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Abstract—This paper proposes a novel maximum power point 
tracking (MPPT) method and a single-phase grid-connected 
photovoltaic (PV) system using a half-bridge active neutral 
point clamped (ANPC) inverter. The new MPPT method uses a 
modified artificial fish swarm algorithm (MAFSA) performed 
by a boost DC/DC converter. For the ANPC a switching-loss 
balancing pulse-width modulation scheme is used for control of 
the inverter. This scheme has shown to increase the maximum 
power point searching speed and accuracy, and by combining 
this tracking technique with the inverter, the overall system 
efficiency is higher the conventional particle swarm 
optimization (PSO) based-MPPT method. The performance of 
the proposed system is verified through simulation studies 
under the different partial shading conditions. 
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I.  INTRODUCTION 

PV power generation for domestic applications is 
commonly performed in single-phase, grid-connected 
methods and the system is required to be of low cost, high 
efficiency and offer long lifetimes [1]. The transformerless 
inverter provides a small footprint, highly efficient way of 
achieving this, although at the cost of leakage current 
susceptibility. Specialized transformerless inverter 
topologies which minimize the leakage current between the 
PV panel and grid have been developed. These include full-
bridge (FB) derived topologies such as the H5, HERIC, 
REFU and FB-DCBP converters, as well as Neutral Point 
Clamped (NPC) derived topologies such as the NPC half-
bridge, Conergy NPC and Active NPC (ANPC) converters 
[2]. The conventional half-bridge NPC converter suffers 
from the disadvantage that the losses among its switching 
devices are unbalanced [3]. This limits the output power of 
the converter to the maximum permissible losses of the 
highest-loss devices, and so in an effort to mitigate this the 
ANPC inverter was proposed [4]. In addition to grid-
connection, the PV power generator is required to maintain 
high-efficiency operation, i.e. ensuring maximum power 

harvesting throughout. Some studies have addressed that 
conventional MPPTs are operated on a sensing current. 
There exist some commercially well-known MPPTs such as 
perturb and observe (P&O) [5], incremental conductance 
(INC) [6] and hill climbing (HC) [7]. In addition, soft-
computing techniques have been catching the interest of 
researchers due to their effectiveness, low cost, robustness 
and global peak searching capability. Especially, the 
conventional MPPT techniques fail to guarantee successful 
tracking of the global MPP under partial shading conditions, 
resulting in significant reduction of both the generated power 
and the PV energy production system reliability. Based on 
this background, the soft-computing techniques are catching 
the interest of researchers due to their effective, low cost, 
robustness and their global peak search capability [8]. 

This paper proposes a single-phase PV grid-connected 
system which comprises a PV panel with a boost converter 
for MPPT and an ANPC for grid connection as shown in Fig. 
1. A modified artificial fish swarm algorithm (MAFSA) is 
proposed which incorporates a region-checking scheme to 
determine the location of the operating point in relation to 
the MPP based on the power and voltage (P-V) characteristic 
of a PV panel. The proposed MPPT algorithm combines the 
searching capabilities of the Particle Swarm Optimization 
(PSO) and the self-learning ability of adaptive visual and 
step for the basic artificial fish swarm algorithm (AFSA), 
which leads to quick and accurate search for the MPP and 
hence resulting in reduction of the voltage ripple and 
imcresed power output.  

Combining the PV section with the ANPC inverter for 
grid connection, the PWM strategy employed for the control 
of the inverter is the double-frequency PWM (DF-PWM) [9] 
which increases the switching states of the inverter thus 
leading to re-distribution and balancing of the switching-loss 
among the devices. The details of the above will be 
described. Simulation studies of the whole system under 
different incident levels have been carried out, the results 
demonstrating the features and merits of the scheme will be 
presented. 



