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Quantum Cascade Thermo Photovoltaic Structures
for Broadband Energy Conversion
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Bangladesh University of Engineering and Technology
Dhaka-1205
Email: sakib@eee.buet.ac.bd

Abstract—A quantum cascade thermo photovoltaic struc-
ture is designed to absorb broadband blackbody radiation at
1500 K temperature. A fully quantum mechanical model 2'predicts
35 mV /period open-circuit voltage and 2.94 kA /cm”® short-
circuit current from this structure.

I. INTRODUCTION

The worldwide increasing demand for electrical energy
due to massive technological advancement and the declining
reserve of the traditional energy sources are among the major
challenges of the time. Emission of COs, due to burning fossil
fuels for producing energy, is causing the world’s climate to
change adversely. Renewable sources of energy have become
an absolute necessity for a sustainable future. Among the
renewable energy sources, thermo photovoltaic (TPV) energy
conversion devices that absorb the thermal blackbody radiation
spectra at 1300 K—2000 K temperature range have not been
explored much. Recently, quantum cascade structures based on
intersubband transitions have been designed for TPV energy
conversion using InGaAs/AlAsSb material system [1]—[3].
Quantum cascade structures employing the intersubband tran-
sitions have the potential of tailoring absorption energy and
thus increasing efficiency. However, InGaAs/A1AsSb material
system has limited capacity in tailoring absorption energy as
the X-valley lies at ~0.75 eV of conduction band offset.
Although Refs. [1] and [2] presented an analysis using a
semi-classical approach, a much rigorous quantum mechanical
approach is required to predict the performances of these
devices.

In this work, we design a quantum cascade structure based
on GaN/AIN material system for efficient thermo photovoltaic
energy conversion. The designed structure absorbs over a
broad spectral range around the peak of the blackbody radia-
tion at 1500 K. We develop and implement a fully quantum
mechanical model to calculate the open-circuit voltage (V)
and the current-voltage (J-V') relation of the designed TPV
structure. We find that the thermo photo-generated V,,. across
a single stage of the structure is 35 mV and the short-circuit
current density (J..) is 2.94 kA /cm?.

II. STRUCTURE DESIGN

We choose GaN/AIN material system for our structure
for its conduction band discontinuity of ~2 eV so that
high energy photons can be absorbed. Additionally, electron
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scattering rates due to longitudinal optical (LO) phonons in
GaN/AIN material system are very fast so that the excited
electrons can be collected at the terminals efficiently than
InGaAs/AlAsSb material system. The absorption linewidth of
nitride material is also large compared to that of the other
semiconductor materials of choice. Therefore, photons over a
broad energy range can be absorbed in a GaN/AIN material
system based on quantum cascade structure, which will result
in higher current density.
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Fig. 1. Conduction band profile of one period of the designed structure. The
dashed lines represent change when photo-excited carriers are accumulated at
the right side.

The internal electric field generated from the spontaneous
and piezoelectric polarization field is taken into account
while solving the bandstructure [4], [5]. The conduction
band diagram and the relevant moduli-squared wavefunctions
of the designed structure are shown in Fig. 1. The well
and barrier thicknesses of one period are, in Angstrom,
10/30/5/20/10/19/10/19/10/21 starting with an AIN layer. The
layer thickness with the bold number is the active region
quantum well, which is n-type doped with a density of 5x 107
cm—3. The designed structure has two upper transition states
so that it can absorb blackbody energy over a broad spectral



range. The relaxation path of the excited electrons is designed
as a stair case of LO phonon resonance energies. The excited
electrons relax through three LO phonon emission steps in
only 4.5 ps, which is faster than that in similar structures in
Ref. [1].

