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β-admissibility of observation operators for hypercontractive

semigroups

Birgit Jacob∗, Jonathan R. Partington†, Sandra Pott‡, and Andrew Wynn§

April 4, 2017

Abstract

We prove a Weiss conjecture on β-admissibility of observation operators for discrete
and continuous γ-hypercontractive semigroups of operators, by representing them in terms
of shifts on weighted Bergman spaces and using a reproducing kernel thesis for Hankel
operators. Particular attention is paid to the case γ = 2, which corresponds to the
unweighted Bergman shift.

Keywords: Admissibility; semigroup system; dilation theory; Bergman space; hypercontrac-
tion; reproducing kernel thesis; Hankel operator
2010 Subject Classification: 30H10, 30H20, 47B32, 47B35, 47D06, 93B28

1 Introduction

We study infinite dimensional observation systems of the form

ẋ(t) = Ax(t), y(t) = Cx(t), t ≥ 0,

x(0) = x0 ∈ X,

where A is the generator of a strongly continuous semigroup (T (t))t≥0 on a Hilbert space H
and C is a linear bounded operator from D(A), the domain of A equipped with the graph
topology, to another Hilbert space Y. For well-posedness of the system with respect to the
output space L2

β(0,∞;Y) := {f : (0,∞) → Y | f measurable, ‖f‖2β :=
∫∞
0 ‖f(t)‖2tβ dt < ∞}

it is required that C is an β-admissible observation operator for A, that is, there exists an
M > 0 such that

‖CT (·)x0‖Lβ(0,∞;Y) ≤ M‖x0‖H, x0 ∈ D(A). (1)

It is easy to show that β-admissibility implies the resolvent condition

sup
λ∈C+

(Reλ)
1+β

2 ‖C(λ−A)−(1+β)‖ < ∞ (2)
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where C+ denotes the open right half plane of C. Whether or not the converse implication
holds is commonly referred to as a weighted Weiss conjecture. For β = 0 the conjecture was
posed by Weiss [23]. In this situation the conjecture is true for contraction semigroups if the
output space is finite-dimensional, for right-invertible semigroups, and for bounded analytic
semigroups if (−A)1/2 is 0-admissible. However, in general the conjecture is not true. We
illustrate this in Figure 1.

dim Y < ∞ dim Y ≤ ∞

(T (t))t≥0 contraction semigroup [12]

(T (t))t≥0 right-invertible

semigroup [23]

(T (t))t≥0 analytic & bounded semigr.

and (−A)1/2 0-admissible [17]

Counterexample in general [13]Counterexample in general [14]

Figure 1: Weighted Weiss conjecture: Case β = 0

For β 6= 0, much less is known. The first positive results are due to Haak and Le Merdy [9],
who proved that in case β ∈ (−1, 1), the weighted Weiss conjecture holds for bounded analytic
semigroups if (−A)1/2 is 0-admissible, and to Wynn [24], who showed that in case β > 0 the
weighted Weiss conjecture holds for normal contraction semigroups. Wynn showed that in
the latter case the weighted Weiss conjecture holds also for the right-shift on L2

−α(0,∞) for
α > 0 if the output space is finite-dimensional [26]. However, the weighted Weiss conjecture
fails for general contraction semigroups both in case β < 0 and β > 0, as Wynn showed in
[25]. The situation is summarised in Figure 2. Again, in general the conjecture is not true.
The counterexamples mean that there is no possibility of obtaining a positive result for all
contraction semigroups, even with finite-dimensional output space. However, we show in
Theorem 4.4 that the weighted Weiss conjecture holds if the semigroup is ”slightly better
than contractive”, that means, the dual of the cogenerator T ∗ of the semigroup (T (t))t≥0 is
γ-hypercontractive for some γ > 1. The proof is based on the fact that γ-hypercontractions
are unitarily equivalent to the restriction of the backward shift to an invariant subspace of
a weighted Bergman space, the Cayley transform between discrete-time and continuous-time
systems, and the fact that the weighted Weiss conjecture holds for the backward shift on an
invariant subspace of a weighted Bergman space [11]. In contrast to the above-mentioned
result on the validity of the Weiss conjecture for contraction semigroups [12], Theorem 4.4
holds even in case of infinite-dimensional output space. In order to apply the results of [11]
we first have to extend them to the vector-valued Bergman spaces.
Due to the fact that C is a β-admissible observation operator for (T (t))t≥0 if and only if C∗

satisfies the (−β)-dual estimate for (T ∗(t))t≥0, where β ∈ (−1, 1) (cf. Remarks 3.1 and 4.2
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dim Y < ∞ dim Y ≤ ∞

T ∗ γ-hypercontractive,

γ > 1 (Thm. 4.4)

(T (t))t≥0 normal

contraction semigroup [24]

(T (t))t≥0 right-shift

on L2
−α(0,∞), α > 0, [11]

