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Anne Nevillea 
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aInstitute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, 

LS2 9JT, UK 
bSKF Engineering and Research Centre, 3430 DT Nieuwegein, The Netherlands 

Abstract 

Zinc Dialkyl DithioPhosphate (ZDDP) as a well-known anti-wear additive enhances the 

performance of the lubricant beyond its wear-protection action, through its anti-oxidant and 

Extreme Pressure (EP) functionality. In spite of over thirty years of research attempting to 

reveal the mechanism of action of ZDDP, there are still some uncertainties around the exact 

mechanisms of its action. This is especially the case with the role of sulphide layer formed in 

the tribofilm and its impact on surface fatigue. Although iron sulphide on the substrate is 

hypothesised in literature to form as a separate layer, there has been no concrete experimental 

observation on the distribution of the iron sulphide as a dispersed precipitate, distinct layer at 

the steel substrate or both. It remains to be clarified whether the iron sulphide layer 

homogeneously covers the surface or locally forms at the surface. In the current study a cross 

section of the specimen after experiment was prepared and has been investigated with 

Transmission Electron Microscopy (TEM) and Energy-Dispersive X-ray (EDX) elemental 

analysis. A 5-10 nm iron sulphide layer is visualised on the interface as a separate layer 

underneath the phosphate layer with an altered distribution of tribofilm elements near the 

crack site. The iron sulphide interface layer is more visible near the crack site where the 

concentration of the sulphur is enhanced. Also, ZDDP elements were clearly detected inside 

the crack with a varied relative concentration from the crack-mouth to the crack-tip. Sulphur 

is present inside the crack to a higher extent than in the bulk of the tribofilm.  

1 Introduction 

Anti-wear (AW)and  EP additives, Sulphur-Phosphorus (S-P) compounds are essential in 

highly loaded-gears and bearings in order to reduce scuffing and mitigate abrasive and 

adhesive wear[1, 2]. AW and EP additives can improve fatigue life [2, 3] at low 

concentrations [3] especially at large contact pressures[4]. In contrast, there are reports 
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showing S-P containing additives can be detrimental to fatigue life of the bearings[3, 5-8]. 

The reduced rolling contact fatigue life has been attributed to the chemical attack of the 

reactive additives which can induce crack or pit nucleation[3, 5, 6, 9].  

Furthermore, AW additives have been strongly shown to enhance the incidences of 

micropitting[10-12]. On the other hand, O'Connor [13] showed that assigning EP or AW 

additives as detrimental or beneficial additive as a general statement can be misleading. Thus 

the literature suggests that the impact of the additives on micropitting wear depends on the 

concentration, chemical structure of the additives and application. Therefore, detailed 

tribochemical studies of each individual additive and their interactions are required. The 

enhancing effect of ZDDP on micropitting was investigated mainly taking the mechanical 

and tribological aspects of micropitting into account [14, 15] and the tribochemical effect of 

ZDDP in severe micropitting wear has not been completely elucidated in rolling-sliding 

conditions. 

1.1 The role and chemical nature of sulphides in the ZDDP tribofilm 

ZDDP as an AW additive is particularly believed to protect the surface from wear through 

forming an adherent (poly) phosphate layer on the steel substrate. ZDDP also has an 

insubstantial EP activity in comparison to some other metal dialkyl dithiophosphates [16]. 

Thermal degradation of ZDDP can convert the most of the sulphur in ZDDP to oil-soluble 

organic sulphides and disulphides which can act as EP additives [17]. Organic sulphides are 

widely used EP additives which at high temperatures induced by high local pressure (shear 

and stress) are inferred to protect surfaces through surface passivation [18] i.e. forming iron-

sulphur compound [19]. 

The sulphide contribution to the bulk of the ZDDP tribofilm is expected to be mainly zinc 

sulphide[20, 21]. Cation exchange from zinc sulphide to form iron sulphide is not 

thermodynamically favourable [21] which implies that iron sulphide formation can take place 

through reaction of organic sulphide species with the steel surfaces as also suggested by 

Martin [20, 22]. The iron sulphide can be formed in the event of removal of the 

(poly)phosphates followed by acid-base reactions of the organic sulphides with nascent 

surface [20]. The nature of the ZDDP-derived iron sulphide can be FeS[20, 23, 24], FeS2[20], 

Fe7S6[25] or Fe7S8[26]. However, in the sulphidation reaction of nascent iron surface, FeS is 

the most probable compound [27] especially under severe contacts [19]. As an interfacial 
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layer, iron sulphide in combination with iron oxide formation is suggested using Auger 

spectroscopy[28, 29]. 

1.2 Current understanding of the iron sulphide formation from ZDDP molecule 

As far as ZDDP is concerned, iron sulphide formation has been observed on the wear 

particles as nanprecipitates[20, 26]. Hallouis et al.[26]  suggested Fe7S8 as the composition of 

the iron sulphide nanoprecipitates. Minfray et al. [30] used in-situ Auger spectroscopy and 

rubbed a pin having iron-oxide on the surface against a pre-formed ZDDP tribofilm under a 

severe condition  where lubricant was absent and observed formation of iron sulphide as the 

main compound in the reaction layer on the pin.  

Bell et al. [31] analysed tribofilm generated from ZDTP-containing mineral oil at 175°C on a 

pure iron foil and showed that S peak seats at a deeper level than PO2 and O peaks in 

dynamic secondary ion mass profile [31]. Employing X-ray Photoelectron Spectroscopy 

(XPS), they also observed increased contribution of oxide and sulphide peaks in iron signal 

through the tribofilm depth [31]. Accordingly, they suggested an iron sulphide and/or oxide 

on the substrate as shown in Figure 1(a).  

