycidol) with endgroups capped with
tris(2-aminoethyl)amine)

Incubation of polymer and nucleic
acid solution [81]

pDNA nanodiamond particles with immobilized polyglycidol
modified with grafted poly(arg-co-lys-co-his)

Incubation of nanocarrier and
nucleic acid solution [82]

pDNA and
doxorubicin

hydrochloride

Vesicles composed of cyclodextrin labeled with branched
polyglycidol end-capped with tris(2-aminoethyl)amine)

and bearing aliphatic chains
Nanoprecipitation [83]

DNA Lamin A/C)
and 51-CTGGACTTC
CAGAAGAACATT-3´

Polyplexes of hyperbranched polyglycidol modified by
addition of oligoamines via the photo-cleavable linkages

Incubation of polymer and nucleic
acid solution [84]

Anticancer drugs

Doxorubicin Hyperbranched polyglycidol Covalent immobilization via the
enzymatically cleavable linkage [85]

Doxorubicin Hyperbranched polyglycidol with grafted
poly(ethylene oxide)

Covalent immobilization via the
enzymatically cleavable linkage [86]

Doxorubicin Poly(ethylene oxide)-[hyperbranched polyglycidol] Covalent immobilization via pH
sensitive hydrazone linkage [87]

Doxorubicin
Hyperbranched polyglycidol with grafted

poly(ethylene oxide) and targeting antibodies agains
epidermal growth factor

Covalent immobilization via pH
sensitive hydrazone linkage [88]

Doxorubicin,
indodicarbocyanine

dye
Hyperbranched polyglycidol

Covalent immobilization of drug
and dye via cleavable linkage.

Monitoring of drug release
by fluorescence

[89]

Doxorubicin Nanodiamond particles with grafted hyperbranched
polyglycidol end-capped with RGD tripeptide

Covalent immobilization via pH
sensitive hydrazone linkage [90]

Cisplatin Hyperbranched polyglycidol modified with
succinic anhydride

Covalent immobilization via
carboxyl groups [91]

Cisplatin
Nanodiamond particles with grafted hyperbranched
polyglycidol end-capped with RGD tripeptide and

COOH groups

Covalent immobilization via
carboxyl groups [92]
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Table 1. Cont.

Encapsulator
bioactive compound Carrier Method of encapsulation Reference

Methotrexate Fe3O4 nanoparticles with immobilized
hyperbranched polyglycidol

Covalent immobilization via pH
sensitive hydrazone linkage [93]

Paclitaxel Hyperbranched polyglycidol with sulfate and
amine end groups

Covalent immobilization via
cleavable ester linkage [94]

Paclitaxel Hyperbranched polyglycidol with attached
poly(ethylene oxide) and alkyl chains

Solubilization of
hydrophobic drug [95,96]

Paclitaxel Polymeric micelles of hyperbranched polyglycidol labeled
with β-cyclodextrin Nanoprecipitation [97]

Docetaxel Hyperbranched polyglycidol with attached
poly(ethylene oxide) and alkyl chains

Solubilization of
hydrophobic drug [96]

Docetaxel Hyperbranched polyglycidol with attached alkyl chains Nanoprecipitation [98]

Sagopilone Hyperbranched polyglycidol with attached alkyl chains Entrapment during micellization [99]

Miscellaneous

Nimodipine Hyperbranched polyglycidol with biphenyl groups
in the core

Solubilization of
hydrophobic drug [100]

Quercetin Polylactide-(hyperbranched polyglycidol) Nanoprecipitation [101]

Endomorphins Hyperbrached polyglycidol modified by addition of
poly(lactide-co-glycolide) chains

Water-in oil-in water
double emulsification [102]

3.3. Applications of Polyglycidol and Polyglycidol Derivatives in Diagnostics-Based Drug Carriers

Biocompatibility, long circulation time in the blood, the availability of many routes for
functionalization, and the suitability for controlled binding of various biomolecules makes polyglycidol
and its derivatives interesting for applications in medical diagnostics, both in vivo and in vitro.

There is great interest in contrast agents used in tissue imaging. Gd3+-loaded hyperbranched
polyglycidol with amine groups containing corona [103] and Fe3O4 superparamagnetic particles
protected by a hyperbranched pololyglycidol coating, used to stabilize particle circulation in the
blood, were found to be suitable for Magnetic Resonance Imaging (MRI) [104,105]. Hyperbranched
polyglycidol with sulfated corona, labeled with indocyanine green or indotricarbocyanine dyes, were
excellent agents for near-infrared fluorescence imaging [106,107].

Complex particles comprising a superparamagnetic iron oxide core coated with fluorescent
silica and protected with grafted hyperbranched polyglycidol constitute a new contrast agent
for MRI and optical imaging [108]. Tri-modal imaging systems were also developed based on
hyperbranched polyglycidol labeled with radioactive 111In, fluorescent Alexa dye, and Gd3+ for
MRI [109]. Hyperbranched polyglycidol with moieties chelating 67Ga/68Ga were studied as reagents
for positron emission tomography (PET) [110]. Gold nanorods coated with hyperbranched polyglycidol
with sulfated corona were used as a contrast agent for optoacoustic tomography, for the monitoring of
rheumatoid arthritis [111].

Polyglycidol with immobilized glucose oxidase is an essential component of biosensors for the
detection of glucose [112].

Basinska et al. developed a new type of diagnostic test based on the changes of electrophoretic
mobility in poly(styrene/α-tertbutoxy-ω-vinylbenzyl-polyglycidol) [113]. The test was dedicated for
determination of γ-globulins against Helicobacter pylori in the blood serum. The microspheres were
synthesized by emulsion copolymerization of styrene and α-tert-butoxy-ω-vinylbenzyl-polyglycidol.
Their interfacial layer enriched in polyglycidol allowed the covalent immobilization of antigens
complementary to antibodies against Helicobacter pylori, the proteins that are present in the blood
of infected patients. The polyglycidol-rich interfacial layer eliminated any adventitious protein
adsorption, allowing only attachment of antibodies against Helicobacter pylori by antigen–antibody
interactions. Since both microspheres and antibodies are electrically charged, the attachment of
antibodies affects the mobility of microspheres in an electric field.
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4. Conclusions

Synthesis of polyglycidol with moderate molar mass (about 30,000) and controlled topology (linear,
star-like, hyperbranched) does not pose a problem. Many methods were developed for synthesis of
various copolymers containing units of polyglycidol, polyethers (mainly poly(ethylene oxide) and
poly(propylene oxide)), polyesters (polylactide and poly(ε-caprolactone)), and polyolefins (styrene).
These copolymers could be functionalized with alkene and alkyne moieties, sulfate, amine, azide,
and carboxyl groups. They could be used for binding proteins and other biomolecules. Polyglycidols
modified with hydrophobic segments self-assemble into polymeric micelles, polymeric liposomes,
and other kinds of aggregates. When tethered to surfaces they modify the surface properties, making
the surfaces hydrophilic and antifouling. Amphiphilic derivatives of polyglycidol are promising
candidates for drug carriers and for contrast agents useful for various kinds of tissue imaging. However,
in spite of significant achievements in this field, there are still several problems to be solved.

