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We have isolated dental pulp cells (DPCs) from three healthy (hDPCs) and three carious

(cDPCs) donors and shown that compared to hDPCs cells isolated from superficial

carious lesions show higher clonogenic potential; show an equivalent proportion of cells

with putative stem cell surface markers; show enhanced matrix mineralization capability;

have enhanced angiogenic marker expression and retain the inflammatory phenotype

in vitro characteristic of superficial caries lesions in vivo. Our findings suggest that cDPCs

may be used for further investigation of the cross talk between inflammatory, angiogenic

and mineralization pathways in repair of carious pulp. In addition cells derived from

carious pulps (almost always discarded) may have potential for future applications in

mineralized tissue repair and regeneration.
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INTRODUCTION

Dental pulp cells (DPCs) contain a subset of stem cells DPSCs (Gronthos et al., 2000; Shi et al., 2001)
which under appropriate conditions can differentiate intomultiple lineages in vitro (Dominici et al.,
2006; Huang et al., 2009;Martens et al., 2012). Although, evidence of differentiated functional tissue
derived from transplanted DPSCs is limited some studies show that such cells can interact with
biologically compatible scaffolds as part of successful tissue engineering strategies (El-Gendy et al.,
2015). As an example of this transplantation of DPSCs into SCID mice was shown to result in
formation of dentin pulp-like tissue structures (Gronthos et al., 2002). In situ DPCs are involved
in dentin repair following damage by noxious stimuli (Gronthos et al., 2000, 2002; El-Gendy et al.,
2015) and ease of access along with routine tooth banking make dental pulp an attractive potential
source of multipotent cells for autologous regenerative therapies (Gronthos et al., 2000, 2002;
Krebsbach and Robey, 2002; Gafni et al., 2004; Nakashima et al., 2004; Papaccio et al., 2006; Zhang
et al., 2006; d’Aquino et al., 2008; Lin et al., 2008). In fact such cells have been used in maxillofacial
reconstruction and periodontal ligament regeneration protocols (Huang et al., 2009; Lei et al., 2014;
Ledesma-Martínez et al., 2015).
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Inflammation in dental pulp induces mineralized tissue
regeneration which is important for healing. This process is
regulated locally by growth factors and other cytokines (Simon
et al., 2011; Smith et al., 2012). In response to appropriate
stimuli DPSCs differentiate into odontoblast-like cells and form
reparative dentin. This mineralization process is accompanied
by neo- vascularization (Freeman et al., 2015) and dental pulp
is therefore considered an ideal source of mesenchymal stem
cells (MSCs) for regeneration of vascularized hard tissue (El-
Gendy et al., 2015). Although, there is a substantial literature
on DPCs derived from healthy pulp much less information is
available on DPCs derived from caries affected teeth especially
with respect to stem cell characterization (Yamada et al., 2010)
and whether such cells retain the same regenerative abilities
as hDPCs (Gronthos et al., 2000, 2002; Huang et al., 2009;
Suchanek et al., 2009; Yalvac et al., 2010; Rodríguez-Lozano
et al., 2011; Eslaminejad et al., 2015). This study compares
cDPCs isolated from teeth with superficial caries (Yamada et al.,
2010) and hDPCs with respect to clonogenic potential, putative
stem cell marker expression, mineralization capacity, expression
of angiogenic genes (PECAM-1 and VEGFR2), and genes and
proteins associated with the inflammatory process (TLR-2/4 and
IL-6/8).

