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Abstract

The maintenance of genetic diversity across generations depends on both the

number of reproducing males and females. Variance in reproductive success,

multiple paternity and litter size can all affect the relative contributions of male and

female parents to genetic variation of progeny. The mating system of the wild boar

(Sus scrofa) has been described as polygynous, although evidence of multiple

paternity in litters has been found. Using 14 microsatellite markers, we evaluated

the contribution of males and females to genetic variation in the next generation in

independent wild boar populations from the Iberian Peninsula and Hungary.

Genetic contributions of males and females were obtained by distinguishing the

paternal and maternal genetic component inherited by the progeny. We found that

the paternally inherited genetic component of progeny was more diverse than the

maternally inherited component. Simulations showed that this finding might be due

to a sampling bias. However, after controlling for the bias by fitting both the genetic

diversity in the adult population and the number of reproductive individuals in the

models, paternally inherited genotypes remained more diverse than those inherited
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maternally. Our results suggest new insights into how promiscuous mating systems

can help maintain genetic variation.

Introduction

The maintenance of genetic diversity in populations is strongly influenced by

mating systems, which ultimately determine how variation is transmitted across

generations [1, 2]. To help maintain diversity, both sexes should transmit a high

proportion of the genetic diversity they contain; this is most likely under a

scenario where a high proportion of males and females reproduce, with both sexes

showing a low variance in reproductive success [3]. However, some mating

systems might reduce the amount of genetic diversity transmitted by males or

females.

Mating systems have been traditionally classified as monogamous, polygynous,

polyandrous and promiscuous or polygynandrous [4, 5]. Under monogamy, each

sexually mature individual within the population mates with only one individual

of the opposing sex. Contrastingly, under polygynandry males and females can

have multiple mates. Intermediate between these two extremes are polygyny,

where males can mate with multiple females, and polyandry, where females can

mate with multiple males. Each mating system type is thus associated with a sex-

specific number of reproductive individuals or sex-specific variance in

reproductive success, so the relative contribution of males and females to genetic

diversity in the next generation tends to differ [1–3].

The amount of genetic diversity depends on the effective size (Ne) of

populations, which can be defined as the size of an ideal population, with constant

finite size and random union of gametes, and where the amount of change in

allele frequencies due to genetic drift is the same as the actual population under

study [6]. In populations of constant size, the rate of genetic drift is mainly

determined by variance in reproductive success and the sex ratio of breeding

adults, which are both properties that can define a species’ mating system. For

instance, since polygyny increases variance in male reproductive success, it tends

to reduce genetic diversity due to a negative effect on Ne [7–11].

The production of multiple offspring by a female in a single brood might also

play an important role in determining Ne and, hence, in the maintenance of

genetic diversity in populations. If a single male sires all of the offspring in a brood

(single paternity), Ne is reduced, because of a high variance in male reproductive

success, especially in highly polygynous species [7, 12]. Variance in reproductive

success could be further increased if there are differences in survival rate between

litters. A reduction in Ne may be partially offset if more than one male sires the

offspring within a litter (multiple paternity; MP). Traditionally, it has been

accepted that MP reduces the variance in male mating success, increases Ne and

helps maintain genetic diversity [12–14]. However, there is an ongoing debate
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about the effects of MP on genetic diversity and Ne. For instance, it has been

proposed that MP might decrease Ne and genetic diversity because MP might

actually increase the variance in male reproductive success when compared to

serial monogamy (the most common form of monogamy in which females switch

partners between seasons) [15]. Ultimately, the effect of MP on Ne is likely to

depend on population parameters such as the distribution of within-litter

paternity [16].

When assessing sex-specific contributions to genetic diversity, the use of a

limited number of samples instead of an entire population can cause an important

sampling bias. For instance, in polygynous systems it is expected that females

contribute more genetic diversity than males because of the low number of

reproductive males and the high variance of male reproductive success [7, 8].

However, this conclusion might only be visible when all (or a substantial part of)

the population is analysed. Otherwise, a small sample of a polygynous population

might capture only a limited group of females that coincidentally reproduced with

different males. In this case a system in which males and females transmitted

similar amounts of genetic diversity to the next generation could be described. To

take into account sampling bias, studies on sex-specific contributions to genetic

diversity need to create a framework where analyses of empirical data can be

interpreted in light of the effect of different sampling regimes.

The mating system of the wild boar (Sus scrofa) has been traditionally described

as polygynous based on the spatial distribution of reproductive individuals and on

the degree of sexual dimorphism [17]. Females constitute family groups and males

only join female groups during the rutting period [17, 18]. In the rutting season

adult males try to monopolyze females and pre-copulatory male-male mate

competition has driven the evolution of structures and behaviours used in

aggressive fights [19, 20]. Different capacity of males to monopolize female groups

has been observed depending on the studied population [17, 21]. Although males

can monopolize entire female groups [21], the highly synchronized receptivity

might reduce the potential for polygyny [4, 17, 22].

On the other hand, observations of the social organization of the species, of

large testicles relative to body size, and the fact that females reproduce by litters,

have led several authors to propose the existence of MP [17, 23]. The wild boar is a

highly polytocous (many offspring per birth) species in which litter size is

distributed around a mean of ,4.6 [24]. Recently, relatively high rates of MP in

wild boar populations have been reported [25], an observation that might shift the

description of the species mating system, from polygynous to polygynandrous or

promiscuous.