Smith et al. [32] observed patches having Zn, Fe and S where P was not detected and 

discerned the existence of Zn, S and oxygen signals below phosphorous signal in XPS depth 

spectra [32]. Thus they suggested presence of a dense iron/zinc sulphide/oxide on the steel 

substrate as a distinct layer under phosphate layer (see Figure 1(b)). The three layer structure 

was then disputed by Martin[22]. Martin[22] suggested a two layer structure of ZDDP 

tribofilm composed of a 10nm-thin long chain poly(thio) phosphate at top and mixed Fe/ Zn 

short chain (poly)phosphate in bulk with metal sulphide precipitates embedded in its structure 

as illustrated in Figure 1(c). Martin et al. [20, 22] postulated a localised iron sulphide 

formation only in very severe conditions as presented in Figure 1(d). Spikes [17] in his 

review paper depicted the structure of the ZDDP tribofilm as shown in Figure 1(e) having an 

iron/zinc sulphide at the interface of substrate and phosphate glass. 

XANES reports mainly rule out the existence of iron sulphide [23, 33-37] in a fully 

developed ZDDP tribofilm and specify formation of ZnS except few reports suggesting 

contribution of the iron sulphide together with zinc sulphide and Fe/Zn sulphate to the 

tribofilm throughout its depth as presented in Figure 1 (f). However, excluding iron sulphide 

as part of the tribofilm could be due to the fact that a minor contribution of dispersed iron 
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sulphide or a very thin interfacial iron sulphide film is below the sensitivity of XANES 

Fluorescence Yield (FY) mode of detection on S L-edge [21, 33]. 

A confirmation to this fact can be perceived in Zhang et al. [23] report in which a minor 

contribution of iron sulphide is detected after 10 s of rubbing in Total Electron Yield (TEY) S 

K-edge mode despite the fact that ZnS was dominant at this stage and in the further rubbing 

to form a thick film. In XANES and XPS analyses, collected signals are influenced by an 

a) b) 

 
 

c) d) 

  

e) f) 

 
 

Figure 1. Schematic illustrations of ZDDP tribofilm structure suggested by a) Bell et 

al.[31] b) Smith et al.[32] c) Martin et al. [22]d) Martin[20]  e) Spikes[17]  f)  Kim et 

al.[38] (WC ball on steel cylinder under EP contact) 
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averaging effect over the analysed area and sampling depth. Accordingly, observation of the 

lateral and localised chemical distribution of compounds and elements throughout the 

tribofilm-depth and near the surface pits and cracks may not be achieved through these 

techniques. 

Therefore, as a result of numerus studies using a variety of analytical methods, iron sulphide 

formation as part of a ZDDP tribofilm has been confirmed to form under certain conditions. 

However, some uncertainties still remain including whether iron sulphide exists as a 

dispersed precipitate, as a distinct layer at the substrate or both. Also, if it exists as a layer 

there are still questions around the uniformity of the layer. In addition, whether the iron 

sulphide layer exists alone [30, 39], in combination with iron oxide [29, 31] or zinc sulphide 

at the substrate surface has not been confirmed. Thus, further studies are required to 

determine whether iron sulphide as an interface layer entirely covers the surface or forms as a 

localised area. 

In order to answer part of the mentioned uncertainties, in the current study a modified 

MicroPitting Rig (MPR) was used to generate ZDDP-derived tribofilms on a steel surface 

under a severe boundary lubrication regime followed by Focused Ion Beam (FIB) sectioning 

of the surface close to a micropit in order to observe the tribofilm distribution on the 

nanometer scale. The FIB cross section has been investigated with TEM-EDX elemental 

analysis to confirm the elements throughout the tribofilm cross section. The surface and 

reaction layer on the surface are investigated using Scanning Electron Microscopy (SEM) and 

XPS surface analytical technique.  

2 Test setup to induce surface fatigue features 

A modified PCS Instrument MPR tester which is schematically represented in Table 1 is used 

to induce wear and surface fatigue and to generate ZDDP tribofilms on the steel surfaces. The 

inspected surface is the wear scar of a spherical roller. The roller (12 mm in diameter) was 

circumferentially polished to the roughness value of = 50 ± 5 nm. The roller is located in 

the middle and undergoes cyclic load applied by three larger and equal-diameter counter 

bodies. 

The rings are inner rings of cylindrical roller bearing (designation NU209) which are ground-

finished transverse to the rolling/sliding direction with the roughness of =500 ± 50 nm. 

Both the roller and rings were made of AISI 52100 steel. The measured macro hardness 
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number of the roller and rings is 785 (HV) and 745 (HV), respectively. The experimental 

conditions in the present work are indicated in Table 1. 

 

3 Analysis techniques  

3.1 Scanning electron microscopy 

A Zeiss Supra 55 SEM is utilised to capture images from the wear scar. Employing low 

acceleration voltage (5KV), images of the roller surface were obtained in Secondary Electron 

(SE) mode. Images were acquired following two different washing procedures. At first, 

images were taken from surface following three minutes of ultrasonic cleaning in a mild 

solvent (n-heptane) in order to remove the residual oil from surface. The solvent-removable 

reaction layer (which we will call it tribofilm henceforth) and the residual oil on the specimen 

surface were then removed thoroughly from the surface by wiping the specimen’s surface 

using tissue and acetone followed by ultrasonic cleaning in acetone for thirty minutes and the 

images are acquired to inspect the surface after the tribofilm removal. 

3.2 Chemical investigation of the tribofilm in micro-scale: XPS 

XPS surface analysis has been carried out employing a PHI 5000 Versa Probe™ 

spectrometer (Ulvac-PHI Inc, Chanhassen, MN, USA) which uses a monochromatic Al Kα 

Table 1. MPR rig illustration and test parameters  

Roller: 52100 steel, R
q
: 50 nm HV: 785 

Specimens 
Rings: 52100 steel, Rq:  500nm, HV: 745 

Phosphorous concentration:  0.08 Wt% 
Lubricant : Poly-Alpha-Olefin (PAO) + ZDDP 

kinematic viscosity (υ): 4 cSt @100°C 

P
max

 1.5 GPa 

Temperature  90°C 

Load cycles (on roller) 1×10
6
 

Slide-to-roll ratio (%)  2 
 

Entrainment speed 1 m/s 
Schematic illustration of the 

tribometer 

Roller 
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X-ray source (1486.6 eV). The specimens have been ultrasonically cleaned in n-heptane for 

three minutes prior to XPS spectra acquisition in order to eliminate the residual oil from the 

surface. 