T ∗ γ-hypercontractive,

γ > 1 (Thm. 4.4)

(T (t))t≥0 analytic & bounded semigr.

and (−A)1/2 0-admissible [9]

Counterexample in general [26]

Figure 2: Weighted Weiss conjecture: Case β > 0

below), the resolvent growth conditions for control operators satisfying the β-dual condition
can be derived from those of (−β)-admissible observation operators.
Beside continuous-time systems we also prove a discrete-time version of the Weiss conjecture.
For T ∈ L(H), E ∈ L(U ,H) and F ∈ L(H,Y) we consider the discrete time linear systems:

xn+1 = Txn + Eun+1, yn = Fxn with x0 ∈ H (3)

and un ∈ U , n ∈ N. Here, H is the state space, U the input space and Y is the output space
of the system.
Let β > −1. By ℓ2β(U) we denote the sequence space

ℓ2β(U) := {{un}n | un ∈ U and ‖{un}n‖
2
β :=

∞
∑

n=0

(1 + n)β |un|
2 < ∞}.

Clearly, ℓ2β(U) equipped with the norm ‖ · ‖β is a Hilbert space. Following [9] and [24], we say
that F is a β-admissible observation operator for T , if there exists a constant M > 0 such
that

∞
∑

n=0

(1 + n)β‖FTnx‖2 ≤ M‖x‖2 (4)

for every x ∈ H.
To test whether a given observation operator is β-admissible, a frequency-domain character-
ization is convenient and, to this end, it is not difficult to show that β-admissibility of F for
T implies the resolvent growth condition

sup
z∈D

(1− |z|2)
1+β

2 ‖F (I − z̄T )−β−1‖L(H,Y) < ∞, (5)

where D is the open unit disc.
The question of whether the converse statement holds, commonly referred to as a (weighted)
Weiss conjecture, is much more subtle. For β = 0, the conjecture is true if T is a contraction
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and the output space Y is finite-dimensional [10]. It was shown by [25, 24] that for T a
normal contraction and finite-dimensional output spaces the weighted Weiss conjecture holds
for positive β, but not in the case β ∈ (−1, 0). Moreover, the weighted Weiss conjecture
holds if T is a Ritt operator and a contraction for β > −1 [18], but it is not true for general
contractions if β > 0, see [26]. Recently, in [11] it was shown that the Weiss conjecture
holds for the forward shift on weighted Bergman spaces. One aim of this paper is to show
that the Weiss conjecture holds for adjoint operators of γ-hypercontractions. We obtain a
characterisation of β-admissibility, β > 0, with respect to γ-hypercontractions (γ > 1) by
characterising β-admissibility with respect to the shift operator on vector-valued weighted
Bergman spaces.
It is shown in [11] that in the case of a scalar-valued Bergman space, β-admissibility with
respect to the shift operator can be characterised by the resolvent growth bound (5). We
extend this analysis to the vector-valued setting.
We proceed as follows. In Section 2 we introduce and study γ-hypercontractive operators
and γ-hypercontractive strongly continuous semigroups. In particular, γ-hypercontractions
are unitarily equivalent to the restriction of the backward shift to an invariant subspace of a
weighted Bergman space. Section 3 is devoted to the weighted Weiss conjecture for discrete-
time systems. We first extend the result of [11] concerning the shift operator on a scalar-
valued Bergman space to the vector-valued setting and then we prove that the weighted Weiss
conjecture holds for β > 0 if T ∗ is a γ-hypercontraction for some γ > 1. Finally, in Section
4 positive results concerning the weighted Weiss conjecture for continuous-time systems are
given.

2 γ-hypercontractions

Let H be a Hilbert space. For T ∈ L(H), we define

MT : L(H) → L(H), MT (X) = T ∗XT.

Definition 2.1 ([2], [4]). Let H be a Hilbert space and let T ∈ L(H), ‖T‖ ≤ 1. Let γ ≥ 1.
We say that T is a γ-hypercontraction, if for each 0 < r < 1,

(1−MrT )
γ(I) ≥ 0.

Note that the left hand side in the definition is well-defined in the sense of the usual holomor-
phic functional calculus, since σ(1−MrT ) ⊂ C+. A 1-hypercontraction T satisfies I−T ∗T ≥ 0,
that is, T is an ordinary contraction. If T is a normal contraction, then it is easy to show by
the usual continuous functional calculus that T is also a γ-hypercontraction for each γ ≥ 1.
Moreover, all strict contractions are γ-hypercontractions, as the next result shows.

Theorem 2.2. Let T ∈ L(H) with ‖T‖ < 1. Then T is a γ-hypercontraction for sufficiently
small γ > 1.