Dispersal in the wild boar is male biased [17]. Females in a given area are

normally philopatric and they drive out their sons from family groups in the

mating season after the birth [26]. After the expulsion, males show high dispersal

rates and large ranges. Sex-biased dispersal has consequences on the genetic

structure of populations and it might produce differences in the genetic diversity

of males and females at breeding areas [7]. Under a male biased dispersal pattern a

higher genetic diversity is expected in the subpopulation of males.
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In wild boar populations, female monopolyzation might decrease the genetic

diversity transmitted by males to the following generation [7–11]. Contrarily, MP

might increase the contribution of males to the genetic diversity [12–14]. In the

promiscuous mating system of the wild boar, the relative contribution of males

and females to the genetic diversity of the following generation can not be easily

predicted. The knowledge of each sex relative contribution to the next generation

is important to understand the evolutionary implications of a particular mating

system.

In this study, we investigated the relative contribution of reproducing males

and females to the genetic diversity of their progeny in different wild boar

populations. We determined which alleles were transmitted to progeny by both

fathers and mothers to measure sex-specific contributions to diversity. Initially

this was done without controlling for any further factors. Subsequently, we used

genetic structure analyses to establish the actual number of populations, before

measuring the contribution of males and females to genetic diversity while

controlling for both the amount of genetic variation in the adult population and

the number of reproductive individuals. We used simulations to assess the impact

of possible sampling biases.

Materials and Methods

Populations and Sample collection

The samples originated from either the Iberian Peninsula or Hungary (Figures A

and B in S1 File). We collected tissue samples from the carcasses of specimens

legally culled by hunters in officially organized hunting events. This study was

carried out in strict accordance with the law. No animals were killed specifically

for this study. Hunters used rifles of different calibres depending on user

preference. Iberian Peninsula samples were obtained in five hunting events

conducted in Évora (38 3̊49020N, 7 5̊49320O), Alqueva (38 1̊29550N, 7 3̊19590O),

Vila Viçosa (38 4̊69340N, 7 2̊59020O), Azagala (39 1̊19110N, 6 5̊09280O) and Santa

Amalia (39 4̊39280N, 5 5̊79130O). In this region, hunting is characterized by the

use of packs of dogs that are released within forest areas to move the wild boar

outwards to the sites where hunters are placed. In Hungary, culled individuals

were collected in nine hunting events conducted in Kisbajom (46 1̊79420N,

17 2̊99110E), Lábod (46 1̊39170N, 17 3̊0970E), Szulok (46 2̊9180N, 17 3̊09190E),

Cserénfa (46 1̊79500N, 17 5̊19120E), Kereki (46 4̊79180N, 17 5̊39340E), Kereki

Kapasi (46 4̊59240N, 17 5̊59490E), Pusztaszemes (46 4̊59530N, 17 5̊59550E), Karád

(46 4̊59240N, 17 5̊6970E) and Tótokilap (46 4̊99290N, 17 5̊79100E). Here, hunting

is characterized by the formation of a long line of people who move the wild boar

towards the hunter sites. All samples were collected from hunting events that took

place between November 2008 and February 2009. Around 80% of females were

pregnant at the moment of capture (P. Fernández-Llario, unpublished data).

Tissue samples were collected from a random sample of 91 males, 110 pregnant

females (mothers) and 502 foetuses (see S1 and S2 Tables for additional details on

Genetic Diversity Contribution under Polygynandry

PLOS ONE | DOI:10.1371/journal.pone.0115394 4 / 22December 26, 2014



the distribution of samples). Pregnant females were only used if their foetuses

were sufficiently developed to obtain a tissue sample. We recorded the foetuses

belonging to the same litter and the mother of each litter. Male samples were

collected from males older than 1 year to ensure that they had already been

expelled from the family groups. Age of males was estimated using the body size

or the chronology of teeth eruption [26]. Adult samples consisted of pieces of ear

cartilage and a piece of muscle was collected from foetuses. Samples were placed

in a 1.5 ml eppendorf tube and preserved in 96% ethanol. The samples were

extracted with JETQUICK Tissue DNA Spin Kit (Genomed, Löhne) according to

the manufacturer’s instructions.

We did not conduct refined methods for the estimation of population sizes.

However, it is certain that entire populations were not sampled; past experience

with the study areas suggests a sampling intensity between 10–20%. For instance,

in the Iberian area of Azagala an approximate number of 200 females were

inferred before the hunting event (P. Fernández-Llario, unpublished data). In

Azagala we collected 35 females, approximately 18% of females in the area. In the

Iberian area of Santa Amalia there were around 100 females (P. Fernández-Llario,

unpublished data); 13 females were sampled giving a sampling intensity of ,13%.

