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ABSTRACT

Clearing is a niching method inspired by the principle of
assigning the available resources among a subpopulation to
a single individual. The clearing procedure supplies these
resources only to the best individual of each subpopulation:
the winner. So far, its analysis has been focused on ex-
perimental approaches that have shown that clearing is a
powerful diversity mechanism. We use empirical analysis to
highlight some of the characteristics that makes it a useful
mechanism and runtime analysis to explain how and why it
is a powerful method. We prove that a (µ+1) EA with large
enough population size and a phenotypic distance function
always succeeds in optimising all functions of unitation for
small niches in polynomial time, while a genotypic distance
function requires exponential time. Finally, we prove that a
(µ+1) EA with phenotypic and genotypic distances is able to
find both optima in Twomax for large niches in polynomial
expected time.

Keywords

Clearing, diversity-preserving mechanisms, evolutionary al-
gorithm, runtime analysis

1. INTRODUCTION
One of the major difficulties in a population-based evo-

lutionary algorithm (EA) is the premature convergence to-
ward a sub-optimal individual before the fitness landscape is
explored properly. Diversity-preserving mechanisms provide
the ability to visit many and/or different unexplored regions
of the search space and generate solutions that differ in var-
ious significant ways from those seen before [7, 8, 12].

A diverse population can deal with multimodal functions
and can explore several hills in the fitness landscape simul-
taneously, so they can therefore support global exploration
and help to locate several local and global optima. The algo-
rithm can offer several good solutions to the user, a feature
desirable in multiobjective optimisation. Also, it provides
higher chances to find dissimilar individuals and to create
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good offspring with the possibility of enhancing the perfor-
mance of other procedures such as crossover [5].

Most analyses and comparisons made between diversity-
preserving mechanisms are assessed by means of empirical
investigations [2, 19] or theoretical runtime analyses [3, 4, 6,
9,13,14]. There are examples where empirical investigations
are used to support theoretical runtime analyses and close
the gap between both fields [5, 15]. Both approaches are
important to understand how these mechanisms impact the
EA runtime and if they enhance the search for obtaining
good individuals. These different expectations imply where
EAs and which diversity-preserving mechanism should be
used and, perhaps even more important, where they should
not be used.

In this sense, we use empirical investigations to get in-
sights into the behaviour of the clearing diversity mechan-
ism and we use theoretical runtime analyses to provide foun-
dations of the behaviour of this mechanism. Clearing is a
niching method inspired by the principle of sharing limited
resources within subpopulations of individuals characterised
by some similarities. Instead of evenly sharing the avail-
able resources among the individuals of a subpopulation, the
clearing procedure supplies these resources only to the best
individual of each subpopulation: the winner. The winner
takes all rather than sharing resources with the other in-
dividuals of the same niche (subspace suitable for a small
group of the same or similar type of individuals) as is done
with fitness sharing [16].

Like in fitness sharing, the clearing algorithm uses a dis-
similarity measure given by a threshold called clearing ra-
dius σ (or sharing radius in the context of fitness sharing)
between individuals to determine if they belong to the same
subpopulation or not.

The basic idea is to preserve the fitness of the individual
that has the best fitness called dominant individual, while
it resets the fitness of all the other individuals of the same
subpopulation to zero1. With such a mechanism, two ap-
proaches can be considered. For a given population the set
of winners is unique. The winner and all the individuals
that it dominates are then fictitiously removed from the po-
pulation. Then we proceed in the same way with the new
population which is then obtained. Thus, the list of all the
winners is produced after a certain number of steps.

1We tacitly assume that all fitness values are larger than 0
for simplicity. In case of a fitness function f with nega-
tive fitness values we can change clearing to reset fitness to
fmin − 1, where fmin is the minimum fitness value of f , such
that all reset individuals are worse than any other individu-
als.



On the other hand, the population can be dominated by
several winners. It is also possible to generalise the clear-
ing algorithm by accepting several winners chosen among
the niche capacity κ (best individuals of each niche defined
as the maximum number of winners that a niche can ac-
cept). Thus, choosing niching capacities between one and
the population size offers intermediate situations between
the maximum clearing (κ = 1) and a standard EA (κ ≥ µ).