Many functionalization processes and synthetic routes of drug carriers are multistep and for
large-scale pharmaceutical applications they are probably too expensive. Thus, a further search for
simpler modification routes is still needed. Knowledge of relations between topology and chemical
composition of polyglycidol-containing copolymers and their self-organization into polymeric micelles
and other types of nanoparticles is insufficient and still requires further studies. In spite of numerous
reports on protein–polyglycidol interactions, further investigation will be needed to give a detailed
explanation of these interactions at a molecular level. The possibility of synthesizing high molar mass
polyglycidol and polyglycidol-containing copolymers with biodegradable segments; i.e., copolymers
with mechanical properties appropriate for use as temporary implants replacing tendons and other
elastic tissue, has been insufficiently explored. The field is still quite far from being fully explored.

Acknowledgments: The financial support of the Ministry of Science and Higher Education (Statutory Fund) is
highly appreciated.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Monfardini, C.; Veronese, F.M. Stabilization of substances in circulation. Bioconj. Chem. 1998, 9, 418–450.
[CrossRef] [PubMed]

2. Chen, S.; Li, L.; Zhao, C.; Zheng, J. Surface hydration: Principles and applications toward
low-fouling/nonfouling biomaterials. Polymer 2010, 51, 5283–5293. [CrossRef]

3. Knop, K.; Hoogenboom, R.; Fischer, D.; Ulrich, S.; Schubert, U.S. Poly(ethylene glycol) in drug delivery:
Pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 2010, 49, 6288–6308. [CrossRef]
[PubMed]

4. Naahidi, S.; Jafari, M.; Edalat, F.; Raymond, K.; Khademhosseini, A.; Chen, P. Biocompatibility of engineered
nanoparticles for drug delivery. J. Control. Release 2013, 166, 182–194. [CrossRef] [PubMed]

5. Lin, P.; Lin, C.-W.; Mansour, R.; Gu, F. Improving biocompatibility by surface modification techniques on
implantable bioelectronics. Biosens. Bioelectron. 2013, 47, 451–460. [CrossRef] [PubMed]

6. Ikeda, Y.; Nagasaki, Y. Impacts of PEGylation on the gene and oligonucleotide delivery system. J. Appl.
Polym. Sci. 2014, 40293. [CrossRef]

7. Romberg, B.; Hennink, W.E.; Storm, G. Sheddable, coatings for long-circulating nanoparticles. Pharm. Res.
2008, 25, 55–71. [CrossRef] [PubMed]

8. Turecek, P.L.; Bossard, M.J.; Schoetens, F.; Ivens, I.A. PEGylation of biopharmaceuticals: A review of
chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci. 2016, 105, 460–475. [CrossRef]
[PubMed]

9. Peracchia, M.T.; Fattal, E.; Desmaele, D.; Besnard, M.; Noël, J.P.; Gomis, J.M.; Appel d’Angelo, J.; Couvreur, P.
Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting.
J. Control. Release 1999, 60, 121–128. [CrossRef]

http://dx.doi.org/10.1021/bc970184f
http://www.ncbi.nlm.nih.gov/pubmed/9667945
http://dx.doi.org/10.1016/j.polymer.2010.08.022
http://dx.doi.org/10.1002/anie.200902672
http://www.ncbi.nlm.nih.gov/pubmed/20648499
http://dx.doi.org/10.1016/j.jconrel.2012.12.013
http://www.ncbi.nlm.nih.gov/pubmed/23262199
http://dx.doi.org/10.1016/j.bios.2013.01.071
http://www.ncbi.nlm.nih.gov/pubmed/23624013
http://dx.doi.org/10.1002/app.40293
http://dx.doi.org/10.1007/s11095-007-9348-7
http://www.ncbi.nlm.nih.gov/pubmed/17551809
http://dx.doi.org/10.1016/j.xphs.2015.11.015
http://www.ncbi.nlm.nih.gov/pubmed/26869412
http://dx.doi.org/10.1016/S0168-3659(99)00063-2


Polymers 2016, 8, 227 20 of 25

10. Peracchia, M.T.; Harnisch, S.; Pinto-Alphandary, H.; Gulik, A.; Dedieu, J.C.; Desmaële, D.; d’Angelo, J.;
Müller, R.H.; Couvreur, P. Visualization of in vitro protein-rejecting properties of PEGylated stealth’
polycyanoacrylate nanoparticles. Biomaterials 1999, 20, 1269–1275. [CrossRef]

11. O’Connor, S.M.; DeAnglis, A.P.; Gehrke, S.H.; Retzinger, G.S. Adsorption of plasma proteins on
to poly(ethylene oxide)/poly(propylene oxide) triblock copolymer films: A focus on fibrinogen.
Biotechnol. Appl. Biochem. 2000, 31, 185–196. [CrossRef] [PubMed]

12. Hanson, R.M. The synthetic methodology of nonracemic glycidol and related 2,3-epoxy alcohols. Chem. Rev.
1991, 91, 437–475. [CrossRef]

13. Sulimov, A.V.; Danov, S.M.; Ovcharova, A.V.; Ovcharov, A.A.; Flid, V.R. Regularities of glycidol synthesis by
the liquid-phase epoxidation of allyl alcohol with hydrogen peroxide. Russ. Chem. Bull. Int. Ed. 2014, 63,
2647–2651. [CrossRef]

14. Malkemus, J.D.; Currier, V.A.; Bell, J.R., Jr. Method for preparing glycidol. US 2,856,413, 14 October 1958.
15. Kim, S.C.; Kim, Y.H.; Lee, H.; Yoon, D.Y.; Song, B.K. Lipase-catalyzed synthesis of glycerol carbonate from

renewable glycerol and dimethyl carbonate through transesterification. J. Mol. Catal. B Enzym. 2007, 49,
75–78. [CrossRef]

16. Naik, P.U.; Petitjean, L.; Refes, K.; Picquet, M.; Plasseraud, L. Imidazolium-2-carboxylate as an efficient,
expeditious and eco-friendly organocatalyst for glycerol carbonate synthesis. Adv. Synth. Catal. 2009, 351,
1753–1756. [CrossRef]

17. Choi, J.S.; Simanjuntaka, F.S.H.; Oh, J.Y.; Lee, K.I.; Lee, S.D.; Cheong, M.; Kim, H.S.; Lee, H.
Ionic-liquid-catalyzed decarboxylation of glycerol carbonate to glycidol. J. Catal. 2013, 297, 248–255.
[CrossRef]