Proof: Suppose that ‖T‖ < 1. Then ‖MT ‖ < 1, and σ(1 − MT ) is bounded away from
the negative real axis, so an analytic branch of the logarithm exists on some open set Ω ⊇
σ(1−MT ). For γ ≥ 1, define fγ(z) = exp(γ log z), analytic on Ω.
Now fγ(z)øz uniformly for z in compact subsets of Ω as γ → 1, and therefore fγ(1 − MT ),
defined by the analytic functional calculus, converges to 1 − MT in the norm on L(L(H))
(see, e.g., [5, Thm. 3.3.3]).
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Hence, in particular, (1−MT )
γ(I) → (1−MT )(I) = I − T ∗T in norm in L(H) as γ → 1.

Since ‖T‖ < 1, σ((1 − MT )(I)) is strictly contained in the positive real axis, and thus for
sufficiently small γ > 1 the spectrum of (1−MT )

γ(I) is also strictly contained in the positive
real axis, by continuity properties of the spectrum (see, e.g., [5, Thm. 3.4.1]).
Hence (1−MT )

γ(I) ≥ 0 for all γ sufficiently close to 1, and so T is a γ-hypercontraction.

If n ∈ N, then equivalently, T ∈ L(H) is an n-hypercontraction if and only if

m
∑

k=0

(−1)k
(

m

k

)

T ∗kT k ≥ 0

for all 1 ≤ m ≤ n.
In particular, a Hilbert space operator T is 2-hypercontractive if it satisfies

I − T ∗T ≥ 0

(that is, it is a contraction), and also

I − 2T ∗T + T ∗2T 2 ≥ 0. (6)

Note, that for 1 < µ < γ, the γ-hypercontractivity property implies µ-hypercontractivity.
We are particularly interested in γ-hypercontractive operators as they are unitarily equivalent
to the restriction of the backward shift to an invariant subspace of a weighted Bergman space,
which we now define.

Definition 2.3. Let D denote the open unit disk in the complex plane C. For α > −1, the
weighted Bergman space A2

α(D,K), where K is a Hilbert space, consists of analytic functions
f : D → K for which

‖f‖2α =

∫

D

‖f(z)‖2dAα(z) < ∞, (7)

where dAα(z) = (1 + α)(1 − |z|2)αdA(z) and dA(z) := 1
πdxdy is area measure on D for

z = x+ iy. We note that the norm ‖f‖α is equivalent to

(

∞
∑

n=0

‖fn‖
2(1 + n)−(1+α)

)
1

2

, (8)

where fn are the Taylor coefficients of f .

For each α > −1, let Sα denote the shift operator on the weighted Bergman space A2
α(D,K),

Sαf(z) = zf(z) (f ∈ A2
α(D,K))

The following theorem is a special case of Corollary 7 in [4]. For the case of integer γ, this was
proved in [2]. Such results are part of the broad theory of analytic models for operators of
certain classes; the pioneering work in this area is the dilation theory of Sz.-Nagy and Foiaş,
for which a standard reference is [22].

Theorem 2.4. Let α > −1. Let H be a Hilbert space and let T ∈ L(H) be an α + 2-
hypercontraction with σ(T ) ⊂ D. Then T is unitarily equivalent to the restriction of S∗

α to an
invariant subspace of A2

α(D,K), where K is a Hilbert space.
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Next we introduce the concept of γ-hypercontractive semigroups.

Definition 2.5. Let (T (t))t≥0 be a strongly continuous contraction semigroup on a Hilbert
space H, with infinitesimal generator A. We call a C0-semigroup (T (t))t≥0 γ-hypercontractive
if each operator T (t) is a γ-hypercontraction.

In the following we assume that (T (t))t≥0 is a strongly continuous contraction semigroup
on a Hilbert space H, with infinitesimal generator A. As in [22], the cogenerator T :=
(A+ I)(A− I)−1 exists, and is itself a contraction. Rydhe [21] studied the relation between
γ-hypercontractivity of a strongly continuous contraction semigroup and its cogenerator. He
proved that T is γ-hypercontractive if every operator T (t), t ≥ 0, is γ-hypercontractive. The
converse holds if γ is a positive integer: If the co-generator T is N -hypercontractive for some
N ∈ N, then every operator T (t), t ≥ 0, is N -hypercontractive. However, by means of an
example, Rydhe [21] showed that for general γ > 1, this reverse implication is false. In
the case of normal semigroups, contractivity and γ-contractivity coincide. If A generates a
contraction semigroup of normal operators, then the cogenerator of (T (t))t≥0 is normal and
contractive, and hence γ-hypercontractive for each γ ≥ 1.
In particular 2-hypercontractivity can be characterized as follows, see [21]. For completeness
we include a more elementary proof, which also yields additional information.

Proposition 2.6. Let (T (t))t≥0 be a strongly continuous contraction semigroup acting on a
Hilbert space H. Then the following statements are equivalent.

1. (T (t))t≥0 is 2-hypercontractive.