Empirical investigations made in [16, 18] mention that
clearing surpasses all other niching methods because of its
ability to produce a great quantity of new individuals by ran-
domly recombining elements of different niches, controlling
this production by resetting the fitness of the poor individ-
uals in each different niche. Furthermore, an elitist strategy
prevents the rejection of the best individuals.

As in past research, we test the clearing diversity mech-
anism to confirm if the mechanism is able to provide good
solutions by means of experiments, and we include theoret-
ical runtime analysis to prove how and why an EA is able
to obtain good solutions depending on how the population
size, σ, κ, and the dissimilarity measure are chosen.

In the remainder of this paper, we first present the al-
gorithmic approach, functions of unitation, including a bi-
modal test function of unitation called Twomax, and the
dissimilarity measures used in Section 2. Section 3 contains
the experimental approach and results that gave rise to the
theoretical analysis presented in Sections 4 and 5 for small
and large niches, respectively. In Section 4 we show how
the clearing mechanism is able to solve, for small niches
and the right distance function, all functions of unitation,
and in Section 5 we show how clearing solves Twomax with
the most natural distance function: Hamming distance. We
present our conclusions in Section 6, where we mention how
well the empirical results match with our theoretical results,
giving additional insight into the dynamic behaviour of the
algorithm.

2. PRELIMINARIES
We focus our analysis on the simple EA with a finite po-

pulation called (µ+1) EA. Our aim is to develop rigorous
runtime bounds of (µ+1) EA with the clearing diversity
mechanism. We want to study how diversity helps to es-
cape local optima. The basic (µ+1) EA has already been
investigated in [20]. We incorporate the clearing method
into the basic algorithm, resulting in Algorithm 1.

The idea behind Algorithm 1 is: once a population with
µ individuals is generated, an individual y is selected and
changed according to mutation. A temporary population P ∗

t

is created from population Pt and the individual y, then the
fitness of each individual in P ∗

t is updated according to the
clearing procedure shown in Algorithm 2. Each individual is
compared with the winner(s) of each niche in order to check
if it belongs to a certain niche or not and to check if its a
winner or if it is cleared. Here d(xi, xj) is any dissimilarity
measure (distance function) between two individuals xi and
xj of population P . Finally, we keep control of the niche
capacity defined by κ.

For the sake of clarity, the replacement policy will be the
one defined in [20]: the individuals with best fitness are
selected (set of winners) and individuals coming from the
new generation are preferred if their fitness values are at
least as good as the current ones (novelty is rewarded).

Algorithm 1 (µ+1) EA with clearing

1: Let t := 0 and initialise P0 with µ individuals chosen
uniformly at random.

2: while optimum not found do
3: Choose x ∈ Pt uniformly at random.
4: Create y by flipping each bit in x independently with

probability 1/n.
5: Let P ∗

t := Pt ∪ {y}.
6: Update f(P ∗

t ) with the clearing procedure.
7: Choose z ∈ P ∗

t with worst fitness uniformly at ran-
dom.

8: if f(y) ≥ f(z) then
9: Let Pt+1 = P ∗

t \ {z}.
10: else
11: Let Pt+1 = P ∗

t \ {y}.
12: end if
13: t := t+ 1.
14: end while

Algorithm 2 Clearing

1: Sort P according to fitness of individuals by decreasing
values.

2: for i = 0 to |P |−1 do
3: if f(xi) > 0 then
4: nbwinners := 1
5: for j = i+ 1 to |P |−1 do
6: if f(xj) > 0 and d(xi, xj) < σ then
7: if nbwinners < κ then
8: nbwinners := nbwinners+ 1
9: else
10: f(xj) := 0
11: end if
12: end if
13: end for
14: end if
15: end for

We consider functions of unitation—functions defined over
the number of 1-bits contained in a string—for the analysis
of small niches and a particular bimodal function of uni-
tation called Twomax(x) := max{

∑n
i=1 xi, n −

∑n
i=1 xi}

(see Figure 1) for the analysis of large niches, respectively.
The function Twomax consists of two different symmetric
branches Zeromax and Onemax with 0n and 1n as global
optima, respectively, and has already been investigated for
the analysis of the effectiveness of diversity-preserving mech-
anisms [5, 14].