18. Bolívar-Diaz, C.L.; Calvino-Casilda, V.; Rubio-Marcos, F.; Fernández, J.F.; Bañares, M.A. New concepts for
process intensification in the conversion of glycerol carbonate to glycidol. Appl. Catal. B Environ. 2013, 129,
575–579. [CrossRef]

19. Lu, P.; Wang, H.; Hu, K. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate over the
extruded CaO-based catalyst. Chem. Eng. J. 2013, 228, 147–154. [CrossRef]

20. Munshi, M.K.; Biradar, P.S.; Gade, S.M.; Vilas, H.; Rane, V.H.; Kelkar, A.A. Efficient synthesis of glycerol
carbonate/glycidol using 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) based ionic liquids as catalyst. RSC Adv.
2014, 4, 17124–17128. [CrossRef]

21. Zhou, Y.; Ouyang, F.; Song, Z.-B.; Yang, Z.; Tao, D.-J. Facile one-pot synthesis of glycidol from glycerol and
dimethyl carbonate catalyzed by tetraethylammonium amino acid ionic liquids. Catal. Commun. 2015, 66,
25–29. [CrossRef]

22. Palomo, J.M.; Segura, R.L.; Mateo, C.; Terreni, M.; Guisana, J.M.; Fernández-Lafuente, R. Synthesis of
enantiomerically pure glycidol via a fully enantioselective lipase-catalyzed resolution. Tetrahedron Asymmetry
2005, 16, 869–874. [CrossRef]

23. Fitton, A.O.; Hill, J.; Jane, D.E.; Millar, R. Synthesis of simple oxetanes carrying reactive 2-substituents.
Synthesis 1987, 12, 1140–1142. [CrossRef]

24. Taton, D.; Leborgne, A.; Sepulchre, M.; Spassky, N. Synthesis of chiral and racemic functional polymers from
glycidol and thioglycidol. Macromol. Chem. Phys. 1994, 95, 139–148. [CrossRef]

25. Dimitrov, P.; Hasan, E.; Rangelov, S.; Trzebicka, B.; Dworak, A.; Tsvetanov, C.B. High molecular weight
functionalized poly(ethylene oxide). Polymer 2002, 43, 7171–7178. [CrossRef]

26. Hans, M.; Gasteier, P.; Keul, H.; Moeller, M. Ring-opening polymerization of ε-caprolactone by means of
mono and multifunctional initiators: Comparison of chemical and enzymatic catalysis. Macromolecules 2006,
39, 3184–3193. [CrossRef]

27. Rangelov, S.; Trzebicka, B.; Jamroz-Piegza, M.; Dworak, A. Hydrodynamic behavior of high molar mass
linear polyglycidol in dilute aqueous solution. J. Phys. Chem. B 2007, 111, 11127–11133. [CrossRef] [PubMed]

28. Hans, M.; Keul, H.; Moeller, M. Chain transfer reactions limit the molecular weight of polyglycidol prepared
via alkali metal based initiating systems. Polymer 2009, 50, 1103–1108. [CrossRef]

29. Gervais, M.; Brocas, A.-L.; Cendejas, G.; Deffieux, A.; Carlotti, S. Linear high molar mass polyglycidol and
its direct α-azido functionalization. Macromol. Symp. 2011, 308, 101–111. [CrossRef]

30. Sosnowski, S. Selective cleavage of acetal bonds in copolymers with polylactide block. J. Polym. Sci. Part A
Polym. Chem. 2008, 46, 6978–6982. [CrossRef]

http://dx.doi.org/10.1016/S0142-9612(99)00021-6
http://dx.doi.org/10.1042/BA19990098
http://www.ncbi.nlm.nih.gov/pubmed/10814588
http://dx.doi.org/10.1021/cr00004a001
http://dx.doi.org/10.1007/s11172-014-0793-2
http://dx.doi.org/10.1016/j.molcatb.2007.08.007
http://dx.doi.org/10.1002/adsc.200900280
http://dx.doi.org/10.1016/j.jcat.2012.10.015
http://dx.doi.org/10.1016/j.apcatb.2012.10.004
http://dx.doi.org/10.1016/j.cej.2013.04.109
http://dx.doi.org/10.1039/c3ra47433j
http://dx.doi.org/10.1016/j.catcom.2015.03.011
http://dx.doi.org/10.1016/j.tetasy.2004.12.027
http://dx.doi.org/10.1055/s-1987-28203
http://dx.doi.org/10.1002/macp.1994.021950111
http://dx.doi.org/10.1016/S0032-3861(02)00459-7
http://dx.doi.org/10.1021/ma052657g
http://dx.doi.org/10.1021/jp074485q
http://www.ncbi.nlm.nih.gov/pubmed/17803304
http://dx.doi.org/10.1016/j.polymer.2009.01.012
http://dx.doi.org/10.1002/masy.201151014
http://dx.doi.org/10.1002/pola.22993


Polymers 2016, 8, 227 21 of 25

31. Gervais, M.; Labbé, A.; Carlotti, S.; Deffieux, A. Direct Synthesis of R-azido, ω-hydroxypolyethers by
monomer-activated anionic polymerization. Macromolecules 2009, 42, 2395–2400. [CrossRef]

32. Thomas, A.; Müller, S.S.; Frey, H. Beyond Poly(ethylene glycol): Linear polyglycerol as a multifunctional
polyether for biomedical and pharmaceutical applications. Biomacromolecules 2014, 15, 1935–1954. [CrossRef]
[PubMed]

33. Haamann, D.; Keul, H.; Klee, D.; Möller, M. Functionalization of linear and star-shaped polyglycidols
with vinyl sulfonate groups and their reaction with different amines and alcohols. Macromolecules 2010, 43,
6295–6301. [CrossRef]

34. Sunder, A.; Hanselmann, R.; Frey, H.; Müllhaupt, R. Controlled synthesis of hyperbranched polyglycerols by
ring-opening multibranching polymerization. Macromolecules 1999, 32, 4240–4246. [CrossRef]

35. Wilms, D.; Wurm, F.; Nieberle, J.; Böhm, P.; Kemmer-Jonas, U.; Frey, H. Hyperbranched polyglycerols with
elevated molecular weights: A facile two-step synthesis protocol based on polyglycerol macroinitiators.
Macromolecules 2009, 42, 3230–3236. [CrossRef]

36. Wilms, D.; Stiriba, S.-E.; Frey, H. Hyperbranched polyglycerols: From the controlled synthesis of
biocompatible polyether polyols to multipurpose applications. Acc. Chem. Res. 2010, 43, 129–141. [CrossRef]
[PubMed]

37. Schömer, M.; Schüll, C.; Frey, H. Hyperbranched aliphatic polyether polyols. J. Polym. Sci. Part A Polym. Chem.
2013, 51, 995–1019. [CrossRef]