Detailed spectra from the tribofilm are collected using a beam size of 100 µm in a fixed 

analysed transmission mode. The energy step size of 0.05 eV has been set for the oxygen, 

iron, phosphorous, and sulphur acquisition and 0.1 for carbon and zinc (2p). The residual 

chamber pressure was always lower than 5×10-7 Pa during spectra acquisition. 

The detailed XPS spectra were fitted using CASAXPS software (version 2.3.16, Casa 

Software Ltd, UK) with Gaussian–Lorentzian curves after subtracting a Shirley background. 

Charge correction of the specimens has been performed by referring the aliphatic carbon 

binding energy to 285.0 eV. The fitting for sulphur (signal S 2p) was performed applying an 

area-ratio-constraint of 2:1 for the two components of the signal (p3/2 and p1/2), in accordance 

with spin-orbit splitting [40]. Also, a position-difference-constraint of 1.25 eV is applied for 

the two components of the sulphur signal. In order to inspect the elemental contribution of the 

tribofilm throughout its depth, Ar+ ion source (2 keV energy, 2 ×2 mm2 area, and 1 µA 

sputter current) has been used to sputter the tribofilm. Ion sputtering was carried out every 60 

s between XPS acquisition. 

3.3 Surface and tribofilm inspection in nano-metre scale using TEM and EDX  

A cross section of the worn area on the roller surface after a million load cycles was prepared 

by FIB using a FEI Nova 200 NanoLab high resolution Field Emission Gun Scanning 

Electron Microscope (FEG-SEM). FIB lamella is collected from an area close to the edge of a 

micropit perpendicular to the rolling/sliding direction and examined using TEM. TEM 

images were obtained utilising a FEI Tecnai TF20 FEG-TEM/STEM. EDX analysis was 

employed to identify tribofilm elements within the film. An Oxford Instruments INCA 350 

EDX system equipped with X-Max SDD detector and Gatan Orius SC600A CCD camera 

was used to produce elemental mapping. The thickness of the prepared lamella is less than 

100 nm also the beam energy is much greater than that of SEM, as a result the interaction 

volume of the electron beam with the specimen is negligible compared to EDX-SEM which 

brings about less beam scattering and a consequent significantly higher spatial resolution 

compared to SEM[41]. 
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4 Results and discussion 

4.1 Imaging surface fatigue features 

Figure 2(a) shows the SEM image of the roller surface with the tribofilm on top, which 

exhibits cracking of the roller surface and the reaction layer. Following removal of the 

tribofilm micropits can be clearly observed in Figure 2(b and c). The micropitting on the 

surface indicates an occurrence of a severe surface fatigue on the roller surface. At a higher 

magnification, shown in Figure 2(d),  appearance of micropits elucidates its propagate 

opposite to the sliding direction into the bulk of the material and also transverse to the 

rolling/sliding direction [42]. 

Associated with each induvial micropit, a dark region is visible in Figure 2 (c & d) 

surrounding the micropits which is annotated on the images using an ellipse. Image contrast 

in the SE mode of SEM is particularly governed by edge effect which represents the surface 

topographical characteristics. The darker regions are the zones with a lower electron escape 

a) b) 

  

c) d) 

  

Figure 2. SEM images of the roller surface a) with reaction layer on the surface, b, c, d) 

after washing procedure 

Sliding direction 

Sliding direction 
Sliding direction 
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and represent rougher surface which can be an indication of a chemical etching induced by 

enhanced local-reactivity of ZDDP under severe contacts. A dramatically intensified 

reactivity of additive on the surface has been postulated to act as a pit nuclei [6]. 

4.2 Chemical investigation of tribofilm in micro-scale  

In Figure 3(a) the survey spectra collected from the very top surface (denoted as survey 

spectrum) and from surface after etching the tribofilm for 540 s using Ar+ ion sputtering 

(denoted as survey after etching) are shown. No peak was detected in the detailed signals of 

the tribofilm elements (P, S, Zn) after 600 s of ion sputtering. Therefore, 540 seconds of ion 

sputtering is considered as the last step of the etching at which the tribofilm elements are 

detected. Associated detailed signals of the tribofilm elements (P, S, Zn) after 540 s of ion 

sputtering are shown in Figure 3(b, c and d) and denoted as detailed spectra after etching. All 

the ZDDP tribofilm elements are detected in the detailed spectra after etching implying that a 

distinct layer of Fe/Zn sulphide does not exist at the interface between phosphate and steel. 

The detailed signals of sulphur and carbon collected from the very top surface and the surface 

after etching are shown in Figure 4(a and b).The S signal has a 2p3/2 peak at binding energy 

of 162.4 ± 0.1 eV and 161.8 ± 0.2 eV in the signal collected from the very top surface and the 

signal after etching the tribofilm, respectively. A binding energy close to 162 eV in sulphur 

signal corresponds to an oxidation state of -2 (Sll) and is assigned to sulphides [43]. The 

contribution of the sulphide to the top layer of the tribofilm is attributed to metal sulphide 

(ZnS here), organic sulphides and sulphur which is substituted for the oxygen in the 

phosphate chain forming (polythio)phosphate (O-P-O  →  O-P-S) [20, 22].  
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The zinc modified Auger parameter (α’= Zn 2p3/2 (BE) + Zn L3M4,5M4,5  
1G (KE)) is 

calculated to be 2010.2 ± 0.2 eV at the top surface which indicates that most of the zinc is 

present as zinc oxide rather than zinc sulphide [42]. This shows that zinc mostly contributes 

to the tribofilm through zinc phosphate formation in agreement with the previous reports [21, 

23, 39]. The carbon signal obtained from the tribofilm after etching is arising from carbide 

and specifies the principally inorganic nature of the tribofilm. Thus, the sulphide signal 

collected from the surface after etching the tribofilm is attributed to metal sulphides (ZnS or 

FexSy). The Fe 2p3/2 signal after etching the tribofilm is resolved to two peaks; the first peak 

a) 
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Figure 3. a) Survey spectra collected from the wear scar and corresponding b) phosphorous 

c) sulphur and c) zinc detailed spectra after etching   
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appeared at 706.6 ± 0.1 eV which corresponds to metallic iron and the second peak appears at 

710.5 ± 0.1 eV. The contribution of the second peak is minor (4.5% of the total Fe 2p3/2 

signal) and can be predominantly attributed to the iron oxide and/or iron phosphate.  