MATERIALS AND METHODS

Cell Isolation and Culture
Freshly extracted healthy and carious third molars were collected
from adult patients. Teeth were obtained through Leeds
Dental and Skeletal tissue bank (LDI Research Tissue Bank;
130111/AH/75), with informed patient consent. Carious lesions
were chosen based on depth of decay in the dentin layer and
assessment of this was made during sectioning of teeth both
visually and with a WHO periodontal probe. Teeth with >2 mm
of sound dentin measured from the edge of the carious lesion
to the pulp tissue were included in this study and categorized
as shallow caries (McLachlan et al., 2004; Bjørndal, 2008; Kim
et al., 2010). DPCs were isolated by enzymatic digestion of
pulp tissue as previously described (Alkharobi et al., 2016).
hDPCs and cDPCs at passage 4 were seeded in 6-well plates
at 105 cells per well under basal conditions (α-MEM 20%
FBS, 200 mM L-glutamine, and 100 U/mL Pen Strep). At
approximately 80% confluency cells were cultured in triplicate
under basal or matrix mineralization conditions (basal medium
+ 10 nM dexamethasone, 100 µM L-ascorbic acid). Cultures
were routinely terminated at 1 and 3 wk. for qRT-PCR analysis
cytokine assay and histochemical staining [Alkaline Phosphatase
(ALP) and Alizarin red stains]. Experiments were performed
with cells derived from three healthy and three carious donors
with technical triplicates at each time point and for each culture
condition.

Colony Forming Efficiency Assay
Freshly isolated cells from both hDPCs and cDPCs (n= 3 in both
instances) were seeded at 106 cells/dish in 10 cm Petri dishes and
cultured under basal conditions for 14 days, washed with PBS and
fixed with absolute ethanol for 20 min. Cells were stained with

10% (v/v) Trypan Blue for 5 min and washed gently with distilled
water. Aggregates of >50 cells were defined as a colony and were
counted under the light microscope.

Flow Cytometry
Appropriate antibody dilutions were determined by titration
and isotype controls were used in conjunction which each
test antibody (see Table 1). Staining was performed essentially
according to manufacturer protocols. Briefly 106 cells were
incubated with 0.1% Fixable Viability Stain (FVS) in 1 ml PBS at
4◦C for 30–60 min in the dark. Cells were washed 2 × 2 ml with
staining buffer and Fc receptors were blocked (0.5% blocking
solution 10 min RT). Cells were then incubated with CD146/PE-
Cy7, CD90/PerCP-Cy5.5, CD105/BV421, CD45/APC-Cy7, and
CD31/FITC in 100 µL of staining buffer and incubated at 4◦C
for 30–60 min. Brilliant stain buffer was added (50 µl) to reduce
non-specific interaction between polymer based brilliant violet
dyes and to improve the staining quality when multiple dyes
are used in the same experiment. Following antibody incubation
cells were washed and re-suspended gently in 500 µl staining
buffer. Analysis was performed on an LSRII FACS analyser (BD
Biosciences) using 405, 488, and 640 nm laser excitation. Data
was collected and analyzed using both FACS DivA software (BD
Biosciences) and FlowJoV10 (Tree Star). Single color stained
CompBeads were used for purpose of compensation. Unstained
cells, cells labeled with mouse IgG1 Isotype and fluorescence
minus one (FMO) were also used as controls as described
elsewhere (Roederer, 2001).

qRT-PCR
Mineralization (ALP, RUNX-2, OC), angiogenic (VEGFR2 &
PECAM1) and inflammatory (TLR-2, TLR-4) marker expression
was assessed using TaqMan based qRT-PCR as described

TABLE 1 | Dilutions of test and isotype control antibodies used in FACS

analysis of hDPC and cDPC cell surface marker expression.

Test antibody Dilutions Isotype control Dilutions Supplier

PE-Cy7 1:40 PE-CY7 1:80 BD Biosciences

Mouse Anti-Human Mouse IgG1, κ

CD146

PerCP-CyTM 5.5 1:20 PerCP-CyTM 5.5 1:40 BD Biosciences

Mouse Anti-Human Mouse IgG1, κ

CD90

BV421 1:5 BV421 1:6 BD Biosciences

Mouse Anti-Human Mouse IgG1, κ

CD105

APC-Cy7 1:20 APC-Cy7 1:20 BD Biosciences

Mouse Antihuman Mouse IgG1, κ

CD45

FITC 1:4 FITC 1:4 BD Biosciences

Mouse Anti-Human Mouse IgG1, κ

CD31
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previously (Alkharobi et al., 2016). GAPDH was used as
housekeeping gene. Basal expression of markers is expressed
as 2−1Ct relative to GAPDH and changes in gene expression
under differentiating v basal conditions were determined using
the 2−11Ct method also as described previously (Alkharobi et al.,
2016) Data are presented as mean ± SD (n = 3) and represent
triplicate technical repeats from each of 3 healthy and 3 caries
derived DPC cultures.