38. Tokar, R.; Kubisa, P.; Penczek, S. Cationic polymerization of glycidol: Coexistence of the activated monomer
and active chain end mechanism. Macromolecules 1994, 27, 320–322. [CrossRef]

39. Siebert, M.; Keul, H.; Moller, M. Synthesis of well-defined polystyrene-block-polyglycidol (PS-b-PG) block
co-polymers by anionic polymerization. Des. Monomers. Polym. 2010, 13, 547–563. [CrossRef]

40. Siebert, M.; Henke, A.; Eckert, T.; Richtering, W.; Keul, H.; Moller, M. Polystyrene-block-polyglycidol micelles
cross-linked with titanium tetraisopropoxide. Laser light and small-angle X-ray scattering studies on their
formation in solution. Langmuir 2010, 26, 16791–16800. [CrossRef] [PubMed]

41. Hsieh, H.L.; Quirk, R.P. Anionic Polymerizations Principles and Practical Applications; Marcel Dekker: New York,
NY, USA, 1996; p. 688.

42. Ah Toy, A.; Reinicke, S.; Müller, A.H.E.; Schmalz, H. One-pot synthesis of polyglycidol-containing block
copolymers with alkyllithium initiators using the phosphazene base t-BuP4. Macromolecules 2007, 40,
5241–5244. [CrossRef]

43. Esswein, B.; Möller, M. Polymerization of ethylene oxide with alkyllithium compounds and the phosphazene
base “tBu-P-4”. Angew. Chem. Int. Ed. Engl. 1996, 5, 625. [CrossRef]

44. Esswein, B.; Molenberg, A.; Möller, M. Use of polyiminophosphazene bases for ring-opening polymerizations.
Macromol. Symp. 1996, 107, 331–340. [CrossRef]

45. Haladjova, E.; Dishovsky, N.; Meier, W.; Tsvetanov, C.B.; Novakov, C.P. Synthesis of poly(styrene-co-
diene)-block-polyglycidol. Self-association and stabilization of aggregates. Soft Matter 2011, 7, 9459–9469.
[CrossRef]

46. Gadzinowski, M.; Sosnowski, S. Biodegradable/biocompatible ABC triblock copolymer bearing hydroxyl
groups in the middle block. J. Polym. Sci. Part A Polym. Chem. 2003, 41, 3750–3760. [CrossRef]

47. Xu, J.; Yang, J.; Ye, X.; Ma, C.; Zhang, G.; Pispas, S. Synthesis and properties of amphiphilic and biodegradable
poly(ε-caprolactone-co-glycidol) copolymers. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 846–853. [CrossRef]

48. Halacheva, S.; Rangelov, S.; Tsvetanov, C.; Vasil, M.; Garamus, V.M. Aqueous solution properties of
polyglycidol-based analogues of pluronic copolymers. Influence of the poly(propylene oxide) block molar
mass. Macromolecules 2010, 43, 772–781. [CrossRef]

49. Goodwin, A.; Bobade, S.; Kang, N.-G.; Baskaran, D.; Hongb, K.; Mays, J. Poly(styrene-graft-hyperbranched
polyglycidol): Synthesis and solution behavior of a hyperbranched polyelectrolyte. RSC Adv. 2015, 5,
5611–5616. [CrossRef]

50. Petchsuk, A.; Buchatip, S.; Supmak, W.; Opaprakasit, M.; Opaprakasit, P. Preparation and properties of
multi-branched poly(D-lactide) derived from polyglycidol and its stereocomplex blends. Express Polym. Lett.
2014, 8, 779–789. [CrossRef]

51. Wurm, F.; Hofmann, A.M.; Thomas, A.; Dingels, C.; Frey, H. αωn-Heterotelechelic hyperbranched polyethers
solubilize carbon nanotubes. Macromol. Chem. Phys. 2010, 211, 932–939. [CrossRef]

http://dx.doi.org/10.1021/ma802063s
http://dx.doi.org/10.1021/bm5002608
http://www.ncbi.nlm.nih.gov/pubmed/24813747
http://dx.doi.org/10.1021/ma100901q
http://dx.doi.org/10.1021/ma990090w
http://dx.doi.org/10.1021/ma802701g
http://dx.doi.org/10.1021/ar900158p
http://www.ncbi.nlm.nih.gov/pubmed/19785402
http://dx.doi.org/10.1002/pola.26496
http://dx.doi.org/10.1021/ma00080a002
http://dx.doi.org/10.1163/138577210X530657
http://dx.doi.org/10.1021/la102780y
http://www.ncbi.nlm.nih.gov/pubmed/20942422
http://dx.doi.org/10.1021/ma070672a
http://dx.doi.org/10.1002/anie.199606231
http://dx.doi.org/10.1002/masy.19961070131
http://dx.doi.org/10.1039/c1sm05810j
http://dx.doi.org/10.1002/pola.10955
http://dx.doi.org/10.1002/pola.27515
http://dx.doi.org/10.1021/ma902150t
http://dx.doi.org/10.1039/C4RA11568F
http://dx.doi.org/10.3144/expresspolymlett.2014.80
http://dx.doi.org/10.1002/macp.200900652


Polymers 2016, 8, 227 22 of 25

52. Dworak, A.; Panchev, I.; Trzebicka, B.; Walach, W. Poly(α-t-butoxy-ω-styrylo-glycidol): A new reactive
surfactant. Polym. Bull. 1998, 40, 461–468. [CrossRef]

53. Basinska, T.; Slomkowski, S.; Dworak, A.; Panchev, I.; Chehimi, M.M. Synthesis and characterization of
poly(styrene/α-t-butoxy-ω-vinylbenzylpolyglycidol) microspheres. Colloid. Polym. Sci. 2001, 279, 916–924.
[CrossRef]

54. Slomkowski, S.; Gadzinowski, M.; Sosnowski, S.; De Vita, C.; Pucci, A.; Ciardelli, F.; Jakubowski, W.;
Matyjaszewski, K. Biodegradable nano- and microparticles with controlled surface properties.
Macromol. Symp. 2005, 226, 239–252. [CrossRef]

55. Backes, M.; Messager, L.; Mourran, A.; Keul, H.; Moeller, M. Synthesis and thermal properties of well-defined
amphiphilic block copolymers based on polyglycidol. Macromolecules 2010, 43, 3238–3248. [CrossRef]

56. Erberich, M.; Keul, H.; Mo1ller, M. Polyglycidols with two orthogonal protective groups: Preparation,
selective deprotection, and functionalization. Macromolecules 2007, 40, 3070–3079. [CrossRef]

57. Basinska, T. Hydrophilic core-shell microspheres: A suitable support for controlled attachment of proteins
and biomedical diagnostics. Macromol. Biosci. 2005, 12, 1145–1168. [CrossRef] [PubMed]