The O 1s signal after etching the tribofilm consists of two peaks at 530.3 ± 0.1 eV and 531.7 

± 0.1 eV. The first peak can be attributed to metal-oxides particularly ZnO rather than iron 

oxide since iron oxide mainly appears at lower binding energies (close to 529.8 eV) 

compared to ZnO. Moreover, iron oxide at the ZDDP tribofilm-substrate interface is not 

expected to endure within the contact according to the HSAB model [20, 22] and prevailing 

experimental results from Minfray et al. [30, 39]. The second peak at 531.7± 0.1 eV, assigned 

to non-bridging oxygen [22], corresponds to oxygen in the phosphate chain (-P=O and P-O-

M; where M is metal: Fe/Zn) and hydroxides [40, 42].  

In accordance with of the XPS results, a mixed Zn/Fe phosphates and zinc sulphide/oxide can 

be suggested as the composition of the tribofilm after etching lacking a distinct layer of Fe/Zn 

oxide/sulphide. Although the XPS Ar+ ion sputtering is a useful technique in order to inspect 

the tribofilm elemental distribution through its depth, compounds could be affected through 

preferential sputtering and intermixing the compounds [44] especially in the case of transition 

metals. In the case of iron, iron oxides can undergo reduction to other oxidation states [45, 

46]. Therefore, loss of analysis resolution is expected through depth profiling. 

a) b) 

CasaXP S (This string can be edit ed in  CasaXPS.DEF/PrintFootNote.txt)
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Figure 4. a) Sulphur and b) carbon detailed spectra on the very top surface and after etching 
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4.3 Surface and tribofilm inspection at the nano-metre scale: imaging and elemental-
mapping of the reaction layer 

4.3.1 Iron sulphide formation on interface 

Figure 5 shows the ZDDP tribofilm formed on the surface which is in agreement with our 

XPS data and previous reports [17, 22]. As shown in Figure 5 (Zn K-line), zinc exists 

extensively on the top layer while declines in concentration towards the bulk of the tribofilm. 

A small contribution of iron to the tribofilm can be detected in the bottom 30 nm of the 

tribofilm. Table 2 (a and b) compares the distribution of the tribofilm elements in top and 

middle layers of the tribofilm. The atomic concentration ratio of oxygen to phosphorous is 

similar in the both layers. In contrast to that, atomic concentration ratio of sulphur and zinc to 

phosphorous is decreased at mid-layer, suggesting less contribution of the sulphide to the 

tribofilm bulk.  

In Figure 5 (S K-line) two distinct areas can be discerned in which presence of sulphur is 

more pronounced; the very top layer and very bottom layer. Elemental EDX mapping of iron 

and sulphur presents the merged mapping of the iron and sulphur. At the very bottom layer of 

the tribofilm where sulphur concentration is intensified, solely detected elements are sulphur 

and iron. Considering the XPS data (Figure 4(a)) showing an entirely sulphide contribution 

from sulphur signal, a distinct and interfacial 5-10 nm iron sulphide layer formation is 

confirmed at the substrate of the steel. In agreement with Martin et al. [22] and Minfray et al. 

[30, 39, 47] no iron oxide layer is observed at the interface according to XPS and TEM-EDX 

mapping results.  
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Elemental EDX map of iron and sulphur Zn K 

  

Fe K S K 

  

P K O K 

  

Figure 5. EDX elemental mapping of the tribofilm from FIB sample  
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Figure 6 (S K-line) exhibits an area of the lamella in which a crack has been initiated. Once 

again, two distinct lines confirm the greater presence of sulphur on the very top-layer and 

very bottom-layer of the tribofilm which are more conspicuous in comparison to Figure 5. 

Also, the EDX merged mapping of iron and sulphur clearly indicates the formed iron 

sulphide interfacial layer at the substrate. Interestingly the elemental distribution of the 

tribofilm in the area in which a crack is initiated (Figure 6) is different from other part of the 

FIB sample in which no crack was observed (Figure 5). In contrast to Figure 5, zinc greatly 

contributes to the bulk of the tribofilm, probably mostly as zinc (poly) phosphate together 

with zinc sulphide. A punctilious consideration of the oxygen and phosphorous maps asserts 

that oxygen and phosphorous coexist at the same areas of the maps corresponding to 

phosphates. Furthermore, in the tribofilm bulk, above the iron-sulphide interfacial layer, 

sulphur and zinc signals enhanced at a same area inferring an increased zinc sulphide 

contribution to the tribofilm bulk associated with the cracked surface. The enhanced sulphide 

formation on the substrate and in the tribofilm bulk states an escalated sulfur (re)activity 

close the cracked site. 

Comparing Figure 5 and Figure 6, it is clear that the tribofilm unevenly distributed on the 

surface of the roller and the thickness of the tribofilm varies from 20 nm to 100 nm. 

Thickness variation is probably due to the uneven wear on the surface resulted from localised 

surface damage. The elemental demonstration of the tribofilm, shown in Figure 5, is in 

agreement with the literature [17] and our XPS results; while Figure 6 demonstrates an 

altered compound distribution in the tribofilm near to the crack initiated site at which iron 

sulphide formation is enhanced. This suggests that XPS data is influenced by the averaging 

effect over the analysed area. In addition, XPS depth profiling could not detect a distinct 

layer on the interface implying a localised formation of the iron sulphide near the micropit 

verifying previous studies [6, 48] which suggest localised enrichment of sulfur traces around 

the pits. 
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4.3.2 Effect of the lubricant additive on surface cracks 

Alongside the iron sulphide formation induced by the interaction of the ZDDP elements and 

steel substrate, lubricant additives can interact with surface initiated cracks [6, 49]. 