Microsatellite genotyping

All 703 samples used in this study were genotyped for a set of 14 microsatellite

markers designed for parentage analyses in wild boar (Sw24, S0155, Sw936,

Sw2410, S0005, Sw632, Sw857, S0226, Sw72, Sw240, S0068, S0101, Sw122,

Sw2008) [27]. We performed two multiplex polymerase chain reactions with a

total volume of 10 ml containing 10 ng of genomic DNA, 10 mM of primer mix,

Qiagen Multiplex PCR Master Mix (QIAGEN, Hilden) and water [27]. The

multiplex products were added to a mix of denaturant formamide and size

standard (Gene Scan 500 LIZ size standard) and run on a 3130 XL Genetic

Analyzer (Applied Biosystems) sequencer. GENE MAPPER v4.0 (Applied

Biosystems, USA) was used for allele calling (see S3 Table for details about

microsatellite markers).

Analyses of wild boar data

We did not have previous in-depth knowledge of the number and distribution of

populations within the study areas. Therefore, STRUCTURE 2.0 [28] was used to

delineate clusters of individuals on the basis of their genotypes at multiple loci.

Accordingly, the STRUCTURE approach was implemented in adult males and

pregnant females (201 individuals). To determine the number of genetic clusters

(K), ten independent runs from K51 to K58 were carried out with 500,000

iterations, following a burn-in period of 100,000 iterations. As an additional

assessment, we conducted Structure analyses (10 independent runs, 500,000

iterations, 100,000 burn-in, from K51 to K55) for the Iberian Peninsula and

Hungary populations separately, to look for minor genetic clustering within the

Genetic Diversity Contribution under Polygynandry

PLOS ONE | DOI:10.1371/journal.pone.0115394 5 / 22December 26, 2014



major geographical areas. We regarded genetic clusters as populations if all the

hunting locations of the clusters belonged to the same geographic neighbourhood.

Genetic diversity was measured using Shannon’s index [1, 11]:

H~{
X

piln pið Þ

where pi is the frequency of the i allele in the genotype set. This index takes into

account the number of different alleles and the frequency of each allele.

For each population and marker four sex-specific genetic diversity values were

obtained: genetic diversity in the random sample of adult males (diploid

individuals), genetic diversity in mothers (also diploids), diversity in the

paternally transmitted genetic component of progeny (haploid paternal genotype)

and diversity in the maternally transmitted genetic component of progeny

(haploid maternal genotype). Paternal and maternal genotypes of the progeny

(haploid parental genotypes) were constructed by comparing each foetus’

genotype with its mother’s genotype [11, 29] and assigning the non-maternal

allele to the father. Ambiguities (foetus and mother shared the same heterozygous

genotype) [30] were dealt with by following three different methods:

Method 1. Ambiguities were removed and parental genotype diversity was

quantified using only those alleles where there was no doubt about whether

they were paternally or maternally inherited.

Method 2. Alleles were assigned to the paternal genotype at random but with a

probability proportional to the relative frequency of the ambiguous alleles in

the population the foetus belongs to. In this case, the probability of assigning

the most common allele to the paternal genotype increased.

Method 3. Alleles were assigned to the maternal genotype at random but with a

probability proportional to the relative frequency of the ambiguous alleles in

the population. In this case, the most common allele was more likely to be

assigned to the maternal genotype.

In Method 1, only a single genetic diversity value for paternal and maternal

genotypes in each population and marker was obtained. For Methods 2 and 3, a

1,000 replication process was conducted for the entire data set, which reproduced

a mean genetic diversity for paternal and maternal genotypes in each population

at each marker.

We quantified the following mating system characteristics of the population

samples we studied: number of fathers and mothers, mean number of mates per

mother (MP rate), mean reproductive success for fathers and mothers, and

variance of father and mother reproductive success. The number of mothers, as

well as the mean and variance of mother reproductive success were quantified

using the samples of pregnant females and the distribution of the observed litter

sizes. The remaining mating system parameters were inferred using the COLONY

2.0 software [31]. This software uses a group-likelihood approach to infer sibship

and parentage among individuals. COLONY allows both sexes to be polygamous
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and it can accommodate genotyping errors. The genotypes of mothers, offspring

and the random sample of males, as well as the known mother-offspring

relationships were included in the input files. The rate of allelic dropout was set to

0.01 and the rate of other kind of genotyping errors, including mutations was set

at 0.005 [32]. An analysis using 0.0001 as the genotyping error rate did not change

the main results (data not shown). To obtain the number of fathers, as well as the

mean and variance of father reproductive success, the distribution of the number

and size of paternal families was calculated from the configurations with the

highest likelihood values.

The number of fathers and mothers was also used as a covariate to account for

the sampling bias in the comparison in genetic diversity between paternal and

maternal genotypes (see below). The comparison between paternal and maternal

contributions to genetic diversity after controlling for covariates such as the

number of parents is the main focus of this work, so we additionally inferred the

number of fathers by using an alternative paternity inference software:

MOL_COANC [33]. This software uses the ‘‘blind search algorithm’’ that finds

the genealogy yielding the coancestry matrix with the highest correlation with the

molecular co-ancestry matrix, calculated using the markers. We used the

estimated genealogy obtained with MOL_COANC to calculate the number of

fathers in the populations.