Since we aim at analysing the global exploration capabili-
ties of Algorithm 1, we analyse the expected time until both
optima have been reached. Twomax is an ideal benchmark
function for clearing as it is simply structured, hence facili-
tating a theoretical analysis, and it is hard for evolutionary
algorithms to find both optima as they have the maximum
possible Hamming distance. Its choice further allows com-
parisons with previous approaches such as avoiding genotype
or phenotype duplicates [5], deterministic crowding [5], and
fitness sharing [5, 14].

Finally, as dissimilarity measures, we have considered two
distances, genotypic (Hamming distance) and phenotypic
(usually defined as Euclidean distance between two pheno-
types). As Twomax is a function of unitation, we have
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Figure 1: Sketch of the function Twomax.

adopted the same approach as in [5, 14], allowing the dis-
tance function d to depend on the number of ones: d(x, y) :=
||x|1−|y|1|.

3. EXPERIMENTS AND THEORY
The experimental approach is focused on the analysis of

Algorithm 1 and its behaviour when the parameters σ, κ,
and µ are changed and how these parameters can be set.
The main objective is to find out general behaviours in order
to provide foundations for our theoretical analysis.

In [5,14] it has been proved that fitness sharing and deter-
ministic crowding allow (µ+1) EA to find both optima for
Twomax with high probability. We are interested in observ-
ing if clearing has the same capacity, so we consider exponen-
tially increasing population sizes µ = 2, 4, 8, . . . , 1024 for just
one size of n = 30 (but a theoretical analysis that holds for
all n) and perform 100 runs with different settings of param-
eters σ and κ, so for this experimental framework, we have
defined σ = {1, 2,

√
n, n/2}, κ = {1,√µ, µ/2, (µ/2 +

√
µ), µ}

with phenotypic distance.
Since we are interested in proving how good/bad clearing

is, we define the following outcomes and stopping criteria
for each run. Success, both branches of Twomax have been
reached, i. e., the run is stopped if the population contains
both 0n and 1n in the population. Failure, when the popu-
lation only consists of copies of the same genotype or when
a run was stopped manually when after 2000 generations
stagnation was detected.

3.1 Empirical Analysis and Results
Before starting to define the results, it is better to define

overall behaviours, then to focus on specific results in order
to understand how the mentioned parameters work together.

Regarding the niche capacity κ, it is mentioned in [16]
that while the value of κ approaches the size of the popula-
tion, the clearing effect vanishes and the search becomes a
standard EA. This effect is verified in the present experimen-
tal approach. With κ ≥ µ/2 the capability of the method
to explore both branches of Twomax is reduced. With
a small population µ ≤ 64 and σ ≤ 2, one branch takes
over, removing the individuals on the other branch achiev-
ing at least 0.84 success rate. The only way to compensate
this is to increase σ between

√
n and n/2 in order to let

more individuals participate in the niche, with µ ≤ 32 to
achieve 0.80 success rate. A reduced niching capacity seems
to have a better effect exploring both branches. The best
cases were 1 ≤ κ ≤√

µ for maintaining a set of winners,
avoiding takeover or extinction.

For small values of σ = {1, 2} and κ = 1, with sufficiently
many individuals, µ = (n/2 + 1) · κ, every individual can
creates its own niche, and since only one individual is allowed
to be the winner, the individuals are spread in the search
space reaching both optima with 1.0 success and 0.0 failure
rate. In this scenario, since we are allowing sufficiently many
individuals in the population, individuals can be initialised
in both branches, reaching their respective peak as shown
in Figure 2 (in this case we only show the behaviour of the
population with µ = {8, 16, 32}, higher values for µ have the
same behaviour).