Lubricants can enter the crack leading to an accelerated fatigue crack propagation by 

reducing the friction acting between the crack faces [50] or by exerting hydraulic pressure on 

the crack faces [50, 51]. The ingress of large amount of oxygen and carbon into the 

microcracks has been observed in a tapered roller bearing lubricated with base oil [52]. 

Alongside base oil, additives also penetrate into the microcracks. Additive interaction with 

the crack faces has also been shown previously [49, 53, 54]. However, key understanding of 

Table 2. EDX spectra  and atomic concentration ratio of the tribofilm elements at a) top layer 

b) middle layer 
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this interaction with regards to reaction kinetics and chemical composition of the compounds 

derived from the interaction is missing. Also, the effect of additive traces inside the 

microcracks on the crack propagation is arguable. Evans et al. [55] have not observed 

corrosive attack of sulphur- and phosphorus-containing additives to the surface, unless the 

extreme pressure additive is highly active [56]. On the other hand, several reports [5-7, 9, 57] 

evidence reduced fatigue life associated with enhanced chemical attack of additives. 

Elemental EDX merged mapping of iron and sulphur 

  

Fe K S K 

  

P K Zn K 
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Fe and P merged-mapping Fe and Zn merged-mapping 

  

O K Fe and O merged-mapping 

  

Figure 6. EDX elemental mapping of the tribofilm from FIB sample in the cracked zone 
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The ingress of the ZDDP elements into the crack can be clearly observed in Figure 6 which 

presents a surface initiated crack. Table 3 specifies the atomic concentration ratio of the 

ZDDP elements inside the crack at different crack zones. Considering the ratios presented in 

Table 2, an enormous contribution of sulphur species is observed inside the crack. The 

atomic concentration ratio of sulphur to phosphorous in the top layer of the tribofilm is 0.6 as 

an average (according to the XPS results) and 0.3 in the bulk of the tribofilm. However, 

inside the crack the ratio is always larger than 1, reaching 2.9 at the crack-mouth which is 

greater than the ratio in ZDDP molecule ( ). The atomic concentration of the 

phosphorous and zinc at the mid-crack and crack-tip remained similar while no zinc was 

detected at the crack-mouth. In contrast to phosphorous and zinc, sulphur atomic 

concentration is higher at crack-mouth and decreases towards the crack-tip. In agreement 

with the presented results in Table 3, an enhanced sulphur concentration inside a crack, 

induced by rolling-sliding contacts, is observed by Meheux et al. [49]. 

The affinity of the additive to interact with the crack faces and form a compound inside the 

crack can also be addressed through electronic state of the molecules. At the crack tips where 

increase in interatomic distance is large, due to the change in the Morse potential, activation 

energy of the reaction is decreased. Reduction in the required activation energy, favours the 

reaction of the additive elements with the crack tip [18]. As shown the concentration of 

sulphur is high inside the crack favouring formation of iron-sulphur compounds.  

Iron sulphide in the presence of oxygen can be oxidised to other types of iron sulphide [58] or 

magnetite iron oxide [27]. While oxidation of the iron sulphide at high temperatures (around 

500°C) can produce magnetite or iron oxide (which can occur in the flash temperatures 

happening in the asperity contacts), oxidation at the lower temperatures can lead to the 

conversion of iron sulphide to the other types of iron sulphides. 

Potentially detrimental influence of the chemical interaction of the additive with the 

microcracks can be considered as stress corrosion cracking (SCC) induced by penetrated oil 

and additives [18, 59], which can reduce the self-healing ability of the crack [53] and 

accelerate crack propagation in the presence of small amount of water and oxygen [59]. Since 

iron sulphide is electro conductive, localised formation of the iron sulphide around the pit or 

crack, can induce localised electrolytic corrosion inside the pit (iron as an anode) in the 

presence of electrolyte (water) forming a local electrochemical cell [58]. In other words, iron 
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sulphide in the presence of water and oxygen depending on the pH of the local environment 

can react to generate iron hydroxide+ sulphuric acid or ferrous iron + sulphate + acidity [60]. 

Sulphate and acidic reaction products can enhance SCC. Water ingress into the crack can be 

expected by considering capillary crack condensation (CCC) hypothesis [61]. The CCC 

suggests that small amount of dissolved water can induce significant amount of condensed 

water inside the microcracks [61]. These phenomena can be addressed as stress corrosion 

crack propagation effect of the additive elements especially sulphur. Moreover, presence of 

additive elements inside the crack as tribofilm, may reduce the friction coefficient between 

crack faces [62] and  supress adhesion of the crack faces under rolling contact which results 

in accelerated crack propagation [50]. In agreement with the results in this study, enhanced 

existence of the sulphur at the crack tip was observed for the lubricant formulations with 

shorter fatigue lives [49, 62] which supports SCC effect of sulphur on the microcracks. 

 

In contrast to the SCC negative influence of the additive interaction with the microcracks, it 

is suggested that formation of the tribofilm earlier than crack initiation can act as sticking 

plaster which mitigates crack propagation [49]. Furthermore, if traces of ZDDP elements 

Table 3. Atomic concentration ratio of the ZDDP elements at the a) crack mouth b) middle of 

the crack c) crack tip 
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inside the crack is recognised as tribofilm [62], CCC can be mitigated leading to an alleviated 

SCC effect. However, the effect of water on ZDDP tribofilm removal [40, 42] and hydrolysis 

[63, 64] should also be acknowledged. In other words, if water in lubricant is considerable 

enough to remove the tribofilm, the SCC can be intensified as a result of reactive sulphur 

species regardless of ascribing the additive elements inside the crack to an additive-derived 

film or traces of additive decomposition products. 