Cytokine Assay
BDTM CBA Human Inflammatory cytokine kit was used to
quantify Interleukin-8 (IL-8), and interleukin-6 (IL-6) protein
levels in media conditioned by hDPCs and cDPCs grown under
basal and mineralizing conditions for 1 and 3 wk. Assays were
performed exactly according to themanufacturer’s protocol. Data
acquisition and analysis was by flow cytometer LSR II 4 Laser
using flow cytometry analysis program (FCAP) array software.

Statistics
Differences between hDPCs and cDPCs were analyzed using 1-
way analysis of variance (ANOVA) followed by Tukey’s multiple
comparisons test (Prism 6.0). Significance was reported at
p < 0.05.

RESULTS

Colony Forming Unit (CFU) Efficiency
Colonies were counted in primary basal cultures of hDPCs (n
= 3) and cDPCs (n = 3) isolated from third molars. Colonies
were identified as clusters of>50 cells. Both hDPCs (60±10) and
cDPCs (100 ± 7.6) formed CFUs. A significant increase in CFUs
was seen in cDPCs compared to hDPCs (p = 0.0053) suggesting
an increased colony forming efficiency in cDPCs (Figure 1).

Cell Surface Markers
Flow cytometric analysis was used to characterize surface marker
expression of cDPCs vs. hDPCs using a gating strategy to isolate
the CD90+/CD105+/CD146+/CD45-/CD31- cells as a putative
stem cell population (Figure 2). The data suggested that the
cDPCs expressed a higher percentage stem cell population (34 ±
16.6%) compared with hDPCs (18.5± 19.3%) although there was
a large amount of variation in the data mainly due to variation
in the expression of CD146 (Table 2) such that no significant
difference was apparent (see also Supplementary Figure 1).

Histochemical Staining
Positive ALP staining was seen in cultures from all donors in
both hDPCs and cDPCs groups under basal and mineralizing
conditions at 1 and 3 wk. (Figure 3) However, the results clearly
indicated more intense staining under mineralizing conditions
at both 1 and 3 wk. There was evidence that cDPCs showed
increased ALP staining under mineralizing conditions at 1 and
3 wk. compared with hDPCs. One donor from each group is
presented in Figure 3 and similar results were obtained using
DPCs from other donors. Matrix mineralization (as determined
by Alizarin Red staining) was enhanced under differentiation
conditions at both 1 and 3 wk. time points for both hDPCs

and cDPCs cultures. As for ALP staining there was evidence for
increased Alizarin Red staining in cDPCs compared to hDPCs
(Figure 3).

Gene Expression: Basal Conditions
The expression of mineralization (ALPL, OC, and RUNX-2),
angiogenic (VEGFR-2, PECAM-1) and inflammatory (TLR-2,
TLR-4) markers, was investigated in primary cultures of hDPCs
and cDPCs grown under basal conditions (Figure 4A). ALP
expression was significantly increased in hDPCs and cDPCs at
wk.3 compared with wk.1 under basal conditions.OC and RunX2
were expressed at approximately the same level as ALP although
there was no time dependent change in expression of these
genes. The angiogenic markers VEGFR-2 and PECAM1 were
expressed at lower levels than mineralization markers (compare
y-axis scales) approximately 1,000-fold for VEGFR2 and 10-fold
for PECAM-1. At the 3wk time point there was a trend for
higher expression of both VEGFR2 and PECAM-1 in cDPCs
and although this reached statistical significance for VEGFR2,
data was characterized by high SD values. The inflammatory
markers TLR-2 and TLR-4 were expressed at 10-fold lower
levels than mineralization markers in both hDPCs and cDPCs.
However the most striking feature was that both inflammatory
markers were upregulated in cDPCs when compared with hDPCs
(approximately 4- to 5-fold) at both 1 and 3wk time points.