2. The function t 7→ ‖T (t)x‖2 is convex for all x ∈ H.

3.
Re〈A2y, y〉+ ‖Ay‖2 ≥ 0 (y ∈ D(A2)). (9)

or equivalently,

‖(A+A∗)x‖2 + ‖Ax‖2 ≥ ‖A∗x‖2 (y ∈ D(A) ∩ D(A∗)).

4. The cogenerator T is a 2-hypercontraction.

Proof We first prove that Part 1 and Part 2 are equivalent. Take t ≥ 0 and τ > 0. If T (τ)
is a 2-hypercontraction, then, by (6) we have

〈T (t)x, T (t)x〉 − 2〈T (t+ τ)x, T (t+ τ)x〉+ 〈T (t+ 2τ)x, T (t+ 2τ)x〉 ≥ 0,

or

‖T (t+ τ)x‖2 ≤
1

2

(

‖T (t)x‖2 + ‖T (t+ 2τ)x‖2
)

, (10)

which is the required convexity condition.
Conversely, the convexity condition (10) implies that T (τ) is a 2-hypercontraction (take t = 0).
Next we show that Part 2 are Part 3 equivalent. For t > 0 and y ∈ D(A2) we calculate the
second derivative of the function g : t 7→ ‖T (t)y‖2.

g′(t) =
d

dt
〈T (t)y, T (t)y〉 = 〈AT (t)y, T (t)y〉+ 〈T (t)y,AT (t)y〉.
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Similarly,

g′′(t) = 〈A2T (t)y, T (t)y〉+ 2〈AT (t)y,AT (t)y〉+ 〈T (t)y,A2T (t)y〉.

If g is convex, then letting t → 0 gives the condition (9).
Conversely, the condition (9) gives the convexity of t → ‖T (t)y‖2 for y ∈ D(A2), and by
density this holds for all y.
Finally we show the equivalence of Part 3 and Part 4. We start with the condition (9) and
calculate

〈(I − 2T ∗T + T ∗2T 2)x, x〉

for x = (A− I)2y (note that (A− I)−2 : H → H is defined everywhere and has dense range).
We obtain

〈(A− I)2y, (A− I)2y〉 − 2〈(A2 − I)y, (A2 − I)y〉+ 〈(A+ I)2y, (A+ I)2y〉

= 4〈A2y, y〉+ 8〈Ay,Ay〉+ 4〈y,A2y〉 ≥ 0.

Thus condition (9) holds if and only if the cogenerator T is 2-hypercontractive.

Thus every normal contraction semigroup is 2-hypercontractive. Moreover, even every hy-
ponormal contraction semigroup is 2-hypercontractive. Note, that a semigroup is hyponormal
if the generator A satisfies D(A) ⊂ D(A∗) and ‖A∗x‖ ≤ ‖Ax‖ for all x ∈ D(A), see [15, 19].
Clearly, a C0-semigroup (T (t))t≥0 is contractive if and only if the adjoint semigroup (T ∗(t))t≥0

is contractive. Unfortunately, a similar statement does not hold for 2-hypercontractions: The
right shift semigroup on L2(0,∞) is 2-hypercontractive, but the adjoint semigroup, the left
shift semigroup on L2(0,∞), is not.

3 Discrete-time β-admissibility

Let H, U , Y be Hilbert spaces, T ∈ L(H), E ∈ L(U ,H) and F ∈ L(H,Y). Consider the
discrete time linear system:

xn+1 = Txn + Eun+1, yn = Fxn with x0 ∈ H (11)

and un ∈ U , n ∈ N.
Following [9] and [24], we say that F is a β-admissible observation operator for T , if there
exists a constant M > 0 such that

∞
∑

n=0

(1 + n)β‖FTnx‖2 ≤ M‖x‖2

for every x ∈ H. Moreover, we say that E is a β-admissible control operator for T , if there
exists a constant M > 0 such that

∥

∥

∥

∥

∥

k
∑

n=1

T k−nEun

∥

∥

∥

∥

∥

H

≤ M‖{un}n‖β (12)

for every {un}n ∈ ℓ2β(U) and k ∈ N and we say that E satisfies the β-dual estimate for T , if
there exists a constant M > 0 such that

∥

∥

∥

∥

∥

∞
∑

n=1

TnEun

∥

∥

∥

∥

∥

H

≤ M‖{un}n‖β (13)

for every {un}n ∈ ℓ2β(U). Note that (12) and (13) are equivalent for β = 0, but not otherwise.
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Remark 3.1. 1. If E is a β-admissible control operator for T , then the input to state
operators Φn : ℓ2β(U) → H, given by

Φn({un}n) :=
n
∑

k=1

Tn−kEuk,

satisfy supn∈N ‖Φn‖ ≤ M .

2. Let x ∈ H and {yn}n ∈ ℓ2−β(Y). Then the calculation

|〈{FTnx}n, {yn}n〉β×−β | =

∣

∣

∣

∣

∣

∞
∑

n=0

〈FTnx, yn〉Y

∣

∣

∣

∣

∣

= |〈x,
∞
∑

n=0

(T ∗)nF ∗yn〉H|

implies that F is a β-admissible observation operator for T if and only if F ∗ satisfies
the (−β)-dual estimate for T ∗.