As far as micropitting is concerned, Laine et al. [10] attributed the enhancing properties of 

ZDDP to its preventive effect on proper running-in wear of the rough surfaces. However, 

considering solely the additive influence on running-in, cannot entirely justify the O'Connor’s 

[13] results showing that micropitting performance significantly depends on the chemical 

structure of the additives. The findings in this study shows an upsurge of sulphur reactivity 

and its localised attack under severe conditions leading to an intensified iron sulphide 

formation and subsequent sulphur ingress into the crack. The interaction of the sulphur with 

the crack faces and tip can induce stress corrosion cracking and accelerated fatigue crack 

growth. Thus, sulphur and steel interactions which is capable of protecting the surface from 

scuffing and abrasive wear, can facilitate surface fatigue initiation and propagation under 

certain circumstances. Therefore, substantial role of enhanced chemical attack of the 

additive-derived compounds especially sulphur species in micropitting-enhancing behaviour 

of ZDDP should be put forward alongside attributing the behaviour of ZDDP to its tendency 

to impede lubricant entrainment [65], chemically modified tribofilm in the severe contact 

[12] and delaying effect on running-in [10]. 

5 Conclusions 

In the current study the tribochemical interaction of ZDDP with the steel surface under severe 

micropitting wear has been studied. A 5-10 nm thin iron sulphide layer is visualised on the 

interface as a separate layer underneath the phosphate layer with an altered distribution of 

tribofilm elements near the crack site. Iron sulphide reaction layer is localised on the surface 

of steel and enriched with higher concentration of sulphur near the cracked site implying 

greater EP activity of ZDDP near the crack site. Following removal of the tribofilm, grey 

reaction layer was observed on the wear track preferentially surrounding the micropits which 

may correspond to sulphur attack to the surface and locally enhanced formation of iron-

sulphur compounds. 
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Elemental mapping of the tribofilm generated from ZDDP showed the heterogeneous nature 

of the tribofilm throughout its depth and more interestingly from one site to the other site of 

the FIB lamella. Distribution of the ZDDP tribofilm elements in the tribofilm near a crack-

initiated site is different from a substrate site without crack. 

ZDDP additive elements have been observed inside the crack with the enhanced contribution 

of the sulphur. The ZDDP elemental distribution inside the crack is different from crack 

mouth to crack tip. The potential influence of the additive attack to the surface and crack 

faces and tip has been discussed considering the current existing literature. While iron 

sulphide formation can mitigate scuffing and abrasive wear, presence of the ZDDP traces 

inside the initiated cracks may induce stress corrosion crack propagation especially in a 

bearing which operates in a tribocorrosive environment where water is diffused into the 

lubricant. 

6 Acknowledgments 

This study was funded by the FP7 program through the Marie Curie Initial Training Network 

(MC-ITN) entitled “FUTURE-BET-Formulating an Understanding of Tribocorrosion in 

ArdUous Real Environments – Bearing Emerging Technologies” (317334) and was carried 

out at University of Leeds and SKF Engineering and Research Centre. The authors would 

like to thank to all FUTURE-BET partners whom had kind discussions on the topic and the 

methodology. 

7 References: 

[1] X. Wu, J. Zhang, W. Qi, X. Gu, L. Zhang, The effect of SP gear oil on load 
capacity of carburized gears, in: P. MCI, FRANCE  (1999) (Ed.) 4th World congress 
on gearing and power transmission Paris, France, 1999. 
[2] H.S. Hong, M. Huston, B. O'Connor, N. Stadnyk, Evaluation of surface fatigue 
performance of gear oils, Lubr. Sci., 10 (1998) 365-380. 
[3] W. Tuszynski, An effect of lubricating additives on tribochemical phenomena in a 
rolling steel four-ball contact, Tribol. Lett., 24 (2006) 207-215. 
[4] H.K. Trivedi, N.H. Forster, L. Rosado, Rolling contact fatigue evaluation of 
advanced bearing steels with and without the oil anti-wear additive tricresyl 
phosphate, Tribol. Lett., 41 (2011) 597-605. 
[5] G. Wan, E. Amerongen, H. Lankamp, Effect of extreme-pressure additives on 
fatigue life of rolling bearings, J. Phys. D: Appl. Phys., 25 (1992) 147-153. 
[6] A. Torrance, J. Morgan, G. Wan, An additive's influence on the pitting and wear of 
ball bearing steel, Wear, 192 (1996) 66-73. 
[7] H.P. Nixon, H. Zantopulos, Lubricant additives, friend or foe. What the equipment 
design engineer needs to know, Lubr. Eng., 51 (1995) 815-822. 