Gene Expression: Mineralizing Conditions
Changes in the gene expression in primary cultures of hDPCs and
cDPCs grown under mineralizing conditions were investigated
(Figure 4B). ALP expression was upregulated in both cell types
at wk1 and downregulated in hDPCs at wk3. OC expression
was upregulated at wk3 in both hDPCs and cDPCs. RUNX-2
expression was increased at both 1 and 3 wk in both hDPCs and
cDPCs although there was a trend for greater upregulation at
wk 3 compared to wk 1. The angiogenic markers VEGFR-2 and
PECAM-1 were also consistently upregulated under mineralizing
conditions in both cell types compared to basal controls.VEGFR-
2 expression was lower in cDPCs compared to hDPCs under
mineralizing conditions at 1 and 3 wk. No statistical difference
in the level of upregulation for hDPC v cDPC was apparent TLR-
2 expression was upregulated under mineralizing conditions in
both hDPCs and cDPCs although this effect wasmore apparent at
the 3 wk time point.TLR-4 expressionwas also upregulated under
mineralizing conditions in both cell types and at both time points
compared to basal controls. At wk 3 cDPCs showed significantly
lower levels of TLR-4 compared to hDPCs.

Interleukin Expression
IL-6 and IL-8 proteins were secreted by primary cultures of
hDPCs and cDPCs (Figure 5). IL-6 levels were significantly lower
inmedium conditioned by cells grown inmineralizationmedium
for both hDPCs and cDPCs. In addition, under basal conditions
IL-6 levels were significantly higher in carious compared to
healthy DPC cultures. In contrast IL-8 levels were higher
in medium conditioned by cells grown under mineralizing
conditions compared to cells grown under basal conditions
although this was only statistically significant at 3 wk. Similarly
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FIGURE 1 | Colony formation in hDPC and cDPC cultures. Cells were cultured for 14 days under basal conditions and stained with Toluidine blue as described in

Methods. Scale bar = 5 cm. Cultures from 3 donors for each of hDPC and cDPC were performed and a representative image is shown. Data from all cultures is

shown in the lower panel and reported as mean ± SD (n = 3). P < 0.01 (Student’s unpaired t-test).

to IL-6, under basal conditions IL-8 concentrations were higher
in cDPCs compared to hDPCs at both 1 and 3 wk time points
(Figure 5).

DISCUSSION

There is very little data on the characterization of DPCs isolated
from teeth with shallow caries (cDPCs). In this report we have
characterized several properties of these cells in comparison
with cells isolated from healthy dental pulp tissue (hDPCs).
We reasoned that some understanding of the inflammation-
regeneration processes might help to determine whether the
cDPCs can be used for mineralized tissue regeneration, either
in situ for dentin/pulp complex formation or as a source of
autologous stem cells for bone regeneration. We found that
colonies of cDPSCs occurred at higher frequency in comparison
to hDPSCs (Figure 1) in agreement with previous observations
showing a higher clonogenic potential of cDPCs isolated from
third molars with deep caries (Ma et al., 2012). This increased
clonogenic potential of cDPCs may reflect the retention of a
phenotype associated with early dentinal repair processes in
response to pathological stimuli.

We confirmed that both hDPCs and cDPCs
demonstrated the classical MSC surface marker profile
CD146+/CD105+/CD90+/CD45−/CD31− (Dominici et al.,
2006; Huang et al., 2009; Martens et al., 2012; see Figure 2A).
The levels of expression of CD90 and CD105 reported in the
current study are largely in agreement with other studies,
which reported high expression (>95%) of both CD90 and
CD105 in dental pulp tissues isolated from normal healthy
teeth (Lindroos et al., 2008; Eslaminejad et al., 2015). We
found that CD90 and CD105 were comparably expressed in
hDPCs and cDPCs. Although, previous analysis of cDPCs
showed increased expression of CD90 and CD146 compared to
hDPCs these studies were performed on cDPCs isolated from
teeth with irreversible pulpitis or from deep carious lesions
(Alongi et al., 2010; Ma et al., 2012) and this may explain the
differences between these studies and our current findings. In
addition previous studies typically isolated DPCs from pulp
chambers only, while in the present study cells were isolated
from the pulp chamber and upper portion of the root canal
and this may also account for some of the observed differences.
We found that CD146 was expressed in around 23% of the
hDPCs. Higher levels of expression (>80%) were reported in
a previous study although this may be age related as young
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FIGURE 2 | (a) Gating strategy identifies CD90+/CD105+/CD146+/CD31−/CD45− population in DPCs derived from three healthy (H1, H2, and H3) and three