58. Matrab, T.; Chehimi, M.M.; Pinson, J.; Slomkowsi, S.; Basinska, T. Growth of polymer brushes by atom
transfer radical polymerization on glassy carbon modified by electro-grafted initiators based on aryl
diazonium salts. Surf. Interface Anal. 2006, 38, 565–568. [CrossRef]

59. Basinska, T.; Krolik, S.; Slomkowski, S. Hydrophilic microspheres containing α-tert butoxy-omega-
vinylbenzyl-polyglycidol for immunodiagnostics: Synthesis, properties and biomedical applications.
Macromol. Symp. 2009, 281, 96–105. [CrossRef]

60. Gam-Derouich, S.; Gosecka, M.; Lepinay, S.; Turmine, M.; Carbonnier, B.; Basinska, T.; Slomkowski, S.;
Millot, M.C.; Othmane, A.; Ben Hassen-Chehimi, D.; et al. Highly hydrophilic surfaces from polyglycidol
grafts with dual antifouling and specific protein recognition properties. Langmuir 2011, 27, 9285–9294.
[CrossRef] [PubMed]

61. Dworak, A.; Slomkowski, S.; Basinska, T.; Gosecka, M.; Walach, W.; Trzebicka, B. Polyglycidol—How is it
synthesized and what is it used for? Polimery 2013, 58, 641–649. [CrossRef]

62. Gosecka, M.; Slomkowski, S.; Basinska, T. Interactions of serum proteins and alkaline phosphatase with
poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microspheres with various surface concentrations
of polyglycidol. Polym. Adv. Technol. 2014, 25, 1264–1272. [CrossRef]

63. Klajnert, B.; Walach, W.; Bryszewska, M.; Dworak, A.; Shcharbin, D. Cytotoxicity, haematotoxicity and
genotoxicity of high molecular mass arborescent polyoxyethylene polymers with polyglycidol-block-
containing shells. Cell Biol. Int. 2006, 30, 248–252. [CrossRef] [PubMed]

64. Huang, Y.-C.; Royappa, A.T.; Tundel, S.; Tsukamoto, K.; Sharma, V. Biocompatibility of polyglycidol with
human peripheral blood mononuclear cells. J. Appl. Polym. Sci. 2009, 111, 2275–2278. [CrossRef]

65. Kainthan, R.K.; Janzen, J.; Levin, E.; Devine, D.V.; Brooks, D.E. Biocompatibility testing of branched and
linear polyglycidol. Biomacromolecules 2006, 7, 703–709. [CrossRef] [PubMed]

66. Motlagh, D.; Yang, J.; Lui, K.Y.; Webb, A.R.; Ameer, G.A. Hemocompatibility evaluation of
poly(glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials 2006, 27, 4315–4324. [CrossRef]
[PubMed]

67. Dernedde, J.; Rausch, A.; Weinhart, M.; Enders, S.; Tauber, R.; Licha, K.; Schirner, M.; Zügel, U.; von Bonin, A.;
Haag, R. Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation. PNAS 2010, 107,
19679–19684. [CrossRef] [PubMed]

68. Gao, X.; Zhang, X.; Wu, Z.; Zhang, X.; Wang, Z.; Li, C. Synthesis and physicochemical characterization
of a novel amphiphilic polylactic acid-hyperbranched polyglycerol conjugate for protein delivery.
J. Control. Release 2009, 140, 141–147. [CrossRef] [PubMed]

69. Gao, X.; Zhang, X.; Zhang, X.; Cheng, C.; Wang, Z.; Li, C. Encapsulation of BSA in polylactic
acid–hyperbranched polyglycerol conjugate nanoparticles: Preparation, characterization, and release kinetics.
Polym. Bull. 2010, 65, 787–805. [CrossRef]

70. Zhang, X.; Zhang, X.; Wu, Z.; Gao, X.; Shu, S.; Wang, Z.; Li, C. B-cyclodextrin grafting hyperbranched
polyglycerols as carriers for nasal insulin delivery. Carbohydr. Polym. 2011, 84, 1419–1425. [CrossRef]

71. Li, J.; Li, H.; Yang, X.; Luo, P.; Wu, Z.; Zhang, X. The supramolecular hydrogel based on hyperbranched
polyglycerol and dextran as a scaffold for living cells and drug delivery. RSC Adv. 2015, 5, 86730–86739.
[CrossRef]

http://dx.doi.org/10.1007/s002890050277
http://dx.doi.org/10.1007/s003960100517
http://dx.doi.org/10.1002/masy.200550822
http://dx.doi.org/10.1021/ma902854r
http://dx.doi.org/10.1021/ma0627875
http://dx.doi.org/10.1002/mabi.200500138
http://www.ncbi.nlm.nih.gov/pubmed/16294370
http://dx.doi.org/10.1002/sia.2194
http://dx.doi.org/10.1002/masy.200950713
http://dx.doi.org/10.1021/la200290k
http://www.ncbi.nlm.nih.gov/pubmed/21678957
http://dx.doi.org/10.14314/polimery.2013.641
http://dx.doi.org/10.1002/pat.3311
http://dx.doi.org/10.1016/j.cellbi.2005.10.026
http://www.ncbi.nlm.nih.gov/pubmed/16378736
http://dx.doi.org/10.1002/app.29269
http://dx.doi.org/10.1021/bm0504882
http://www.ncbi.nlm.nih.gov/pubmed/16529404
http://dx.doi.org/10.1016/j.biomaterials.2006.04.010
http://www.ncbi.nlm.nih.gov/pubmed/16675010
http://dx.doi.org/10.1073/pnas.1003103107
http://www.ncbi.nlm.nih.gov/pubmed/21041668
http://dx.doi.org/10.1016/j.jconrel.2009.08.003
http://www.ncbi.nlm.nih.gov/pubmed/19683553
http://dx.doi.org/10.1007/s00289-010-0273-2
http://dx.doi.org/10.1016/j.carbpol.2011.01.057
http://dx.doi.org/10.1039/C5RA14959B


Polymers 2016, 8, 227 23 of 25

72. Steinhilber, D.; Witting, M.; Zhang, X.; Staegemann, M.; Paulus, F.; Friess, W.; Kuchler, S.; Haag, R.
Surfactant free preparation of biodegradable dendritic polyglycerol nanogels by inverse nanoprecipitation
for encapsulation and release of pharmaceutical biomacromolecules. J. Control. Release 2013, 169, 289–295.
[CrossRef] [PubMed]

73. Witting, M.; Molina, M.; Obst, K.; Plank, R.; Eckl, K.M.; Hennies, H.C.; Calderon, M.; Friess, W.; Hedtrich, S.
Thermosensitive dendritic polyglycerol-based nanogels for cutaneous delivery of biomacromolecules.
Nanomedicine 2015, 11, 1179–1187. [CrossRef] [PubMed]