Page 22 of 26

Acc
ep

te
d 

M
an

us
cr

ip
t

[8] H. Pasaribu, P. Lugt, The composition of reaction layers on rolling bearings 
lubricated with gear oils and its correlation with rolling bearing performance, Tribol. 
Trans., 55 (2012) 351-356. 
[9] A. Torrance, Chemical and microstructural changes induced in bearing steel by 
rolling contact, Wear, 122 (1988) 363-376. 
[10] E. Lainé, A.V. Olver, M.F. Lekstrom, B.A. Shollock, T.A. Beveridge, D.Y. Hua, 
The effect of a friction modifier additive on micropitting, Tribol. Trans., 52 (2009) 526-
533. 
[11] P. Brechot, A. Cardis, W. Murphy, J. Theissen, Micropitting resistant industrial 
gear oils with balanced performance, Ind. Lubr. Tribol., 52 (2000) 125-136. 
[12] S. Soltanahmadi, A. Morina, M.C. van Eijk, I. Nedelcu, A. Neville, Investigation 
of the effect of a diamine-based friction modifier on micropitting and the properties of 
tribofilms in rolling-sliding contacts, Journal of Physics D: Applied Physics, 49 (2016) 
505302. 
[13] B. O'connor, The influence of additive chemistry on micropitting, Gear 
Technology, 22 (2005) 34-41. 
[14] H. Spikes, A. Olver, P. Macpherson, Wear in rolling contacts, Wear, 112 (1986) 
121-144. 
[15] A. Oila, S. Bull, Assessment of the factors influencing micropitting in 
rolling/sliding contacts, Wear, 258 (2005) 1510-1524. 
[16] K. Allum, E. Forbes, The load-carrying properties of metal dialkyl 
dithiophosphates: the effect of chemical structure, in:  Proceedings of the Institution 
of Mechanical Engineers, Conference Proceedings, SAGE Publications, 1968, pp. 7-
14. 
[17] H. Spikes, The history and mechanisms of ZDDP, Tribol. Lett., 17 (2004) 469-
489. 
[18] T. Fischer, Tribochemistry, Annual Review of Materials Science, 18 (1988) 303-
323. 
[19] M. Najman, M. Kasrai, G. Bancroft, X-ray absorption spectroscopy and atomic 
force microscopy of films generated from organosulfur extreme-pressure (EP) oil 
additives, Tribol. Lett., 14 (2003) 225-235. 
[20] J.M. Martin, Antiwear mechanisms of zinc dithiophosphate: a chemical hardness 
approach, Tribol. Lett., 6 (1999) 1-8. 
[21] M. Kasrai, M.S. Fuller, G.M. Bancroft, E.S. Yamaguchi, P.R. Ryason, X-ray 
absorption study of the effect of calcium sulfonate on antiwear film formation 
generated from neutral and basic Zddps: Part 2—sulfur species, Tribol. Trans., 46 
(2003) 543-549. 
[22] J.M. Martin, C. Grossiord, T. Le Mogne, S. Bec, A. Tonck, The two-layer 
structure of Zndtp tribofilms: Part I: AES, XPS and XANES analyses, Tribol. Int., 34 
(2001) 523-530. 
[23] Z. Zhang, E. Yamaguchi, M. Kasrai, G. Bancroft, X. Liu, M. Fleet, Tribofilms 
generated from ZDDP and DDP on steel surfaces: Part 2, chemistry, Tribol. Lett., 19 
(2005) 221-229. 
[24] R. Mourhatch, P.B. Aswath, Tribological behavior and nature of tribofilms 
generated from fluorinated ZDDP in comparison to ZDDP under extreme pressure 
conditions—Part 1: Structure and chemistry of tribofilms, Tribol. Int., 44 (2011) 187-
200. 
[25] M. De Barros, J. Bouchet, I. Raoult, T. Le Mogne, J. Martin, M. Kasrai, Y. 
Yamada, Friction reduction by metal sulfides in boundary lubrication studied by XPS 
and XANES analyses, Wear, 254 (2003) 863-870. 



Page 23 of 26

Acc
ep

te
d 

M
an

us
cr

ip
t

[26] M. Hallouis, M. Belin, J. Martin, The role of sulphur in ZDDP‐induced reaction 

films formed in the presence of ZDDP: Contribution of electron spectroscopic 
imaging technique, Lubr. Sci., 2 (1990) 337-349. 
[27] M. Watanabe, M. Sakuma, T. Inaba, Y. Iguchi, Formation and oxidation of 
sulfides on pure iron and iron oxides, Materials transactions-JIM, 41 (2000) 865-872. 
[28] S. Jahanmir, Wear reduction and surface layer formation by a ZDDP additive, J. 
Tribol., 109 (1987) 577-586. 
[29] W. Glaeser, D. Baer, M. Engelhardt, In situ wear experiments in the scanning 
Auger spectrometer, Wear, 162 (1993) 132-138. 
[30] C. Minfray, T. Le Mogne, A. Lubrecht, J.-M. Martin, Experimental simulation of 
chemical reactions between ZDDP tribofilms and steel surfaces during friction 
processes, Tribol. Lett., 21 (2006) 65-76. 
[31] J. Bell, K. Delargy, A. Seeney, Paper IX (ii) The Removal of Substrate Material 
through Thick Zinc Dithiophosphate Anti-Wear Films, Tribology series, 21 (1992) 
387-396. 
[32] G. Smith, J. Bell, Multi-technique surface analytical studies of automotive anti-
wear films, Applied surface science, 144 (1999) 222-227. 
[33] Z. Yin, M. Kasrai, M. Fuller, G.M. Bancroft, K. Fyfe, K.H. Tan, Application of soft 
X-ray absorption spectroscopy in chemical characterization of antiwear films 
generated by ZDDP Part I: the effects of physical parameters, Wear, 202 (1997) 
172-191. 
[34] M. Najman, M. Kasrai, G. Bancroft, Chemistry of antiwear films from ashless 
thiophosphate oil additives, Tribol. Lett., 17 (2004) 217-229. 
[35] Z. Yin, M. Kasrai, G.M. Bancroft, K.F. Laycock, K.H. Tan, Chemical 
characterization of antiwear films generated on steel by zinc dialkyl dithiophosphate 
using X-ray absorption spectroscopy, Tribol. Int., 26 (1993) 383-388. 
[36] Z. Zhang, E. Yamaguchi, M. Kasrai, G. Bancroft, Tribofilms generated from 
ZDDP and DDP on steel surfaces: Part 1, growth, wear and morphology, Tribol. 
Lett., 19 (2005) 211-220. 
[37] G. Pereira, D. Munoz-Paniagua, A. Lachenwitzer, M. Kasrai, P.R. Norton, T.W. 
Capehart, T.A. Perry, Y.-T. Cheng, A variable temperature mechanical analysis of 
ZDDP-derived antiwear films formed on 52100 steel, Wear, 262 (2007) 461-470. 
[38] B. Kim, R. Mourhatch, P.B. Aswath, Properties of tribofilms formed with ashless 
dithiophosphate and zinc dialkyl dithiophosphate under extreme pressure conditions, 
Wear, 268 (2010) 579-591. 
[39] C. Minfray, J. Martin, C. Esnouf, T. Le Mogne, R. Kersting, B. Hagenhoff, A 
multi-technique approach of tribofilm characterisation, Thin Solid Films, 447 (2004) 
272-277. 
[40] I. Nedelcu, E. Piras, A. Rossi, H. Pasaribu, XPS analysis on the influence of 
water on the evolution of zinc dialkyldithiophosphate–derived reaction layer in 
lubricated rolling contacts, Surface and Interface Analysis, 44 (2012) 1219-1224. 
[41] D.B. Williams, C.B. Carter, The transmission electron microscope, Springer, 
1996. 
[42] S. Soltanahmadi, A. Morina, M.C.P. van Eijk, I. Nedelcu, A. Neville, 
Tribochemical study of micropitting in tribocorrosive lubricated contacts: The 
influence of water and relative humidity, Tribol. Int., 107 (2017) 184-198. 