In this scenario we are making use of small differences be-
tween individuals rather than using problem-specific knowl-
edge, such as the minimum distance, that allows us to dis-
criminate between the two branches or optima. Instead, it
seems that it is the population size that provides enough
pressure to solve it. Also, we use the size of the population
to have individuals on both branches or occupy all niches as
we will show in Section 4.1. In this scenario, using genotypic
distance (µ+1) EA fails with 1.0 rate because of this met-
ric, since we have defined a small clearing radius individuals
with the same phenotype will result in a large Hamming
distance, creating winners with the same fitness (as will be
proved in Section 4.2).

Second, the clearing radius σ, defining a small clearing
radius σ = {1, 2} with a small niche capacity κ <

√
µ and

µ ≤ 4 can create takeover or extinction of a certain branch
with 1.0 failure rate because one branch may evolve faster.
In order to avoid this, it is necessary to increase µ. With
µ ≥ 8 and a small κ, every niche can have a reduced num-
ber of winners, cleared individuals are eliminated as soon as
new and better individuals are created (with their respective
niches). Also, as we increase µ the spread of the individuals
is such that individuals in one branch can reach the other
branch as a result of this behaviour with a success rate of
1.0.

For σ = {
√
n, n/2} and κ ≤ µ/2 the behaviour of the

algorithm is the opposite. In the case of larger niches it
is possible to divide the search space in fewer niches with
more winners in each niche. Here the individuals have the
opportunity to move, change inside the niche, reach other
niches allowing the movement between branches, reaching
the opposite optimum with success rate of at least 0.97.

With σ =
√
n, 1 ≤ κ ≤ µ/2 and µ ≥ 8, the method

was able to reach both optima with at least 0.97 success
rate and 0.03 failure rate. In Figure 3 the effect of κ can
be seen with sufficiently many individuals. With restrictive
niche capacities (Figure 3a), the population is scattered in
the search space while this capacity is reduced as we allow
more individuals to be part of each niche (Figure 3c). This
behaviour can be generalised and is more evident for larger
values of µ.

With µ ≥ 8 it is possible to overcome takeover and ex-
tinction if σ and κ are chosen appropriately. For example, if
κ >

√
µ and σ = n/2 it will be necessary to provide µ ≥ 64

in order to compensate the takeover of a niche in a certain
branch due to the number of winners allowed by κ and the
large set up of σ and finally achieve 1.0 success rate.

Finally, for σ = n/2, κ = 1, and sufficiently large µ, the
algorithm was able to reach both optima with 1.0 success
rate. As shown in Figure 4, the search space is divided in 2
niches by σ. Even if all the individuals are initialised in one
branch it is possible to climb down. Once there is a winner



|x|1n/2

0

n

n/2 n

(a) µ = 8

|x|1n/2

0

n

n/2 n

(b) µ = 16

|x|1n/2

0

n

n/2 n

(c) µ = 32

Figure 2: Snapshot of a typical population at the time both optima were reached, showing the spread of individuals in branches
of Twomax for n = 30, σ = 1 and κ = 1. Where the red (extreme) points represent optimal individuals, blue points represent
niche winners. The rows on the grid represents the fitness value of an individual and its position on Twomax and the columns
represent the partitioned search space (niches) created by the parameter σ.
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Figure 3: Snapshot of a typical population at the time both optima were reached, showing the spread of individuals in
branches of Twomax for n = 30, σ =

√
n and µ = 8. Where the red (extreme) points represent optimal individuals, blue

points represent niche winners, and the green points represent cleared individuals. The rows on the grid represents the fitness
value of an individual and its position on Twomax and the columns represent the partitioned search space (niches) created
by the parameter σ.

in the other branch, this individual will climb up until it
reaches the opposite optimum that includes the creation of
individuals in the branch as proved in our theoretical anal-
ysis for large niches in Section 5.

The last two scenarios have the property of dividing the
search space in niches in which the individuals are able to
spread, move, climb down a branch; this behaviour allows
those individuals to reach different niches, until the opposite
branch and optima is reached. In this sense, extreme points
always survive, a desirable property in this method.