The data were analysed fitting Linear Mixed Models (LMMs) in a Bayesian

framework, using Markov chain Monte Carlo (MCMC) techniques. Firstly,

genetic diversity estimates in adult males and mothers were compared by

conducting a LMM with sex-specific adult genetic diversity as the dependent

variable, sex as fixed factor, and marker and population as random effects

(N5112:14 markers * 4 populations * 2 sexes). Secondly, we compared the

amount of genetic diversity contributed by males and females to the following

generation by performing a LMM with sex-specific genetic diversity in parental

genotypes (haploid genetic diversity) as the dependent variable, sex (paternal

versus maternal genotypes) as fixed factor, and marker and population as random

factors (N5112:14 markers * 4 populations * 2 parental genotypes). Finally,

genetic diversity contributed by males and females was compared after controlling

both for the sex-specific genetic diversity in adults and the number of fathers and

mothers. In this case, a LMM was performed with sex-specific genetic diversity in

parental genotypes as the dependent variable, sex-specific genetic diversity in

adults (in the random sample of males for paternal genotype and in the mothers

for maternal genotype), number of parents in the population (fathers for paternal

genotype and mothers for maternal genotype) and sex as fixed factors, and marker

as a random effect (N5112:14 markers * 4 populations * 2 parental genotypes; see

information associated with S1 Fig. for an assessment regarding this analysis). We

repeated the analyses with genetic diversity estimates obtained by each of the three

methods for dealing with ambiguous alleles (see above). All statistical analyses

were conducted using the MCMCglmm package [34] in R [35]. We show results

under chain convergence and independence of consecutive iteration values. To

determine the existence of systematic changes as a function of iteration number,
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we conducted autocorrelation analyses. As autocorrelation between successive

iteration values was small, we assume that independent samples from the

posterior were obtained. Model selection was made using the deviance

information criterion.

Simulation analyses

Because estimates of genetic diversity transmitted to the following generation by

males and females might be influenced by sampling biases (see above), we

simulated a promiscuous population and assessed the effect of sample size and

sampling intensity on the relative contribution of males and females to genetic

diversity. By simulating different scenarios it was possible to interpret our

empirical results in the context of knowledge of whether incomplete sampling

caused bias in downstream analyses. In the simulations, we assessed the number of

inferred reproductive males and the relative contribution of males and females to

genetic diversity when the number of sampled females was varied. The following

parameters were explored in the simulations: the variance in male reproductive

success (Vmales), the MP rate, the mean litter size (LS) and the variance in female

reproductive success (Vfemales).

We used information in our wild boar populations to simulate a realistic initial

population in which we modelled the sampling bias. In this initial population we

used 110 females in which the litter size distribution was the same as that in the

studied wild boar females. Mean litter size (LS) was 4.564 and variance in litter

size (Vfemales) was 3.367. We incorporated 110 males to this simulated population.

For each individual in the population, genotypes were randomly assigned for a

locus with 6 alleles (the mean number of alleles we found in our wild boar

populations was 6.21). Females were allowed to randomly mate with males. To

simulate MP, females mated with two males (a and b). Within litters, both males

were assumed to have equal probability of paternity. When the litter size was odd,

the number of offspring sired by male a was higher. To simulate polygyny, males

were allowed to mate with more than one female. Variable male reproductive

success was simulated by assuming 80% of males have a probability p of mating,

10% of males have a probability 2p of mating and 10% of males have a probability

3p of mating. After 1,000 replicates of this mating system, the resulting variance in

male reproductive success was 15.547¡2.983 (mean ¡ SD). For the simulated

population one female was randomly sampled and the number of males she mated

with was recorded, along with, the genetic diversity of the maternally and

paternally inherited genotypes. We also quantified the difference between genetic

diversity of maternally and paternally-inherited genotypes. Then, the same values

were recorded after randomly sampling 2 to 110 females. Thus, we recorded the

mean number of mates (reproductive males) and the genetic diversity of the

maternally and paternally inherited genotypes for sampling regimes that ranged

from 1 female to the entire subpopulation of females. We repeated each scenario

1,000 times.
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Following the initial simulations, parameters of interest (Vmales, MP, LS and

Vfemales) were modified and the process was repeated. For each parameter two

additional scenarios were created; one below and one above the initial condition.

For Vmales we used the same parameters as the initial population but with the

following Vmales values: all males have equal mating success (yielding a value of

Vmales510.230¡1.613; after 1,000 simulations); 80% of males have a probability p

of mating, 10% of males have a probability 2p of mating and 10% of males have a

probability 5p of mating (yielding Vmales525.757¡5.441; after 1,000 simulations).

For MP, two additional scenarios were simulated: females reproduced with one

(single paternity) or with three males (a, b and c). Within litters, all males were

modelled to have an equal number of paternities. When the litter size was not a

multiple of 3, the number of offspring sired was a$b$c. For LS the following

scenarios were explored: for all females we decreased the litter size by 2 offspring

(yielding LS52.718; the females producing 1 or 2 offspring in the initial

population were assumed to produce just 1 offspring in this situation); for all

females we increased the litter size by 2 offspring (yielding LS56.564). Finally, for

Vfemales the two scenarios were: for females with more than 4 offspring in the

initial population we decreased the litter size by 1 offspring and for females with

less than 5 offspring we increased the litter size by 1 offspring (resulting in

Vfemales51.449); for females with more than 4 offspring in the initial population

we increased the litter size by 1 offspring and for females with less than 5 offspring

we decreased the litter size by 1 offspring (resulting in Vfemales57.077; the females

producing 1 offspring in the initial population were assumed to also produce 1

offspring in this situation). Therefore, 8 additional scenarios were simulated. The

impact of incomplete sampling on estimates of paternal and maternal

contributions to offspring diversity was examined using the same procedure as for

the initial population.