Page 24 of 26

Acc
ep

te
d 

M
an

us
cr

ip
t

[43] D. Brion, Etude par spectroscopie de photoelectrons de la degradation 
superficielle de FeS 2, CuFeS 2, ZnS et PbS a l'air et dans l'eau, Applications of 
Surface Science, 5 (1980) 133-152. 
[44] C. Wagner, D. Briggs, M. Seah, Practical surface analysis, Auger and X-ray 
Photoelectron Spectroscopy, 1 (1990) 595. 
[45] E. Paparazzo, XPS analysis of iron aluminum oxide systems, Applied surface 
science, 25 (1986) 1-12. 
[46] P. Mills, J. Sullivan, A study of the core level electrons in iron and its three 
oxides by means of X-ray photoelectron spectroscopy, Journal of Physics D: Applied 
Physics, 16 (1983) 723. 
[47] C. Minfray, J.-M. Martin, M. De Barros, T. Le Mogne, R. Kersting, B. Hagenhoff, 
Chemistry of ZDDP tribofilm by ToF-SIMS, Tribol. Lett., 17 (2004) 351-357. 
[48] T. Sakamoto, H. Uetz, J. Föhl, M. Khosrawi, The reaction layer formed on steel 
by additives based on sulphur and phosphorus compounds under conditions of 
boundary lubrication, Wear, 77 (1982) 139-157. 
[49] M. Meheux, C. Minfray, F. Ville, T. Mogne, A. Lubrecht, J.-M. Martin, H.-P. 
Lieurade, G. Thoquenne, Effect of lubricant additives in rolling contact fatigue, 
Proceedings of the Institution of Mechanical Engineers, Part J: Journal of 
Engineering Tribology, 224 (2010) 947-955. 
[50] A. Bower, The influence of crack face friction and trapped fluid on surface 
initiated rolling contact fatigue cracks, J. Tribol., 110 (1988) 704-711. 
[51] M. Kaneta, Y. Murakami, Effects of oil hydraulic pressure on surface crack 
growth in rolling/sliding contact, Tribol. Int., 20 (1987) 210-217. 
[52] R.D. Evans, K.L. More, C.V. Darragh, H.P. Nixon, Transmission electron 
microscopy of boundary-lubricated bearing surfaces. Part I: Mineral oil lubricant, 
Tribol. Trans., 47 (2004) 430-439. 
[53] G. Galvin, H. Naylor, Effect of lubricants on the fatigue of steel and other metals, 
Proceedings of the Institution of Mechanical Engineers, 179 (1964) 857-875. 
[54] P.U. Aldana, F. Dassenoy, B. Vacher, T. Le Mogne, B. Thiebaut, A. Bouffet, Anti 
spalling effect of WS2 nanoparticles on the lubrication of automotive gearboxes, 
Tribol. Trans., (2015) 00-00. 
[55] R.D. Evans, K.L. More, C.V. Darragh, H.P. Nixon, Transmission electron 
microscopy of boundary-lubricated bearing surfaces. Part II: mineral oil Lubricant 
with sulfur-and phosphorus-containing gear oil additives, Tribol. Trans., 48 (2005) 
299-307. 
[56] R.D. Evans, H. Nixon, C.V. Darragh, J.Y. Howe, D.W. Coffey, Effects of extreme 
pressure additive chemistry on rolling element bearing surface durability, Tribol. Int., 
40 (2007) 1649-1654. 
[57] H.P. Nixon, Effects of extreme pressure additives in lubricants on bearing 
fatigue life, Iron and Steel Engineer, 75 (1998) 21-26. 
[58] F.O. Pessu, Investigation of pitting corrosion of carbon steel in sweet and sour 
oilfield corrosion conditions: a parametric study, in, University of Leeds, 2015. 
[59] S. Jahanmir, Examination of wear mechanisms in automotive camshafts, Wear, 
108 (1986) 235-254. 
[60] P.J. Sullivan, J.L. Yelton, K. Reddy, Iron sulfide oxidation and the chemistry of 
acid generation, Environmental Geology and Water Sciences, 11 (1988) 289-295. 
[61] P. Schatzberg, I.M. Felsen, Effects of water and oxygen during rolling contact 
lubrication, Wear, 12 (1968) 331-342. 



Page 25 of 26

Acc
ep

te
d 

M
an

us
cr

ip
t

[62] V.C. Hostis BL, Minfray C, Frégonèse M, Jarnias F, Alder Da-Costa D’Ambros, 
Impact of lubricant formulation on pitting of manual transmission gears., In: 42nd 
Leeds-Lyon symposium on tribology, Lyon, France, 7-9 September 2015. 
[63] H. Spedding, R. Watkins, The antiwear mechanism of zddp's. Part I, Tribol. Int., 
15 (1982) 9-12. 
[64] M.L.S. Fuller, M. Kasrai, G.M. Bancroft, K. Fyfe, K.H. Tan, Solution 
decomposition of zinc dialkyl dithiophosphate and its effect on antiwear and thermal 
film formation studied by X-ray absorption spectroscopy, Tribol. Int., 31 (1998) 627-
644. 
[65] L. Taylor, H. Spikes, Friction-enhancing properties of ZDDP antiwear additive: 
part I—friction and morphology of ZDDP reaction films, Tribol. Trans., 46 (2003) 303-
309. 

 

 

Keywords: Transmission Electron Microscopy (TEM); X-ray Photoelectron 

spectroscopy (XPS) surface analysis; Iron sulphide; Zinc Dialkyl DithioPhosphate 

(ZDDP); Micropitting 

 

 

 

Highlights: 

 

• A ZDDP-derived locally formed iron-sulphide layer is detected on the steel 
surface 

• The iron-sulphide is a 5-10 nm thin distinct layer at steel-phosphate interface 

• Near the surface-crack site the elemental distribution of the tribofilm is altered  

• Sulphur concentration is enhanced in the iron-sulphide layer near the 
cracked-site 

• ZDDP elements are detected inside the crack with a greater contribution of 
sulphur 
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