74. Kainthan, R.K.; Gnanamani, M.; Ganguli, M.; Ghosh, T.; Brooks, D.E.; Maiti, S.; Kizhakkedathu, J.N. Blood
compatibility of novel water soluble hyperbranched polyglycerol-based multivalent cationic polymers and
their interaction with DNA. Biomaterials 2006, 27, 5377–5390. [CrossRef] [PubMed]

75. Tziveleka, L.A.; Psarra, A.M.; Tsiourvas, D.; Paleos, C.M. Synthesis and evaluation of functional
hyperbranched polyether polyols as prospected gene carriers. Int. J. Pharm. 2008, 356, 314–324. [CrossRef]
[PubMed]

76. Fischer, W.; Calderon, M.; Schulz, A.; Andreou, I.; Weber, M.; Haag, R. Dendritic polyglycerols with
oligoamine shells show low toxicity and high siRNA transfection efficiency in vitro. Bioconj. Chem. 2010, 21,
1744–1752. [CrossRef] [PubMed]

77. Malhotra, S.; Bauer, H.; Tschiche, A.; Staedtler, A.M.; Mohr, A.; Calderon, M.; Parmar, V.S.; Hoeke, L.;
Sharbati, S.; Einspanier, R.; et al. Glycine-terminated dendritic amphiphiles for nonviral gene delivery.
Biomacromolecules 2012, 13, 3087–3098. [CrossRef] [PubMed]

78. Tschiche, A.; Staedtler, A.M.; Malhotra, S.; Bauer, H.; Böttcher, C.; Sharbati, S.; Calderón, M.; Koch, M.;
Zollner, T.M.; Barnard, A.; et al. Polyglycerol-based amphiphilic dendrons as potential siRNA carriers for
in vivo applications. J. Mater. Chem. B 2014, 2, 2153–2167. [CrossRef]

79. Dong, R.; Zhou, L.; Wu, J.; Tu, C.; Su, Y.; Zhu, B.; Gu, H.; Yan, D.; Zhu, X. A supramolecular approach to the
preparation of charge-tunable dendritic polycations for efficient gene delivery. Chem. Commun. 2011, 47,
5473–5475. [CrossRef] [PubMed]

80. Chen, F.; Zhang, Z.; Cai, M.; Zhang, X.; Zhong, Z.; Zhuo, R. Phenylboronic-acid-modified amphiphilic
polyether as a neutral gene vector. Macromol. Biosci. 2012, 12, 962–969. [CrossRef] [PubMed]

81. Yang, B.; Sun, Y.X.; Yi, W.J.; Yang, J.; Liu, C.W.; Cheng, H.; Feng, J.; Zhang, X.Z.; Zhuo, R.X. A linear-dendritic
cationic vector for efficient DNA grasp and delivery. Acta Biomater. 2012, 8, 2121–2132. [CrossRef] [PubMed]

82. Zhao, L.; Nakae, Y.; Qin, H.; Ito, T.; Kimura, T.; Kojima, H.; Chan, L.; Komatsu, N. Polyglycerol-functionalized
nanodiamond as a platform for gene delivery: Derivatization, characterization, and hybridization with DNA.
Beilstein J. Org. Chem. 2014, 10, 707–713. [CrossRef] [PubMed]

83. Yang, B.; Dong, X.; Lei, Q.; Zhuo, R.; Feng, J.; Zhang, X. Host-guest interaction-based self-engineering
of nano-sized vesicles for co-delivery of genes and anticancer drugs. ACS Appl. Mater. Interfaces 2015, 7,
22084–22094. [CrossRef] [PubMed]

84. Fischer, W.; Quadir, M.A.; Barnard, A.; Smith, D.K.; Haag, R. Controlled release of DNA from
photoresponsive hyperbranched polyglycerols with oligoamine shells. Macromol. Biosci. 2011, 11, 1736–1746.
[CrossRef] [PubMed]

85. Calderon, M.; Graeser, R.; Kratz, F.; Haag, R. Development of enzymatically cleavable prodrugs derived
from dendritic polyglycerol. Bioorg. Med. Chem. Lett. 2009, 19, 3725–3728. [CrossRef] [PubMed]

86. Calderon, M.; Welker, P.; Licha, K.; Fichtner, I.; Graeser, R.; Haag, R.; Kratz, F. Development of efficient acid
cleavable multifunctional prodrugs derived from dendritic polyglycerol with a poly(ethylene glycol) shell.
J. Control. Release 2011, 151, 295–301. [CrossRef] [PubMed]

87. Lee, S.; Saito, K.; Lee, H.R.; Lee, M.J.; Shibasaki, Y.; Oishi, Y.; Kim, B.S. Hyperbranched double hydrophilic
block copolymer micelles of poly(ethylene oxide) and polyglycerol for pH-responsive drug delivery.
Biomacromolecules 2012, 13, 1190–1196. [CrossRef] [PubMed]

88. Hussain, A.F.; Kruger, H.R.; Kampmeier, F.; Weissbach, T.; Licha, K.; Kratz, F.; Haag, R.; Calderon, M.;
Barth, S. Targeted delivery of dendritic polyglycerol-doxorubicin conjugates by scFV-SNAP fusion protein
suppresses EGFR+ cancer cell growth. Biomacromolecules 2013, 14, 2510–2520. [CrossRef] [PubMed]

89. Kruger, H.R.; Schutz, I.; Justies, A.; Licha, K.; Welker, P.; Haucke, V.; Calderon, M. Imaging of
doxorubicin release from theranostic macromolecular prodrugs via fluorescence resonance energy transfer.
J. Control. Release 2014, 194, 189–196. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jconrel.2012.12.008
http://www.ncbi.nlm.nih.gov/pubmed/23262202
http://dx.doi.org/10.1016/j.nano.2015.02.017
http://www.ncbi.nlm.nih.gov/pubmed/25791808
http://dx.doi.org/10.1016/j.biomaterials.2006.06.021
http://www.ncbi.nlm.nih.gov/pubmed/16854460
http://dx.doi.org/10.1016/j.ijpharm.2008.01.009
http://www.ncbi.nlm.nih.gov/pubmed/18291604
http://dx.doi.org/10.1021/bc900459n
http://www.ncbi.nlm.nih.gov/pubmed/20857928
http://dx.doi.org/10.1021/bm300892v
http://www.ncbi.nlm.nih.gov/pubmed/22877231
http://dx.doi.org/10.1039/C3TB21364A
http://dx.doi.org/10.1039/c1cc10934k
http://www.ncbi.nlm.nih.gov/pubmed/21483915
http://dx.doi.org/10.1002/mabi.201100524
http://www.ncbi.nlm.nih.gov/pubmed/22517671
http://dx.doi.org/10.1016/j.actbio.2012.02.013
http://www.ncbi.nlm.nih.gov/pubmed/22370448
http://dx.doi.org/10.3762/bjoc.10.64
http://www.ncbi.nlm.nih.gov/pubmed/24778723
http://dx.doi.org/10.1021/acsami.5b07549
http://www.ncbi.nlm.nih.gov/pubmed/26398113
http://dx.doi.org/10.1002/mabi.201100248
http://www.ncbi.nlm.nih.gov/pubmed/22028095
http://dx.doi.org/10.1016/j.bmcl.2009.05.058
http://www.ncbi.nlm.nih.gov/pubmed/19553109
http://dx.doi.org/10.1016/j.jconrel.2011.01.017
http://www.ncbi.nlm.nih.gov/pubmed/21256902
http://dx.doi.org/10.1021/bm300151m
http://www.ncbi.nlm.nih.gov/pubmed/22414172
http://dx.doi.org/10.1021/bm400410e
http://www.ncbi.nlm.nih.gov/pubmed/23782069
http://dx.doi.org/10.1016/j.jconrel.2014.08.018
http://www.ncbi.nlm.nih.gov/pubmed/25176577