carious (C1, C2, and C3) donors. (A) Representative dot plots of intact cellular bodies gating in DPCs. (B) Representative dot plots of living cells gating in DPCs using

fixable viability dye. (C) Representative dot plots of CD90+ cells gating in DPCs. (D) Representative of dot plots of CD105 (Y axis) against CD45 (X axis) surface

markers from selected CD90+ subpopulation. (E) Representative dot plots of CD146 (Y axis) against CD31 (X axis) surface markers from selected CD105+/CD45−

subpopulation in the previous plot. (b) Percentage CD90+/CD105+/CD146+/CD31−/CD45− in hDPCs and cDPCs. Data are presented as mean ± SD (n = 3);

p = 0.414.

donors (aged 16–18 year.) were used in that study (Bakopoulou
et al., 2011). In addition high vascularity is needed to complete
root formation at the eruption stage and CD146 is expressed

in perivascular MSCs (Baksh et al., 2007). In our study hDPCs
and cDPCs showed low reactivity toward the hematopoietic
stem cell marker CD45 (leukocyte common antigen) and this
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TABLE 2 | Percentage positive cell staining for cell surface markers in h and cDPCs (see also Supplementary Figure 1).

GROUP Positive stem cell markers Negative stem cell markers

CD146 CD105 CD90 CD45 CD31

hDPSCs 23.2% ± 22.6 98.9% ± 1.2 97.8% ± 1.6 5.2% ± 4.94 0.04% ± 0.03

cDPSCs 43.5% ± 17.14 99.70% ± 0.36 99.60% ± 0.08 0.72% ± 0.31 0.10% ± 0.05

P-value 0.372 0.451 0.254 0.329 0.202

FIGURE 3 | ALP (left panels, scale bar= 5 cm) and Alizarin red (right panels, scale bar = 100 µm) staining of hDPCs (upper panels) and cDPCs (lower

panels) cultured under basal (b) or mineralizing (o) conditions for 1 and 3 wk.

agrees with previous data which indicated that DPCs were
either negative for CD45 or expressed this marker at very low
concentrations <1–2% of the cell population (Lindroos et al.,

2008; Huang et al., 2009; Bansal and Jain, 2015; Isobe et al.,
2015) It was reported that leukocytes represent <1% of dental
pulp cell population after enzymatic digestion and harvesting
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FIGURE 4 | (A) qRT-PCR analysis of basal expression of mineralization, angiogenic and inflammatory markers in hDPCs and cDPCs. Data is presented for both 1 and

3 wk time points expressed relative to GAPDH (2−1Ct) and represents triplicate technical replicates for each of 3 healthy and 3 carious donors; pooled data are

expressed as mean ± SD (n = 3) *p < 0.05. (B) Changes in marker gene expression under mineralizing conditions. Data is presented for both 1 and 3 wk time

points expressed as fold change (2−11Ct) mineralizing v basal and represent triplicate technical replicates for each of 3 healthy and 3 carious donors; pooled data are

expressed mean ± SD (n = 3) *p < 0.05
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FIGURE 5 | IL-6 (upper panels) and IL-8 (lower panels) concentration in media conditioned by hDPCs and cDPCs cultured under basal and

mineralizing conditions for 1 and 3 wk. Data are shown as pg/ml and represent triplicate technical replicates for each of 3 healthy and 3 carious donors; means ±

SD (n = 3). *P < 0.05; **P < 0.01; ***P < 0.0001.

(Gaudin et al., 2015) although early passages of heterogeneous
stromal cell populations may still contain traces of a CD45
positive population. hDPCs and cDPCs did not express the
endothelial cell marker CD31 and this also agrees broadly
with other reports (Lindroos et al., 2008; Vishwanath et al.,
2013).