4. SMALL NICHES
In this section we prove that (µ+1) EA with phenotypic

clearing and a small niche capacity is not only able to achieve
both optima of Twomax but is also able to optimise all
functions of unitation with a large enough population, while
genotypic clearing fails in achieving such a task.

4.1 Phenotypic Clearing
First it is necessary to define a very important property

of clearing, which is its capacity of preventing the rejection
of the best individuals in (µ+1) EA, and once µ is defined

large enough, clearing and the population size pressure will
always optimise any function of unitation.

Lemma 4.1 Consider (µ+1) EA with phenotypic clearing
and σ = 1, µ ≥ (n + 1) · κ on any fitness function. Then,
winners are never removed from the population, i.e., if x ∈
Pt is a winner then x ∈ Pt+1.

Proof. After the first evaluation with clearing, individuals
dominated by other individuals are cleared and the domi-
nant individuals are declared as winners. Cleared individu-
als are removed from the population when new winners are
created and occupy new niches. Once an individual becomes
a winner, it can only be removed if the size of the popula-
tion is not large enough to maintain it, as the worst winner
is removed if a new winner reaches a new better niche. Since
there are at most n + 1 niches, each having at most κ win-
ners, if µ ≥ (n+1)·κ then there must be a cleared individual
amongst the µ+1 parents and offspring considered for dele-
tion at the end of the generation. Thus, a cleared individual
will be deleted, so winners cannot be removed from the po-
pulation.

The behaviour described above means, that with the de-
fined parameters and sufficiently large µ to occupy all the
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Figure 4: Snapshot of a typical population at the time both optima were reached, showing the spread of individuals in
branches of Twomax for n = 30, σ = n/2 and κ = 1. Where the red (extreme) points represent optimal individuals, blue
points represent niche winners, and the green points represent cleared individuals. The rows on the grid represents the fitness
value of an individual and its position on Twomax and the columns represent the partitioned search space (niches) created
by the parameter σ.

niches, we have enough conditions for the furthest individ-
uals (individuals with the minimum and maximum number
of ones in the population) to reach the opposite edges.

Lemma 4.2 Let f be a function of unitation and σ = 1,
µ ≥ (n+1)·κ. Then, the expected time for finding the search
points 0n and 1n with (µ+1) EA with phenotypic clearing on
f is O(µn log n).

Proof. Now that we know that a winner cannot be removed
from the population by Lemma 4.1, it is just a matter of
finding the expected time until 0n and 1n are found. Be-
cause of the elitist approach of (µ+1) EA, winners will never
be replaced if we assume a large enough population size, the
winners with the minimum and maximum number of ones in
the population will never be removed, we can apply a level-
based argument as follows. First, we will focus on estimating
the time until the 1n individual is found (by symmetry, the
same analysis apply for the 0n individual). If the current
farthest niche is i, it has a probability of being selected at
least of 1/µ. In order to create a niche j > i, it is just
necessary that one of the n − i zeroes is flipped into 1-bit
and the other bits remains unchanged. Each bit flip has a
probability of being changed (mutated) of 1/n and the re-
maining bits remains unchanged is (1−1/n)n−1. Hence, the
probability of creating niche j from i with j > i is bounded
as follows

1

µ
· n− i

n
·
(

1− 1

n

)n−1

≥ n− i

µen
.

The expected time for increasing the best niche i is hence
at most (µen)/(n− i) and the expected time for finding 1n

is at most

n−1
∑

i=0

µen

n− i
= µen

n
∑

i=1

1

i
≤ µen lnn = O(µn log n).

Adding the same time for finding 0n proves the claim.

Once the search points 0n and 1n have been found, we
can focus on the time required for the algorithm until all
intermediate niches are discovered.

Lemma 4.3 Let f be any function of unitation, σ = 1,
µ ≥ (n + 1) · κ, and assume that the search points 0n and
1n are contained in the population. Then, the expected time
until all niches are found with (µ+1) EA with phenotypic
clearing on f is O(µn).