A characterisation of β-admissibility with respect to γ-hypercontractions (γ > 1) may be
obtained by characterising β-admissibility with respect to the shift operator on vector-valued
weighted Bergman spaces, as defined just after Definition 2.3.
It is shown in [11] that in the case of a scalar-valued Bergman spaces, β-admissibility with
respect to Sα can be characterised by the resolvent growth bound (5). This result was ob-
tained by noting that β-admissibility is equivalent to boundedness of an appropriate little
Hankel operator, while (5) is equivalent to boundedness of the same Hankel operator on a
set of reproducing kernels. That such Hankel operators satisfy a Reproducing Kernel Thesis
(boundedness on the reproducing kernels is equivalent to operator boundedness) is equivalent
to the characterisation of β-admissibility by the growth condition (5).

Here, we will extend this analysis to the vector-valued setting, and also provide a character-
isation which is new even in the scalar setting. Let K,Y be Hilbert spaces and consider an
analytic function C : D → L(Y,K) given by

C(z) =

∞
∑

n=0

Cnz
n, z ∈ D, (14)

where Cn ∈ L(Y,K), for each n. We write L2
α(D,K) for the space of measurable functions

f : D → K satisfying (7). We also write

A2
α(D,K) = {z 7→ g(z) : g ∈ A2

α(D,K)}.

The little Hankel operator hC : A2
β−1(D,Y) → A2

α(D,K) acting between weighted Bergman
spaces is defined (with a slight abuse of notation) by

hC(f)(z) := Pα(C(z)f(z)), f ∈ A2
β−1(D,Y), (15)

where Pα : L2
α(D,K) → A2

α(D,K) is the orthogonal projection onto the anti-analytic functions.
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Now, for any g(z) =
∑

m gmzm ∈ A2
β−1(D,Y), it follows from an elementary calculation that

‖hCg‖
2
A2

α(D,K)
=

∞
∑

n=0

∥

∥

∥

∥

∥

∞
∑

m=0

(1 + n)
1+α
2

(1 + n+m)1+α
Cn+mgm

∥

∥

∥

∥

∥

2

K

. (16)

Hence, boundedness of hC : A2
β−1(D,Y) → A2

α(D,K) is equivalent to

(

(1 + n)
1+α
2 (1 +m)

β

2

(1 + n+m)1+α
Cn+m

)

n,m≥0

∈ L(ℓ2(Y), ℓ2(K)). (17)

To provide a link with weighted admissibility, let F ∈ L(A2
α(D,K),Y) be an observation

operator and let Fn ∈ L(K,Y) be defined by

Fnx := F (xιn), n ∈ N, x ∈ K, (18)

where ι(z) = z. A simple calculation implies that β-admissibility of F with respect to Sα is
equivalent to

(

(1 + n)
β

2 (1 +m)
1+α
2 Fn+m

)

n,m≥0
∈ L(ℓ2(K), ℓ2(Y)), (19)

while the vectorial analogue of [11, Proposition 2.2] implies that for any suitable scalar-valued
analytic function g(z) =

∑

m gmzm,

‖Fg(Sα)‖
2
L(A2

α(D,K),Y) = sup
‖y‖Y=1

∞
∑

n=0

∥

∥

∥

∥

∥

∞
∑

m=0

(1 + n)
1+α
2 ḡmF ∗

n+my

∥

∥

∥

∥

∥

2

K

. (20)

In view of (17) and (19), weighted admissibility of F with respect to the shift Sα on A2
α(D,K)

can be characterised in terms of boundedness of the little Hankel operator with symbol

C(z) =

∞
∑

n=0

(1 + n)1+αF ∗
nz

n,

while (16), (20) imply the resolvent condition (5) for (F, Sα) is equivalent to requiring bound-

edness of the same Hankel operator on only the normalized reproducing kernels k
β−1
ω,y for

A2
β−1(D,Y). Here,

kβ−1
ω,y (z) := y

(1− |ω|2)
1+β

2

(1− ω̄z)1+β
, z, ω ∈ D, y ∈ Y,

where the y on both sides is omitted in the case Y = C. For clarity, we now state the following
analogue of [11, Prop. 2.3], which implies that the weighted Weiss conjecture for the shift Sα

on weighted Bergman spaces corresponds to a reproducing kernel thesis (RKT) for vectorial
Hankel operators.