Polymers 2016, 8, 227 24 of 25

90. Zhao, L.; Xu, Y.H.; Akasaka, T.; Abe, S.; Komatsu, N.; Watari, F.; Chen, X. Polyglycerol-coated nanodiamond
as a macrophage-evading platform for selective drug delivery in cancer cells. Biomaterials 2014, 35, 5393–5406.
[CrossRef] [PubMed]

91. Ye, L.; Letchford, K.; Heller, M.; Liggins, R.; Guan, D.; Kizhakkedathu, J.N.; Brooks, D.E.; Jackson, J.K.;
Burt, H.M. Synthesis and characterization of carboxylic acid conjugated, hydrophobically derivatized,
hyperbranched polyglycerols as nanoparticulate drug carriers for cisplatin. Biomacromolecules 2011, 12,
145–155. [CrossRef] [PubMed]

92. Zhao, L.; Xu, Y.-H.; Qin, H.; Abe, S.; Akasaka, T.; Chano, T.; Watari, F.; Kimura, T.; Komatsu, N.; Chen, X.
Platinum on nanodiamond: A promising prodrug conjugated with stealth polyglycerol, targeting peptide
and acid-responsive antitumor drug. Adv. Funct. Mater. 2014, 24, 5348–5357. [CrossRef]

93. Li, M.; Neoh, K.G.; Wang, R.; Zong, B.Y.; Tan, J.Y.; Kang, E.T. Methotrexate-conjugated and hyperbranched
polyglycerol-grafted Fe3O4 magnetic nanoparticles for targeted anticancer effects. Eur. J. Pharm. Sci. 2013,
48, 111–120. [CrossRef] [PubMed]

94. Sousa-Herves, A.; Wurfel, P.; Wegner, N.; Khandare, J.; Licha, K.; Haag, R.; Welker, P.; Calderon, M. Dendritic
polyglycerol sulfate as a novel platform for paclitaxel delivery: Pitfalls of ester linkage. Nanoscale 2015, 7,
3923–3932. [CrossRef] [PubMed]

95. Kainthan, R.K.; Mugabe, C.; Burt, H.M.; Brooks, D.E. Unimolecular micelles based on hydrophobically
derivatized hyperbranched polyglycerols: Ligand binding properties. Biomacromolecules 2008, 9, 886–895.
[CrossRef] [PubMed]

96. Mugabe, C.; Liggins, R.T.; Guan, D.; Manisali, I.; Chafeeva, I.; Brooks, D.E.; Heller, M.; Jackson, J.K.;
Burt, H.M. Development and in vitro characterization of paclitaxel and docetaxel loaded into hydrophobically
derivatized hyperbranched polyglycerols. Int. J. Pharm. 2011, 404, 238–249. [CrossRef] [PubMed]

97. Zhang, X.; Zhang, X.; Wu, Z.; Gao, X.; Cheng, C.; Wang, Z.; Li, C. A hydrotropic β-cyclodextrin grafted
hyperbranched polyglycerol co-polymer for hydrophobic drug delivery. Acta Biomater. 2011, 7, 585–592.
[CrossRef] [PubMed]

98. Zheng, Q.; Zhou, X.; Li, H.; Ma, D.; Xue, W. Complex aggregates formed with a hyperbranched polyglycerol
derivative for drug delivery. J. Appl. Polym. Sci. 2016, 133. [CrossRef]

99. Richter, A.; Wiedekind, A.; Krause, M.; Kissel, T.; Haag, R.; Olbrich, C. Non-ionic dendritic glycerol-based
amphiphiles: Novel excipients for the solubilization of poorly water-soluble anticancer drug Sagopilone.
Eur. J. Pharm. Sci. 2010, 40, 48–55. [CrossRef] [PubMed]

100. Turk, H.; Shukla, A.; Alves Rodrigues, P.C.; Rehage, H.; Haag, R. Water-soluble dendritic core-shell-type
architectures based on polyglycerol for solubilization of hydrophobic drugs. Chemistry 2007, 13, 4187–4196.
[CrossRef] [PubMed]

101. Gao, X.; Zhang, X.; Zhang, X.; Wang, Y.; Sun, L.; Li, C. Amphiphilic polylactic acid-hyperbranched
polyglycerol nanoparticles as a controlled release system for poorly water-soluble drugs: Physicochemical
characterization. J. Pharm. Pharmacol. 2011, 63, 757–764. [CrossRef] [PubMed]

102. Bao, H.; Jin, X.; Li, L.; Lv, F.; Liu, T. OX26 modified hyperbranched polyglycerol-conjugated
poly(lactic-co-glycolic acid) nanoparticles: Synthesis, characterization and evaluation of its brain delivery
ability. J. Mater. Sci. Mater. Med. 2012, 23, 1891–1901. [CrossRef] [PubMed]

103. Jászberényi, Z.; Moriggi, L.; Schmidt, P.; Weidensteiner, C.; Kneuer, R.; Merbach, A.E.; Helm, L.; Tóth, E.
Physicochemical and MRI characterization of Gd3+-loaded polyamidoamine and hyperbranched dendrimers.
J. Biol. Inorg. Chem. 2007, 12, 406–420. [CrossRef] [PubMed]

104. Arsalani, N.; Fattahi, H.; Laurent, S.; Burtea, C.; Elst, L.V.; Muller, R.N. Polyglycerol-grafted
superparamagnetic iron oxide nanoparticles: Highly efficient MRI contrast agent for liver and kidney
imaging and potential scaffold for cellular and molecular imaging. Contrast Media Mol. Imaging 2012, 7,
185–194. [CrossRef] [PubMed]