Previous studies have shown that hDPCs can differentiate to
a matrix mineralization phenotype (Gronthos et al., 2000, 2002;
d’Aquino et al., 2007; El-Gendy, 2010), while controversial data
have been published regarding cDPCs isolated from permanent
(Alongi et al., 2010; Wang et al., 2010; Pereira et al., 2012; Ma
et al., 2014; Yazid et al., 2014) or deciduous (Yu et al., 2014; Werle
et al., 2015) teeth affected by deep caries. Our data clearly show
that cDPCs isolated from shallow carious lesions can differentiate

to this phenotype and form a mineralized matrix (Figure 3).
In fact cDPCs appeared to exhibit a higher differentiation
potential compared with hDPCs as assessed by mineralization
assay and marker gene expression (Figure 3) although there was
no statistically significant difference in mineralization marker
gene expression between hDPCs and cDPCs under either
basal or mineralizing conditions (Figures 4A,B respectively).
Nonetheless differentiation of cDPCs may be affected by the
inflammatory micro-environment and this may argue for the
retention of this phenotype in cultured cDPCs. Although, this
requires further experimental verification such observations
are consistent with earlier studies which showed that pro-
inflammatory cytokines promoted the mineralization of DPCs
(Yang et al., 2012).
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Under basal conditions we report the up regulation of
VEGFR2 and PECAM-1 in DPCs derived from carious dental
pulp compared to cells derived from healthy pulp (Figure 4A).
This agrees with previous findings in inflamed dental pulp and
may occur in response to the inflammatory cytokines that are
released into the pulp interstitial fluid during inflammation
(Cohen et al., 1996; Chu et al., 2004).We also found up regulation
of the inflammatory markers TLR-2 and TLR-4 under basal
conditions in cDPCs v hDPCs and some evidence suggests
cross talk between the TLR and VEGF axis to co-ordinate neo-
angiogenic and inflammatory responses during tissue repair at
site of injury (Akira et al., 2006; Bachmann et al., 2006; Pazgier
et al., 2006).

The role of inflammatory cytokines during mineralized tissue
repair is also controversial. We found that IL-6 and IL-8
were secreted into media conditioned by DPCs and there
was a trend for higher concentrations of IL-6 and IL-8 in
media conditioned by cDPCs compared with hDPCs under
basal conditions (Figure 5). These findings are supported by
earlier studies, which found that IL-6 and IL-8 expression was
higher in carious than in heathy pulp (Zehnder et al., 2003;
McLachlan et al., 2004; Silva et al., 2009) and argues that
in vitro cDPCs retain an inflammatory phenotype. IL-6 was
down-regulated in both hDPCs and cDPCs under mineralizing
conditions. However treatment with the synthetic glucocorticoid
dexamethasone inhibits IL-6 expression in different cell/tissue
culture systems (Malaval et al., 1998; Liu et al., 2002; Cooper et al.,
2014) and dexamethasone-free induction medium is required
to examine whether IL-6 expression remains down-regulated.
In contrast, IL-8 secretion into conditioned medium increased
under mineralizing conditions. This agrees with previous
reports showing increased IL-8 expression under mineralizing
conditions in human MSCs (Pereira et al., 2009) and up-
regulation of IL-8 in bone marrow MSCs during BMP induced
differentiation (Zachos et al., 2006).

In conclusion we have shown that, compared to healthy
DPCs, cells derived from pulp with superficial caries involvement
(cDPCs)—show higher clonogenic potential; have an equivalent

proportion of putative stem cell populations; show enhanced
matrix mineralization capability; have enhanced angiogenic
marker expression; retain the inflammatory phenotype in vitro
characteristic of superficial caries lesions in vivo. These findings
suggest that cDPCs may be used for further investigation of the
cross talk between inflammatory, angiogenic, and mineralization
pathways in repair of carious pulp. In addition cells derived from
carious pulps (almost always discarded) may have potential for
future applications in mineralized tissue repair and regeneration.
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Supplementary Figure 1 | Single parameter histograms showing the

expression of cell surface markers in hDPSCs (H1, H2, H3) and cDPSCs

(C1, C2, C3) cultures under basal conditions. Data are shown for isotype

controls (gray) and positively stained cells – blue (hDPCs) and red (cDPCs). (a)

CD146 (PE-Cy7); (b) CD90 (PerCP-5.5); (c) CD105 (BV421); (d) CD45 (APC-Cy7);

(e) CD31 (FITC). Percentage positively stained cells are indicated for each marker.
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