 
Figure 1. Configuration of the proposed PV grid-connected system with ANPC inverter 

 

II. MODIFIED ARTIFICIAL FISH SWARM ALGORITHM BASED-
MPPT ALGORITHM 

A. The basic PSO algorithm 

The standard PSO [8] algorithm is shown as follows: 
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where subscript t denotes the index of iteration; vt 

represents the speed of the particle in the tth iterative 
process; xt represents the speed of the particle in the tth 
iterative process; pt

l represents the current individual 
extreme value point of the particle in the tth iterative 
process; pt

g represents the current global extreme value 
point of the population in the tth iterative process;  is 
known as the inertia weight; c1 and c2 are treated as the 
acceleration factors, and t

l= c1r1, t
g= c2r2, r1, r2U(0,1),, 

t
l, t
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B. AFSA optimized by PSO algorithm   
Being attracted by the potential of AFSA, a lot of 

improved algorithms based on the ordinary AFSA have 
been proposed, such as the introduction of taboo 
optimization operator [10], the introduction of the fish 
jumping behavior [11] and the introduction of fish memory 
behavior [12]. In the proposed algorithm, the various 
characteristics of PSO algorithm, including speed inertia, 
the memory (learning) of individual particle, and 
information exchange and sharing between particles, 
respectively are introduced into the AFSA. The 
improvements of the AFSA with PSO are expressed as 
follows: 

At first, the speed parameter is introduced into each of 
the artificial fishes. Taking the swarm behavior for example, 
the updated speed formula can be represented as follows: 
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where  is the inertia weight; vt represents the 
velocity vector of the artificial fish in the tth iterative 
process; Step is the largest mobile step length; Xt

c is the 
center of the cluster behavior vector; Xt represents the 
current position vector of the artificial fish in the tth iterative 
process; norm (Xt

c-Xt) represents the distance between the 
two position vector, and rand U (0, 1). 

Secondly, the memory behavior pattern is introduced. 
This behavior makes the artificial fish in swimming refer to 
its own optimal position, which can reduce the blindness of 
the fish in the search process. The updated speed is shown 
as follows: 
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where Xt
pbest represents the optimal position vector of the 

artificial fish on the bulletin board in the tth iterative process; 
Xt-1

pbest represents the optimal position vector of the artificial 
fish on the bulletin board in the t-1th iterative process. 

Thirdly, the communication behavior pattern is 
introduced. This behavior makes the artificial fish in 
swimming refer to the optimal position of the whole fish, 
which strengthens the ability of exchanging and sharing 
information between the individual in the search process, 
and further reduces the blindness of the fish in the search 
process. The updated velocity is shown as follows: 
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where Xt
gbest represents the current global extreme value 

point of the population on the bulletin board in the tth 
iterative process; Xt-1

gbest represents the current global 
extreme value point of the population on the bulletin board 
in the t-1th iterative process. 

C. The proposed algorithm 
Visual and step are two very important parameters for 

AFSA, and have important effect on the optimization result. 
When visual and step are set to the greater value for 
artificial fish, although artificial fish are provided with high 
search capacity and fast convergence in the previous stage, 
artificial fish will inevitably oscillate back and forth in the 
vicinity of the optimal value in the late of convergence. On 



the contrary, artificial fish can improve convergence 
precision, but artificial fish are very easy to fall into the 
local optimal value when the local optimal value is 
prominent. So, it is necessary that visual and step of 
artificial fish can be adaptively calculated along with the 
iteration [13]. 

In MAFSA, each artificial fish is in local neighborhood 
structure. Before each of iteration, the distance between the 
ith of artificial fish and the other 5 neighbor artificial fish 
need to be calculated. Visual and step is dynamically 
defined as follows [13]:  

3

1 , min
1

min

2
2

1
(t)

3

1
(t)

8

(t) exp( K (t/ ) )

i i j
j

i i

Visual K d Visual

Step Visual Step

TolalIter










    




   

   



             (6) 

where K1 is a uniform random number within the range 
(0, 1) and its value is relative to the search range and 
dimension of the optimized function; (t)  represents the 
relationship between visual, step and the number of 
iteration; Visualmin represents the minimum of visual; Stepmin 
represents the minimum of step; K2 represents the limited 
factor; t represents the current number of iterations; 
VisualIter is the total number of iterations. 