105. Smith, C.E.; Ernenwein, D.; Shkumatov, A.; Clay, N.E.; Lee, J.Y.; Melhem, M.; Misra, S.; Zimmerman, S.C.;
Kong, H. Hydrophilic packaging of iron oxide nanoclusters for highly sensitive imaging. Biomaterials 2015,
69, 184–190. [CrossRef] [PubMed]

106. Xu, S.; Luo, Y.; Graeser, R.; Warnecke, A.; Kratz, F.; Hauff, P.; Licha, K.; Haag, R. Development of
pH-responsive core–shell nanocarriers for delivery of therapeutic and diagnostic agents. Bioorg. Med.
Chem. Lett. 2009, 19, 1030–1034. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.biomaterials.2014.03.041
http://www.ncbi.nlm.nih.gov/pubmed/24720879
http://dx.doi.org/10.1021/bm101080p
http://www.ncbi.nlm.nih.gov/pubmed/21128674
http://dx.doi.org/10.1002/adfm.201304298
http://dx.doi.org/10.1016/j.ejps.2012.10.008
http://www.ncbi.nlm.nih.gov/pubmed/23108167
http://dx.doi.org/10.1039/C4NR04428B
http://www.ncbi.nlm.nih.gov/pubmed/25516353
http://dx.doi.org/10.1021/bm701208p
http://www.ncbi.nlm.nih.gov/pubmed/18247528
http://dx.doi.org/10.1016/j.ijpharm.2010.11.010
http://www.ncbi.nlm.nih.gov/pubmed/21093563
http://dx.doi.org/10.1016/j.actbio.2010.08.029
http://www.ncbi.nlm.nih.gov/pubmed/20813209
http://dx.doi.org/10.1002/app.42895
http://dx.doi.org/10.1016/j.ejps.2010.02.008
http://www.ncbi.nlm.nih.gov/pubmed/20188825
http://dx.doi.org/10.1002/chem.200601337
http://www.ncbi.nlm.nih.gov/pubmed/17310496
http://dx.doi.org/10.1111/j.2042-7158.2011.01260.x
http://www.ncbi.nlm.nih.gov/pubmed/21585372
http://dx.doi.org/10.1007/s10856-012-4658-7
http://www.ncbi.nlm.nih.gov/pubmed/22569733
http://dx.doi.org/10.1007/s00775-006-0197-3
http://www.ncbi.nlm.nih.gov/pubmed/17216229
http://dx.doi.org/10.1002/cmmi.479
http://www.ncbi.nlm.nih.gov/pubmed/22434631
http://dx.doi.org/10.1016/j.biomaterials.2015.07.056
http://www.ncbi.nlm.nih.gov/pubmed/26291408
http://dx.doi.org/10.1016/j.bmcl.2008.01.043
http://www.ncbi.nlm.nih.gov/pubmed/19097889


Polymers 2016, 8, 227 25 of 25

107. Licha, K.; Welker, P.; Weinhart, M.; Wegner, N.; Kern, S.; Reichert, S.; Gemeinhardt, I.; Weissbach, C.; Ebert, B.;
Haag, R.; et al. Fluorescence imaging with multifunctional polyglycerol sulfates: Novel polymeric near-IR
probes targeting inflammation. Bioconj. Chem. 2011, 22, 2453–2460. [CrossRef] [PubMed]

108. Wang, L.; Neoh, K.G.; En-Tang Kang, E.T.; Shuter, B. Multifunctional polyglycerol-grafted Fe3O4@SiO2

nanoparticles for targeting ovarian cancer cells. Biomaterials 2011, 32, 2166–2173. [CrossRef] [PubMed]
109. Saatchi, K.; Soema, P.; Gelder, N.; Misri, R.; McPhee, K.; Baker, J.H.E.; Reinsberg, S.A.; Brooks, D.E.;

Häfeli, U.O. Hyperbranched polyglycerols as trimodal imaging agents: Design, biocompatibility, and tumor
uptake. Bioconj. Chem. 2012, 23, 372–381. [CrossRef] [PubMed]

110. Saatchi, K.; Gelder, N.; Gershkovich, P.; Sivak, O.; Wasan, K.M.; Kainthan, R.K.; Brooks, D.E.; Hafeli, U.O.
Long-circulating non-toxic blood pool imaging agent based on hyperbranched polyglycerols. Int. J. Pharm.
2012, 422, 418–427. [CrossRef] [PubMed]

111. Vonnemann, J.; Beziere, N.; Böttcher, C.; Riese, S.B.; Kuehne, C.; Dernedde, J.; Licha, K.; von Schacky, C.;
Kosanke, Y.; Kimm, M.; et al. Polyglycerolsulfate functionalized gold nanorods as optoacoustic signal
nanoamplifiers for in vivo bioimaging of rheumatoid arthritis. Theranostics 2014, 4, 629–641. [CrossRef]
[PubMed]

112. Santos, A.N.; Soares, D.A.W.; de Queiroz, A.A.A. Low potential stable glucose detection at dendrimers
modified polyaniline nanotubes. Mater. Res. 2010, 13, 5–10. [CrossRef]

113. Basinska, T.; Wisniewska, M.; Chmiela, M. Principle of a new immunoassay based on electrophoretic mobility
of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microspheres: Application for the determination
of Helicobacter pylori IgG in blood serum. Macromol. Biosci. 2005, 5, 70–77. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/bc2002727
http://www.ncbi.nlm.nih.gov/pubmed/22092336
http://dx.doi.org/10.1016/j.biomaterials.2010.11.042
http://www.ncbi.nlm.nih.gov/pubmed/21146869
http://dx.doi.org/10.1021/bc200280g
http://www.ncbi.nlm.nih.gov/pubmed/22304718
http://dx.doi.org/10.1016/j.ijpharm.2011.10.036
http://www.ncbi.nlm.nih.gov/pubmed/22044540
http://dx.doi.org/10.7150/thno.8518
http://www.ncbi.nlm.nih.gov/pubmed/24723984
http://dx.doi.org/10.1590/S1516-14392010000100003
http://dx.doi.org/10.1002/mabi.200400112
http://www.ncbi.nlm.nih.gov/pubmed/15635718
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Synthesis of Polyglycidol- and Oilyglycidol-Containing Copolymers 
	Monomers 
	Synthesis of Linear Polyglycidol 
	Synthesis of Star-Like Polyglycidol 
	Synthesis of Branched Polyglycidol 
	Synthesis of Polyglycidol with Varied Topology by Grafting from the Linear Polyglycidol 
	Synthesis of Polyglycidol-Containing Copolymers 
	Functionalized Polyglycidol and Polyglycidol-Containing Copolymers 

	Applications of Polyglycidol and Polyglycidol-Containing Polymers in Medicine 
	Biocompatibility 
	Polyglycidol-Based Drug Carriers 
	Applications of Polyglycidol and Polyglycidol Derivatives in Diagnostics-Based Drug Carriers 

	Conclusions 