Proposition 3.2. Let α > −1, β > 0. Let K, Y be Hilbert spaces and suppose that F ∈
L(A2

α(D,K),Y). Define Fn ∈ L(K,Y) by (18) and consider the little Hankel operator hC :
A2

β−1(D,Y) → A2
α(D,K) with symbol (14) given by Cn = (1 + n)1+αF ∗

n . Then

(i) F is β-admissible for Sα on A2
α(D,K) if and only if hC is bounded;
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(ii) The resolvent bound (5) holds with T = Sα and H = A2
α(D,K) if and only if

sup
ω∈D,‖y‖Y=1

‖hCk
β−1
ω,y ‖

A2
α(D,K)

< ∞. (21)

The fact that a RKT holds for vectorial little Hankel operators (i.e., that (21) is equivalent
to boundedness of hC) follows directly from a vectorial extension of [11, Theorem 2.7]:

Proposition 3.3. Let α > −1, β > 0, let K, Y be Hilbert spaces, and let C =
∑∞

n=0Cnz
n

be analytic on D, Cn ∈ L(Y,K). Consider the little Hankel operator hC as in (15). Then the
following are equivalent:

(i) The little Hankel operator hC : A2
β−1(D,Y) → A2

α(D,K) is bounded;

(ii)
sup

ω∈D,‖y‖Y=1
‖hCk

β−1
ω,y ‖

A2
α(D,K)

< ∞; (22)

(iii)

sup
ω∈D,‖y‖Y=‖x‖K=1

∣

∣

∣
〈hCk

β−1
ω,y , kαω,x〉A2

α(D,K)

∣

∣

∣
< ∞; (23)

(iv) For x ∈ K, y ∈ Y, let cx,y(z) = 〈C(z)y, x〉. Then

sup
‖y‖Y=‖x‖K=1

‖hcx,y‖A2
β−1

→A2
α
< ∞. (24)

Proof The equivalence of (i) and (ii) is the vector-valued version of [11, Theorem 2.7], the
proof of which extends readily to this setting. The equivalence with (iii) is not explicitly
contained in the statement of [11, Theorem 2.7], but follows directly from [11, Lemma 2.6]
and the proof of [11, Theorem 2.7]. Clearly (i) ⇒ (iv) ⇒ (iii), so (iv) follows from the
equivalence of (i) and (iii).

Consequently, the weighted Weiss conjecture holds for the shift on weighted Bergman spaces.

Proposition 3.4. Let α > −1 and β > 0. Let K, Y be Hilbert spaces and let F ∈
L(A2

α(D,K),Y). Then the following are equivalent :

(i) F is β-admissible for Sα;

(ii) the resolvent condition

sup
z∈D

(1− |z|2)
1+β

2 ‖F (I − z̄Sα)
−β−1‖L(A2

α(K),Y) < ∞;

(iii) the condition
sup

z∈D,‖x‖K=1
‖Fkβ+α+1

z,x ‖Y < ∞.

10



Proof The implication (i) ⇒ (ii) follows from the usual testing argument on fractional
derivatives of reproducing kernels. To obtain (ii) ⇒ (iii), we just have to apply
F (I − z̄Sα)

−β−1 to f = kαz,x ∈ A2
α(K). This leaves the implication (iii) ⇒ (i). Let Cn =

(1 + n)1+αF ∗
n as above. Repeating the calculation in the proof of [11, Proposition 2.2], we

obtain for suitable scalar-valued analytic functions f =
∑∞

n=0 fnz
n, g =

∑∞
n=0 gnz

n

〈Fg(Sα)fx, y〉Y =

∞
∑

n,k=0

fngk〈x,Cn+ky〉K(1 + n+ k)−(1+α) = 〈hc̃x,yg, f̄〉, (25)

where c̃x,y(z) = cx,y(z̄). Following (20), in order to prove (i), we have to prove the bounded-

ness of the little Hankel operator hC : A2
β−1(D,Y) → A2

α(D,K), or equivalently, the uniform

boundedness of the scalar little Hankel operators hc̃x,y : A2
β−1(D) → A2

α(D) for x ∈ K, y ∈ Y,

‖x‖K = ‖y‖Y = 1. By Proposition 3.3 (iii), it is sufficient to check this for f = kαz , g = k
β−1
z .

This translates by (25) to

〈Fg(Sα)fx, y〉Y = 〈Fkβ−1
z (Sα)k

α
z x, y〉 = 〈Fkβ+α+1

z x, y〉.

The uniform boundedness of this expression for z ∈ D, ‖x‖K = ‖y‖Y = 1 is exactly (iii).

This is the main step required to prove a positive result concerning the weighted Weiss
conjecture for hypercontractive operators.

Theorem 3.5. Let β > 0. Let H, Y be Hilbert spaces and let T ∗ ∈ L(H) be a γ-hypercontraction
for some γ > 1. Let F ∈ L(H,Y). Then the following are equivalent:

1. F is a β-admissible observation operator for T .

2.
sup
z∈D

(1− |z|2)
1+β

2 ‖F (I − z̄T )−β−1‖L(H,Y) < ∞.

Proof The implication (1) ⇒ (2) follows as usual from the testing on fractional derivatives
of reproducing kernels.