The values of the mating system parameters used in simulations for the initial

and additional populations were similar to those found in the sampled wild boar

population.

Results

Genetic structure and mating system in adult populations

STRUCTURE grouped the individuals into four genetic clusters (K54; Fig. 1a).

Despite the existence of some immigrants (animals from other genetically

different populations) or descendants of immigrant individuals, the genetic

clusters closely matched four geographic areas: western Iberian Peninsula (WIP;

grouping 3 hunting locations), Azagala (AZA; one hunting location in the Iberian

Peninsula), Santa Amalia (SAM; one hunting location in Iberian Peninsula) and

Hungary (HUN; grouping 9 hunting locations) (Fig. 1b). After conducting the

STRUCTURE analyses separately for Iberian Peninsula and Hungary, the same

genetic clusters were obtained for the Iberian Peninsula (Hungary was a unique

separate cluster) (see Fig. S2a, S2b and S2c in S2 File).

Genetic Diversity Contribution under Polygynandry

PLOS ONE | DOI:10.1371/journal.pone.0115394 9 / 22December 26, 2014



The mating system of each wild boar population is summarised in Table 1. In

three out of the four populations studied, the number of fathers estimated with

COLONY was greater than the number of mothers. MP was found in all

populations and the average number of mates per mother (MP rate) was 1.781. In

all populations the coefficient of variation (CV5standard deviation/mean) of

Fig. 1. Structure software results. a) Log-likelihood values (ten independent runs) for each assessed K value. b) Membership coefficient of probability for
K54. Each individual is represented by a thin column which is portioned into four segments with different grey intensity depending on the individual’s
estimated membership fraction (Y axis) in K cluster. Vertical white or black lines divide individuals sampled at different hunting events. Hunting events are
located from west to east: Évora, Alqueva, Vila Viçosa, Azagala, Santa Amalia, Kisbajom, Lábod, Szulok, Cserénfa, Kereki, Kereki Kapasi, Pusztaszemes,
Karád and Tótokilap.

doi:10.1371/journal.pone.0115394.g001

Table 1. Mating characteristics of populations.

Nmothers Nfathers MP rate Mmothers Mfathers Vmothers Vfathers

WIP 27 30.8 1.8 4.3 3.8 1.9 7.8

AZA 35 34.3 1.7 3.9 3.9 2.4 5.8

SAM 13 17.8 1.7 3.5 2.5 1.0 2.5

HUN 35 38.2 1.9 5.9 5.4 3.5 26.0

Nmothers: number of sampled mothers. Nfathers: number of inferred fathers. MP rate: multiple paternity rate. Mmothers: mean litter size. Mfathers: mean
reproductive success of fathers. Vmothers: variance in litter size. Vfathers: variance in father reproductive success. Data for mothers were directly estimated
from the sampled pregnant females. Data for fathers were estimated using Colony analyses of maternal and foetus genotypes.

doi:10.1371/journal.pone.0115394.t001
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reproductive success was higher in fathers than in mothers (WIP: CV50.741 for

fathers, CV50.322 for mothers; AZA: CV50.608 for fathers, CV50.402 for

mothers; SAM: CV50.625 for fathers, CV50.291 for mothers; HUN: CV50.944

for fathers, CV50.316 for mothers; results from Table 1). As an additional result,

there was a strong positive relationship between mean litter size and the variance

in father reproductive success (N54; Pearson’s r50.994, p,0.01; Spearman’s

rho51, p50.083).

Genetic diversity was similar in adult males and pregnant females in all

populations (LMM fitted using MCMC: posterior estimate of the effect520.005,

95% credible interval520.113/0.113, pMCMC50.910).

Contribution of males and females to offspring genetic diversity

When Methods 1 and 3 were used for assigning paternal and maternal genotypes,

paternally inherited genotypes were more diverse than maternally inherited

genotypes (Table 2; Fig. 2). When Method 2 was used there was no significant sex

difference (although there was a tendency for paternally inherited genotypes to be

more diverse).

Regardless of the method employed, the amount of genetic diversity in

inherited genotypes was positively related to both the genetic diversity of adults,

and to the number of parents (Table 3; see Fig. S3a and S3b in S3 File). However,

in models that fitted these variables, males still transmitted more genetically

diverse genotypes than did females to the next generation (Table 3; see Fig. 2).

Results after using MOL_COANC for paternity analyses are shown in Tables A, B

and C in S4 File.

Simulations

The simulation results show an important effect of sampling intensity on the

estimated relative contribution of males and females to genetic diversity (Fig. 3).

If the entire population of females (110) in the initial population is sampled, the

number of reproductive males is lower than the number of reproductive females,

and the genetic diversity of paternally transmitted genotypes is estimated to be

lower than that of maternal genotypes. However, if the proportion of females

sample is lower, the pattern of estimated sex-specific differences in the number of

reproducing individuals and sex-specific contributions to genetic diversity can be

reversed.