ITII. ABSORPTION SPECTRUM
The spectrum of absorption can be calculated by [1]

azp(fw) = 3 z” - (N; - N;)
1€lm jEum
(1)
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where n = /e, “um” is the upper miniband, “Im” is the
lower miniband, w is the radian frequenecy, n is the refractive
index, c is the velocity of light, e is the charge of an electron,
h is the Planck’s constant, E; is the energy value of the upper
level, E; is the energy value of the lower level, V; and N; are
the electron densities of subbands i and j, z;; is the dipole
matrix element between states i and j, and I';; is the linewidth
of absorption. The full width at half maximum (FWHM) of
I';; has been assumed to be 5% of the transition energy [2].
The absorption spectrum of the designed TPV structure is
shown in Fig. 2 along with the blackbody radiation spectrum
at 1500 K. The absorption spectrum has two peaks at ~0.36
eV and ~0.42 eV that cover a broad region of blackbody
spectrum around the peak at 1500 K. The FWHM of the
absorption spectrum is 95 meV which is 20% of the FWHM of
the blackbody radiation spectrum at 1500 K and much greater
than the FWHM of the similar TPV structures in Ref. [1].
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Fig. 2. Absorption spectrum of the designed TPV structure (solid line) and
the blackbody radiation spectrum at 1500 K (dashed line).

IV. CURRENT-VOLTAGE RELATION

To calculate the V,. due to the photo-excited carriers in
the designed structure, we take an isolated period of the
structure. The number of photo-excited carriers is calculated

The electron-photon scattering rate is calculated by Fermi’s
golden rule [6], [7]
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where m is the mass of an electron, w is the frequency of the
incident light, F, is the electric field of the incident light, T’
is the linewidth of absorption, and ¢, j are the wavefunctions.
The rate of relaxation of the excited electrons by emitting LO

phonons is concurrently calculated. The electron-LO phonon
scattering rate is given by [6]

2
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where H;_ph is the electron-LO phonon interaction hamil-

tonian, k, and k; are the wave numbers of the upper and
lower energy level, and fuwr,o is the LO phonon energy. Since
the electrons are redistributed in space, Poisson’s equation
is solved to calculate the change in internal electric field.
The internal electric field created due to the redistribution
of carriers is added to the conduction band energy profile
and then Schrodinger equation is solved to calculate the new
wavefunctions and energy levels. Iterative solution of coupled
Schrodinger and Poisson’s equations in conjunction with the
rate equations that include the electron excitation due to
incident photons and relaxation of excited electrons due to
LO phonon emission results electron density build-up in one
side than that in the other side. Then from the difference of
ground state energies of two neighboring stages, we find the
Voe. We can express the equation as

‘/oc =E1,p _El,(p—l)v (4)

where p is period number. In Fig. 1, the dashed line shows a
change in the conduction band profile due to the accumulation
of photo-excited carriers to the right side of the structure.
In calculating J-V relation, a periodic boundary condition is
assumed. So, input current to the structure is equal to the
current leaving the structure.
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Fig. 3. The photo-generated open-circuit voltage (Vi) of the designed TPV
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The V. of one stage of the structure is calculated as 35 mV
at room temperature. The V;,. of the overall structure will be
multiplied by the number of stages in the structure. In Fig. 3,
we show V. against temperature. We note that V. decreases
as the temperature increases. The J-V characteristics is shown
in Fig. 4, which shows that the open-circuit voltage is approx-
imately 35 mV per period and short-circuit current density of
2.94 kA /cm? from this structure. It is also seen that the J-V
relation does not exactly follow the well known exponential
form of classical diode equation model as shown in [1]. Hence,
a quantum mechanical model is necessary for characterization
of such quantum cascade structures.
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Fig. 4. Current-voltage (J-V) relation of the designed TPV structure using
quantum mechanical model.

V. CONCLUSION

In conclusion, we designed a quantum cascade thermo
photovoltaic structure using GaN/AlGaN material system.
The designed structure absorbs over a broad range around
~0.4 eV of blackbody radiation at 1500 K. We developed
a fully quantum mechanical model to calculate the open-
circuit voltage and the current-voltage relation of the designed
quantum cascade structure. The current-voltage relation of the
thermo photovoltaic quantum cascade structure found using
the developed model is different from that found using a semi-
classical model.
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