Furthermore, the maximum distance (MaxD) is used to 
limit the minimum length of vision and step of the fish 
dynamically, which two random fishes may appear to be in 
the D dimension search space. In addition, MaxD is shown 
as follows. 

               2( )max minMaxD x x D                                

(7) 
where xmax and xmin respectively represent the upper and 

lower bound of the optimization range, D is the dimension 
of search space; Visualmin is set to MaxD/100; Stepmin is set 
to MaxD/500. 

D. The proposed method for global MPPT of PV 
array under PSCs 

Taking the branch current as the optimization variables, 
the fitness function is P-I relationship of the series branch, 
as shown in formula (8) and formula (9). 
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where PVprog(I, Sun, T) represents the output power of 
each of PV panels-current characteristic function, Sun and T 
respectively represent light intensity and environment 
temperature. 

The specific process of the proposed MPPT algorithm is 
shown as follows: 

a) Initialize the position and speed of the fish, the optimal 
locations of each fish’s memory and the optimal position 
parameters recorded on bulletin board;  

b) Test the 4 kinds of combination behavior patterns: 
cluster or foraging, collision or foraging, memory or foraging 
and communication or foraging; 

c) Select the optimal combination behavior model from 
b) and use the velocity update current location of the 
artificial fish; 

d) If the specified number of iterations is available, the 
optimization will end, otherwise going to step b). 

Furthermore, the flowchart of the proposed algorithm is 
shown in Fig. 2. 

 
Figure 2. Flowchart of MAFSA-based MPPT algorithm 

 

 
Figure 3. ANPC converter structure 



 
Figure 4. DF-PWM switching signals for ANPC converter 

 

III. ANPC GRID-CONNECTED INVERTER AND ITS 

PWM  SCHEME 

A. ANPC Inverter 

The 3-level ANPC converter is derived from the 3-level 
NPC converter, with the neutral-point clamping diodes 
replaced by bidirectional switches as shown in Fig. 3 [9].  
The ANPC switches are required to withstand a voltage 
magnitude of VDC/2. 

The ANPC converter switches can be grouped in a 3-cell 
configuration corresponding to the duty cycle imposed on 
each cell by the PWM [9]. The ANPC converter does not 
improve the total efficiency of the NPC converter, but rather 
improves the performance by re-distributing losses across the 
switching devices, reducing stress on them. Introducing more 
zero-voltage states (ZVS) makes it possible to distribute the 
conduction losses, by cycling between the upper conduction 
path, where switches S1C and S2 conduct, and the lower 
path, where switches S3 and S2C conduct. During the 
positive or negative voltage states, however, the conduction 
losses cannot be influenced [9]. The switching losses of the 
converter are influenced by the commutation between 
positive or negative states and the ZVS. As such, it is 
possible to redistribute the converter switching losses by 
controlling the ZVS conduction paths [9] [3]. 

 

B. Double-Frequency PWM 

The DF-PWM strategy is introduced in [3] and [9] and is 
a PWM strategy where the apparent switching frequency is 
doubled at the converter output. The converter has a total of 
six states, with four zero-voltage states. This PWM scheme 
makes use of two carrier waveforms phase-shifted by half a 
cycle and one sinusoidal control waveform. The achieved 
switching signals over one switching period are shown in 
the Fig. 4, for the positive and negative cycles of the control 
waveform [9]. As shown, the output voltage has an apparent 
frequency twice the switching frequency. Switches S2 and 
S2C utilize the original carrier waveform while the switches 