When we used the inferred number of mates (grey curve in Fig. 3) as the X-axis

to represent the genetic diversity of paternally transmitted genotypes, the

relationship between genetic diversity of maternal and paternal genotypes was

similar along the range of sample size: the genetic diversity of maternal genotypes

(dashed black line in Fig. 3) was always higher than that of paternal genotypes

(dotted black line in Fig. 3).

If Vmales is increased the estimates of the number of reproductive males and the

relative genetic diversity of paternally transmitted genotypes become lower
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(Fig. 4a). However, the effect of sampling intensity was similar regardless of the

value of Vmales (Fig. 4a). Increasing MP was associated with an increase in the

estimated number of reproductive mates and the estimated diversity of paternal

genotypes (Fig. 4b). In the simulations with MP set to equal 1, the number of

estimated reproducing males was always lower than the number of sampled

females and the estimated genetic diversity of maternal genotypes was always

greater than that of paternal genotypes (Fig. 4b). The number of estimated

reproductive males was not sensitive to changes in LS and Vfemales (Fig. 4c and d).

The increase of LS tended to decrease the genetic diversity of maternal genotypes

relative to that of paternal genotypes (Fig. 4c). An increase in Vfemales tended to

increase the genetic diversity of maternal genotypes, but only at low sample sizes

(Fig. 4d).

Discussion

In this study, we investigated the relative contribution of males and females to

genetic diversity in the following generation by sampling four genetically distinct

wild boar populations. We found that the paternally transmitted genetic

component was more diverse than the maternally transmitted component. After

controlling for both the genetic diversity in the adult population and the number

of parents in our samples, paternally inherited genotypes remained more diverse

than maternally inherited genotypes.

The wild boar populations we studied displayed a promiscuous mating system

in which MP occurs. However, the variance (and the coefficient of variation) in

reproductive success was higher in fathers than in mothers in all four populations.

The highest difference between father and mother variance in reproductive success

was found in Hungary, where the litter size was also the highest of the study

populations. Because of the higher variance of reproductive success in fathers than

in mothers, a lower contribution of fathers to the genetic diversity of the following

Table 2. Fixed effects of a LMM fitted using MCMC in which we compared the genetic diversity in paternally and maternally transmitted genotypes.

a) Method 1 post. Mean lower 95% CI upper 95% CI PMCMC

Intercept 1.076 0.692 1.427 ,0.001

Sex 0.211 0.113 0.327 ,0.001

b) Method 2 post. Mean lower 95% CI upper 95% CI PMCMC

Intercept 1.189 0.863 1.508 0.004

Sex 0.075 20.021 0.170 0.126

c) Method 3 post. mean lower 95% CI upper 95% CI PMCMC

Intercept 1.060 0.738 1.348 0.002

Sex 0.279 0.176 0.376 ,0.001

Table shows the posterior estimate of the effects, the 95% credibility interval and the probability that the null hypothesis is true (effect50). Parental allele
assignment performed by: a) Method 1. b) Method 2. c) Method 3. Maternal genotype as reference.

doi:10.1371/journal.pone.0115394.t002
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Fig. 2. The contribution of males and females to offspring genetic diversity. Paternal genotypes
inference performed by: a) Method 1; b) Method 2; c) Method 3. Results are shown separately for each
population. WIP: Western Iberian Peninsula; AZA: Azagala; SAM: Santa Amalia; HUN: Hungary. Figure
shows means and standard errors of observed values.

doi:10.1371/journal.pone.0115394.g002
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Table 3. Fixed effects of a LMM fitted using MCMC in which we compared the genetic diversity of paternally and maternally transmitted genotypes after
controlling for the genetic diversity in adults and the number of reproductive individuals.

a) Method 1 post. mean lower 95% CI upper 95% CI PMCMC

Intercept 20.263 20.410 20.111 ,0.001

Genetic diversity in adults 0.960 0.883 1.045 ,0.001

Number of reproductive individuals 0.006 0.002 0.011 0.006

Sex 0.198 0.126 0.270 ,0.001

b) Method 2 post. mean lower 95% CI upper 95% CI PMCMC

Intercept 20.096 20.229 0.017 0.134

Genetic diversity in adults 0.930 0.865 0.997 ,0.001

Number of reproductive individuals 0.005 0.002 0.009 0.006

Sex 0.059 0.009 0.128 0.044

c) Method 3 post. mean lower 95% CI upper 95% CI PMCMC

Intercept 20.214 20.356 20.068 0.004

Genetic diversity in adults 0.937 0.859 1.011 ,0.001

Number of reproductive individuals 0.005 0.001 0.009 0.010

Sex 0.269 0.194 0.335 ,0.001

Table shows the posterior estimate of the effects, the 95% credibility interval and the probability that the null hypothesis is true (effect50). a) Method 1.
b) Method 2. c) Method 3. When Sex factor was coded as ‘‘males’’ dependent variable was genetic diversity of paternal genotypes, Genetic diversity in
adults referred to genetic diversity in the random sample of males and Number of reproductive individuals referred to number of inferred fathers. When Sex
factor was coded as ‘‘females’’, dependent variable was genetic diversity of maternal genotypes, Genetic diversity in adults referred to genetic diversity in
pregnant females and Number of reproductive individuals referred to number mothers. Females were used as reference for sex factor.