For (2) ⇒ (1), write K = supz∈D(1− |z|2)
1+β

2 ‖F (I − z̄T )−β−1‖L(H,Y) and let us first replace
T by rT for some 0 < r < 1. Write γ = 2 + α. By Theorem 2.4, (rT )∗ is the restriction
of S∗

α to the invariant subspace H ⊂ A2
α(D,K), where K is another Hilbert space. Extend

F trivially to A2
α(D,K) by letting F = 0 on H⊥ ⊂ A2

α(D,K). Then F ∗y ∈ H for all y ∈ Y.

11



Then for each z ∈ D we obtain

‖F (I − z̄Sα)
−β−1‖L(A2

α(D,K),Y) = sup
h∈A2

α(K),‖h‖=1

‖F (I − z̄Sα)
−β−1h‖Y

= sup
h∈A2

α(K),‖h‖=1

sup
y∈Y,‖y‖=1

|〈(I − z̄Sα)
−β−1h, F ∗y〉|

= sup
h∈A2

α,‖h‖=1

sup
y∈Y,‖y‖=1

|〈h, (I − zS∗
α)

−β−1F ∗y〉|

= sup
h∈A2

α,‖h‖=1

sup
y∈Y,‖y‖=1

|〈h, (I − z(rT )∗)−β−1F ∗y〉|

= sup
h∈H,‖h‖=1

sup
y∈Y,‖y‖=1

|〈h, (I − z(rT )∗)−β−1F ∗y〉|

= ‖F (I − z̄rT )−β−1‖L(H,Y)

≤ K
1

(1− |rz|2)
1+β

2

≤ K
1

(1− |z|2)
1+β

2

. (26)

Hence, by Proposition 3.3, F is an β-admissible observation operator for Sα.

Thus there exists a constant M such that for each x ∈ H,

∞
∑

n=0

(1 + n)β‖F (rT )nx‖2Y =
∞
∑

n=0

(1 + n)β sup
y∈Y,‖y‖=1

|〈(rT )nx, F ∗y〉|2Y

=

∞
∑

n=0

(1 + n)β sup
y∈Y,‖y‖=1

|〈x, ((rT )n)∗F ∗y〉|2

=
∞
∑

n=0

(1 + n)β sup
y∈Y,‖y‖=1

|〈x, (Sn
α)

∗F ∗y〉|2

=

∞
∑

n=0

(1 + n)β sup
y∈Y,‖y‖=1

|〈Sn
αx, F

∗y〉|2

=
∞
∑

n=0

(1 + n)β‖FSn
αx‖

2
Y ≤ M‖x‖2

Here, the constant M depends only on K, α and β, but not on r. It therefore follows easily
from the Monotone Convergence Theorem that

∞
∑

n=0

(1 + n)β‖FTnx‖2Y ≤ M‖x‖2 (x ∈ H)

and F is a β-admissible observation operator for T .

Remark 3.6. Theorem 3.5 in particular shows Wynn’s result [24] for β-admissibility of nor-
mal discrete contractive semigroups, also for infinite-dimensional output space.

By duality we obtain the following result.
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Theorem 3.7. Let β ∈ (−1, 0). Let H, U be Hilbert spaces and let T ∈ L(H) be a γ-
hypercontraction for some γ > 1. Let E ∈ L(U ,H). Then the following are equivalent:

1. E satisfies the β-dual estimate for T .

2.
sup
z∈D

(1− |z|2)
1+β

2 ‖(I − z̄T )−β−1E‖L(H,Y) < ∞.

4 Continuous-time β-admissibility

We consider a continuous-time control system of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (27)

y(t) = Cx(t), t ≥ 0.

Here A is the generator of a C0-semigroup (T (t))t≥0 on a Hilbert spaceH. WritingH1 = D(A)
and H−1 = D(A∗)∗, we suppose that B ∈ L(U ,H−1) and C ∈ L(H1,Y), where U and Y are
Hilbert spaces as well.

Definition 4.1. Let β > −1.

1. B is called a β-admissible control operator for (T (t))t≥0, if there exists a constant M > 0
such that

∥

∥

∥

∥

∫ t

0
T (t− s)Bu(s) ds

∥

∥

∥

∥

≤ M‖u‖L2
β
(0,∞;U)

for every t > 0 and u ∈ L2
β(0,∞;U).

2. B is satisfies the β-dual estimate for (T (t))t≥0, if there exists a constant M > 0 such
that

∥

∥

∥

∥

∫ ∞

0
T (t)Bu(t) dt

∥

∥

∥

∥

≤ M‖u‖L2
β
(0,∞;U)

for every u ∈ L2
β(0,∞;U).

3. C is called a β-admissible observation operator for (T (t))t≥0, if there exists a constant
M > 0 such that

∫ ∞

0
tβ‖CT (t)x‖2 dt ≤ M‖x‖2H

for every x ∈ H1.

Note that 1. and 2. are equivalent for β = 0, but not otherwise.