S1, S1C, S3 and S3C utilize the phase-shifted carrier 
waveform. The positive voltage state is obtained when 
switches S1, S2 and S3 are all on, while the negative voltage 
state is obtained when switches S1C, S2C and S3C are all on 
[9]. There are two ZVS per active voltage state, giving four 
in total. During the positive reference state, the first ZVS 
utilizing the upper conduction path is obtained when 
switches S1C, and S2 are on. The second utilizing the lower 
conduction path is obtained when switches S1, S2C and S3 
are on. During the negative reference state, the ZVS 
utilizing the upper conduction path is obtained when 
switches S1C, S2 and S3C are on while that utilizing the lower 
conduction path is obtained when switches S2C, and S3 are 
on. The current paths during both the positive and negative 
voltage reference states are similar for the upper and lower 
conduction paths respectively [9]. The DF-PWM scheme 
commutation occurs such that the two possible ZVS per 
active reference state are equally utilized. The converter 
commutation action is shown in Fig. 5. 

 
(a) 

 
(b) 

Figure 5. ANPC inverter commutation action between positive, negative 
and zero states: (a) positive, and (b) negative 

 



IV. SIMULATION OF PV GRID-CONNECTED SYSTEM 

WITH ANPC INVERTER 

The grid-connected converter and the MPP controlled PV 
array (2 modules) with boost converter were integrated into a 
single system for simulation. In addition, the PV array 
consists of two modules and the parameters of module are 
shown in Table I. To simulate the different shading situation 
for the PV array, the insolation of the second PV panel 
occurs to change suddenly from 600W/m2 to 800W/m2 at 
0.5s, from 800W/m2 to 500W/m2 at 1s, from 500W/m2 to 
1000W/m2 at 1.5s and from 1000W/m2 to 700W/m2 at 2s, in 
the whole process of simulation. The aim of the simulation 
was to observe the variation of harvested PV power with 
changes in irradiation, as well as compare it to the power 

injected into the grid by the ANPC converter. The Simulink 
block diagram of the system is shown in Fig. 6, and the 
simulation parameters of the system are given in Table I. 
Table II shows the basic parameters of the traditional PSO 
method and the proposed method. 

TABLE I.  SYSTEM PARAMETERS USED IN THE SIMULATION 

PV modules 33 W at 25oC, 1kW/m2 
DC bus voltage 80 V 
DC bus capacitors 2 mF 
Output inductor 4.5 mH 
Output resistor 0.1 ȍ 
Grid voltage 32.5 Vrms 
Grid frequency 50 Hz 

TABLE II.  PARAMETERS OF THE ALGORITHMS 

Algorithm Parameter Value 

PSO 
Ȧ [ 0.9 , 0.4 ] 

c1=c2 2 

MAFSA 

t = 1t   
0.5 

K1 1/20 

K2 30 

Visualmin MaxD/100 

Stepmin MaxD/500 
Try_number 5 

į 0.75 

A quadrature signal based phase locked loop using a 
quarter-cycle delay was implemented in the system for 
synchronization of the AC inverter current to the grid 
voltage. In order to control the power injected into the grid 
and keep the DC-bus voltage constant, a current vector 
controller was implemented in the system as shown in the 
system diagram in Fig. 1 and Fig. 6. The PV power output 
variation with changes in irradiation is presented in Fig. 7, 
and shows the variation of inverter output current with 

changes in incident irradiation, as well as the PV panel 
output power and the power injected into the grid for both 
the basic PSO and the proposed MAFSA. The control 
strategies of the inverter are shown to be functional as the 
grid-injected power follows the PV-produced power closely. 
It can be noted from Fig. 7 that the grid-injected power is 
more stable and shows less ripple for the proposed method 
than that of the conventional PSO. 

 
Figure 6. Simulink block diagram of the grid-connected system 



 

 
Figure 7. Plot showing, from top, (a) variation of incident irradiation, (b) variation of inverter output current, (c) DC bus voltage variation at the ANPC 
converter input, and (d) PV panel power output (Ppv) (blue), inverter output power with the basic PSO (green) and inverter output power with MAFSA 

(pink) 
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