doi:10.1371/journal.pone.0115394.t003

Fig. 3. Simulation results for the initial population. Black solid line: relationship between the number of
sampled females (X axis) and the diversity of paternally transmitted genotypes. Black dashed line:
relationship between the number of sampled females (X axis) and the diversity of maternally transmitted
genotypes. Black dotted line: relationship between the estimated number of mates (X axis) and the diversity of
paternally transmitted genotypes. Grey solid line: relationship between the number of sampled females (X
axis) and the estimated number of sampled reproductive males (mates; note that these values were used as X
axis to construct the black dotted line). Grey dashed line: equality between the number of sampled females (X
axis) and the estimated number of reproducing males.

doi:10.1371/journal.pone.0115394.g003
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generation might be expected [7, 8]. However, we found an opposite result (see

below).

The amount of genetic diversity was not different between the sampled adult

males and mothers. However, we found that paternally-transmitted genotypes in

foetuses were more diverse than maternally-transmitted genotypes, by two of the

three methods for dealing with ambiguously inherited alleles. This result was

consistent in all sampled populations (Fig. 2). The other method (Method 2) was

Fig. 4. Simulation results after varying Vmales, MP, LS and Vfemales. The relative diversity of maternally and paternally transmitted genotypes (genetic
diversity of maternal genotypes - genetic diversity of paternal genotypes; black lines) and the estimated number of sampled reproductive males (mates; grey
lines) for different female sampling intensities are shown. a) Three populations that differ in Vmales. b) Three populations that differ in MP. c) Three
populations that differ in LS. d) Three populations that differ in Vfemales. In all graphs, the solid line represents the initial population, the dotted line represents
the below population (i.e. where the adjusted parameter is reduced relative to the initial conditions) and the dashed line represents the above population
(parameter is increased relative to initial conditions). The thin horizontal black dashed line represents equal genetic diversity in maternally and paternally
transmitted genotypes. The thin diagonal grey dotted line represents equality between the estimated number of reproducing males and the number of
sampled females.

doi:10.1371/journal.pone.0115394.g004
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extremely conservative, and is expected to produce estimates of greater diversity in

maternal genotypes, yet there remained a trend for paternally-transmitted

genotypes to be more variable.

The simulation analyses showed that paternal genotypes can be estimated to be

more diverse than maternal genotypes in this system due to a sampling bias. In

our wild boar populations we presumably sampled a small proportion of the

population (10–20%). When sampling intensity is low, the number of sampled

females is typically lower than the estimated number of mates these females mated

with. As a consequence, the estimated genetic diversity of paternally-transmitted

genotypes is greater than that of maternally-transmitted genotypes. Therefore, the

relatively high genetic diversity of paternally-transmitted genotypes could be due

to a sampling bias with little biological relevance.

The possible influence of a low sampling intensity on the comparison between

maternal and paternal contributions to genetic diversity necessitated further

analyses. When we compared the relationship between the number of sampled

females and the genetic diversity transmitted by these females (black dashed line

in Fig. 3) with the relationship between the inferred number of mates and the

genetic diversity transmitted by these males (black dotted line in Fig. 3), the

genetic diversity transmitted by females was always higher than that transmitted

by males, regardless of sampling intensity. The difference between the amount of

genetic diversity transmitted by males and females was similar under small and big

sample sizes. This is because we took into account the number of reproductive

males and females to compare the genetic diversity transmitted by males and

females respectively. Therefore, the number of reproductive individuals was

included in models to account for sampling intensity bias. If the observed

difference in genetic diversity between paternal and maternal genotypes was due

to the bias, this difference would be expected to disappear after fitting the number

of fathers and mothers as a covariate. The genetic diversity in the random sample

of males and in mothers were also included as additional covariate to compare the

relative contribution of males and females to the genetic diversity of the following

generation. The sex difference in genotype diversity remained after fitting the

additional covariates; in fact, the difference for Method 2 now reaches statistical

significance. Therefore, the observation that males transmitted more diverse

genotypes than females to the following generation appears to be robust.

There are several possible explanations for why males appear to transmit more

genetic diversity than females to the next generation. A non-biological explanation

might be bias in the sampling procedure, if hunting would select for genetically

less diverse males which are not representative of the male subpopulation.

However, this is unlikely with the hunting methods used in the study populations,

which have been proven to be unbiased for red deer [36]. Additionally they have

been suggested as neutral hunting methods for obtaining unbiased data of wild

boar populations [37].