Remark 4.2. Similarly as for discrete-time systems it can be shown for β ∈ (−1, 1) that B
satisfies the β-dual estimate for (T (t))t≥0 if and only if B∗ is a (−β)-admissible observation op-
erator for (T ∗(t))t≥0. The notion of β-dual estimates was introduced in [9, 8]. β-admissibility
of control operators guarantees that the mild solution of (27), given by,

x(t) = T (t)x0 +

∫ t

0
T (t− s)Bu(s) ds,

is a continuous function with values in the state space H. However, for β-admissibility the
duality does not hold in the above-mentioned form. We refer to the comments following [8,
Rem. 1.2] for more information.
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The following result is proven in [26, Propositions 2.1 and 2.2] for β ∈ (0, 1). The trivial
extension to the case β > 0 is given for completeness. For α > −1 we write A2

α(C+) for the
Bergman space on the right half-plane corresponding to the measure xα dx dy.

Proposition 4.3. Let β > 0. Suppose that A generates a contraction semigroup on H and
that C ∈ L(D(A),Y). Define the cogenerator T ∈ L(H) by T := (I + A)(I − A)−1 and
F := C(I −A)−(1+β) ∈ L(H,Y). Then the following statements hold.

1. C is a (continuous-time) β-admissible observation operator for (T (t))t≥0 if and only if
F is a (discrete-time) β-admissible observation operator for T .

2. The resolvent condition (5) for (F, T ) holds if and only if

sup
λ∈C+

(Reλ)
1+β

2 ‖C(λ−A)−(1+β)‖ < ∞.

Proof 1. F is β-admissible for T if and only if Λ : A2
β−1(D) → L(H,Y) defined initially

on reproducing kernels by Λf = Ff(T ) extends to a bounded linear operator. On the other
hand, C is β-admissible for A if and only if Λ̃ : A2

β−1(C+) → L(H,Y) defined initially on

reproducing kernels by Λ̃(g) = Cg(−A) extends to a bounded linear operator. That the two
conditions are equivalent follows from the fact that for any β > 0 there is an isomorphism
Jβ : A2

β−1(D) → A2
β−1(C+) for which Λ = Λ̃ ◦ Jβ holds on each reproducing kernel.

2. Follows directly from the identities

D(I − z̄T )−(1+β) =
CR

(

1−z̄
1+z̄ , A

)1+β

(1 + z̄)1+β
, z ∈ D

and

Re

(

1− z

1 + z

)

|1 + z|2 = (1− |z|2), z ∈ D.

Our main theorems concerning continuous-time systems are as follows.

Theorem 4.4. Let β > 0. Let (T (t))t≥0 be a contraction semigroup on H such that the
adjoint of the cogenerator T ∗ is γ-hypercontractive for some γ > 1. Then the following are
equivalent:

1. C is a β-admissible observation operator for (T (t))t≥0.

2.
sup
λ∈C+

(Reλ)
1+β

2 ‖C(λ−A)−(1+β)‖ < ∞.

Proof The statement of the theorem follows from Proposition 4.3 together with Theorem
3.5.

Remark 4.5. T ∗ is γ-hypercontractive if every operator T ∗(t), t ≥ 0, is γ-hypercontractive. If
A generates a contraction semigroup of normal operators, then the adjoint of the cogenerator
of (T (t))t≥0 is γ-hypercontractive for each γ ≥ 1, see Section 2.
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By duality we obtain the following result.

Theorem 4.6. Let β ∈ (−1, 0). Let (T (t))t≥0 be a contraction semigroup on H such that the
cogenerator T is γ-hypercontractive for some γ > 1. Then the following are equivalent:

1. B satisfies the β-dual estimate for (T (t))t≥0.

2.
sup
λ∈C+

(Reλ)
1+β

2 ‖(λ−A)−(1+β)B‖ < ∞.

Theorems 4.4 and 4.6 give positive results for β > 0 and adjoints of γ-hypercontractions
in the case of observation operators, and for β < 0 and γ-hypercontractions in the case of
control operators. The remaining possibilities for β ∈ (−1, 0) ∪ (0, 1) can be shown not to
hold by means of various counterexamples. For β ∈ (−1, 0) the counterexample for normal
semigroups given in [25] shows that there is no positive result for observation operators in
either the γ-hypercontractive or adjoint γ-hypercontractive case. For β ∈ (0, 1), there is a
counterexample in [25] based on the unilateral shift, which is 2-hypercontractive, see Figure 3.
By Remark 4.2, these provide appropriate counterexamples for control operators as well.

T γ-hypercontr. for some γ > 1 T ∗ γ-hypercontr. for some γ > 1

β ∈ (−1, 0)

Conjecture holds by Theorem 4.4

Counterexample [25]

Counterexample [25]

Counterexample [25]

β ∈ (0, 1)

Figure 3: Weighted Weiss conjecture for observation operators
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