Alternatively, males could contribute relatively greater genetic diversity if

reproductive males (fathers that sired our sample of foetuses) are genetically more

diverse than the overall population of reproductive-aged males (the random
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sample of males we used), i.e. sexual selection favoured males with the greatest

genetic diversity. In this case, the inferred paternally-transmitted genotypes would

not be a random sample of all male genotypes in the population. Precopulatory

and postcopulatory processes might favour males with the highest genetic

diversity. On one hand, male-male mate competition is a precopulatory feature of

the wild boar mating system. Males have developed aggressive behaviours,

weapons and defences to compete for mating opportunities [19, 20]. A low

individual genetic diversity may cause males to be less well-equipped for male-

male competition and therefore hinder access to reproduction [38]. If the most

genetically diverse males tend to monopolize reproduction, genetic diversity

contributed by males might be higher than expected, after taking into account the

number of reproductive males [11]. On the other hand, poor quality ejaculates of

those males with low genetic diversity [39] might also favour the success of males

with the highest genetic diversity.

The relationship between heterozygosity and reproductive success has been

detected in different mammal groups such as primates [40, 41]. For instance, in

rhesus macaques (Macaca mulatta) populations, heterozygous males at MHC

genes present higher reproductive success [40]. Heterozygosity at MHC genes

favours the resistance to the debilitating effects of injury and parasite infections

[40]. On the other hand, in mandrill (Mandrillus sphinx) populations,

heterozygosity at microsatellite markers is associated with increased reproductive

success [41]. Microsatellite markers are considered to be selectively neutral, but

inbreeding depression effects or genotypic disequilibrium between single

microsatellite locus and selected genes might occur [41, 42].

Finally, male-biased dispersal in wild boar populations [17] might play an

important role in sex-specific contributions to next-generation genetic diversity.

The fact that males disperse over longer distances than females makes them the

prime promoters of genetic diversity among populations [7]. Female philopatry

and high rates of male movements during the rutting period could increase the

relative contribution of males to genetic diversity in the next generation at local

scale [17]. However, we found that culled adult males and females did not differ in

genetic diversity. Therefore, there is little evidence that sex-biased dispersal is an

explanation to the observation that paternally transmitted genotypes are more

diverse than maternally transmitted ones. It should be noted that sampling

occurred when females were in advanced pregnancy, so estimates of male and

female genetic diversity may not be representative of mating season. Data

obtained by radiofrequency tagged animals (before and after rutting) coupled

with DNA information obtained in the hunting period (after rutting) could help

refine our findings.

The difference in genetic diversity of paternal and maternal genotypes is

suggestive of sexual selection driving a high diversity in paternally-transmitted

genotypes. However, we cannot conclude that males transmitted more overall

genetic diversity than females because it is likely that a relatively low fraction of

each entire population was sampled. The simulations showed that when a high

proportion of females are sampled, the amount of genetic diversity transmitted by
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females exceeds that transmitted by males. However, the simulations are ‘null

models’ in the sense that any process that would increase the amount of genetic

diversity contributed by males was not incorporated. Sex-specific contributions to

diversity in wild boar populations will depend on the balance of the processes

tending to increase and decrease genetic diversity [6, 7, 11, 13].

The simulation results suggest that the existence of MP was the most important

factor in determining whether incomplete sampling caused a sex-bias in estimates

of sex-specific contributions to genetic diversity. When single-sire paternity was

simulated, the bias caused by incomplete sampling lost importance (see the black

dotted line in Fig. 4b). Varying all of the remaining parameters did not induce

substantial changes in the sampling bias pattern. In addition the simulations

showed that the relative contribution of genetic diversity by males decreased when

Vmales increased [7, 8]. The relative contribution of genetic diversity by males

increased as MP increased, but only when the sampling proportion was relatively

low. The positive relationship between MP and male contribution to genetic

diversity agree with both theoretical expectations [12] and empirical results

[43, 44]. However, when the entire population was sampled (N5110 females) the

increase in MP did not have important consequences for estimates of the relative

amounts of genetic diversity transmitted by males and females. It has been

proposed that low MP rates have important consequences on transmission of

genetic diversity only when litter sizes are large [45]. The litter sizes and the degree

to which litters were sired by multiple males (real data: average MP51.781;

simulations: MP51–3) might not be large enough to detect any effect of MP rate

on estimates of sex-specific contributions to genetic diversity.

In polygynandrous and promiscuous systems multiple mating carries costs, and

several non-exclusive hypotheses have been proposed to explain the evolutionary

benefits of MP necessary for its existence [46]. One of the hypotheses is an

increase of genetic diversity within litters [47], relative to single-sire litters.

Increasing the genetic diversity might reduce the vulnerability of the progeny to

disease, pathogen transmission and the resource competition among half-sibs

[48, 49]. In addition to MP, polygyny-related processes such as the most

genetically diverse males having greatest fitness [11, 38] or male-biased dispersal

[50] might further increase the genetic diversity of litters. Polygynandrous or

promiscuous mating might be considered as a system with a relatively high

potential to maximise genetic diversity of litters that, in turn, produce higher

quality offspring. The production of fitter offspring might be enhanced by other

processes associated with polygynandry such as sperm competition and cryptic

female choice [51, 52]. Polygynandry involves a wide range of evolutionary

processes that tend to increase the genetic diversity across generations and to

enhance the quality of descendants.

In summary, our data suggest that the promiscuous mating system of wild boar

can cause male contributions to genetic diversity to exceed those of females, and

that the mating system is a mechanism by which the maintenance of genetic

diversity is promoted. However, care must be taken in this type of study to ensure

that spurious sex-specific differences do not arise due to sampling biases.
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