Proof. According to Lemma 4.1 and the elitist approach
of (µ+1) EA, winners will never be replaced if we assume
a large enough population size and by assumption we al-
ready have found both search points 0n and 1n. First,
we will focus on estimating the time until all niches with
i ≥ n/2 are found (by symmetry, the same analysis applies
to < n/2 niches). Now, let us divide the search space into
n/2, if there is an empty niche with i ≥ n/2 ones, then there
must be niche i such that i ≥ n/2 and i + 1 exists. So the
probability of selecting this i + 1 niche is at least 1/µ, and
since it is just necessary to flip one of at least n/2 0-bits
with probability 1/n, we have a probability of at least 1/2
to do so, and a probability of leaving the remaining bits un-
touched of (1− 1/n)n−1 ≥ 1/e, all together the probability
is bounded from below by 1/(2µe). Using the level-based ar-
gument used before, the expected time to occupy all niches
≥ n/2 is bounded by

n−1
∑

i=n/2

2µe

1
≤ 2µen = O(µn).

Theorem 4.4 Let f be a function of unitation and σ = 1,
µ ≥ (n + 1) · κ. Then, the expected optimisation time of
(µ+1) EA with phenotype clearing on f is O(µn log n).

Proof. Now that we have defined and proved all conditions
where the algorithm is able to maintain every winner in the
population (Lemma 4.1), to find the extreme search points
(Lemma 4.2) and intermediate niches (Lemma 4.3) of the
function f , we can conclude that the total time required to
optimise the function of unitation f is O(µn log n).

4.2 Genotypic Clearing
In the case of genotypic clearing, (µ+1) EA behaves like

the diversity-preserving mechanism called no genotype du-
plicates already analysed in [5]. (µ+1) EA with no genotype



duplicates rejects the new offspring if the genotype is al-
ready contained in the population. The same happens for
(µ+1) EA with genotypic clearing and σ = 1 if the po-
pulation is initialised with µ mutually different genotypes
(which happens with probability at least 1 −

(

µ
2

)

2−n). In
other words, conditional on the population being initialised
with mutually different search points, both algorithms are
identical. In [5, Theorem 2], it was proved that (µ+1) EA

with no genotype duplicates and µ = o(n1/2) is not powerful
enough to explore the landscape and can be easily trapped in
one optimum of Twomax. Adapting [5, Theorem 2] to the
goal of finding both optima and noting that

(

µ
2

)

2−n = o(1)
for the considered µ yields the following.

Corollary 4.5 The probability that (µ+1) EA with geno-

typic clearing, σ = 1 and µ = o(n1/2) finds both optima on
Twomax in time nn−2 is at most o(1). The expected time
for finding both optima is Ω(nn−1).

As mentioned before, the use of a proper distance is really
important in the context of clearing. In our case, we use
phenotypic distance for functions of unitation, which has
been proved to provide more significant information at the
time it is required to define small differences (in our case
small niches) among individuals in a population, so the use
of that knowledge can be taken into consideration at the
time the algorithm is set up. Otherwise, if there is no more
knowledge related to the specifics of the problem, genotypic
clearing can be used but with larger niches as shown in the
following section.

5. LARGE NICHES
While small niches work with phenotypic clearing, Theo-

rem 4.5 showed that with genotypic clearing small niches are
ineffective. This makes sense as for phenotypic clearing with
σ = 1 a niche with i ones covers

(

n
i

)

search points, whereas
a niche in genotypic clearing with σ = 1 only covers one
search point. In this section we turn our attention to larger
niches, where, according to our empirical observations from
Section 3, cleared search points are likely to spread, move,
and climb down a branch.

We first present general insights into these population dy-
namics with clearing. These results capture the behaviour
of the population in the presence of only one winning geno-
type x∗ (of which there may be κ copies). We estimate
the time until in this situation the population evolves a
search point of Hamming distance d from said winner, for
any d ≤ σ, or for another winner to emerge (for example, in
case an individual of better fitness than x∗ is found).

These time bounds are very general as they are indepen-
dent of the fitness function. This is possible since, assuming
the winners are fixed at x∗, all other search points within the
clearing radius receive a fitness of 0 and hence are subject
to a random walk.

We demonstrate the usefulness of our general method by
an application toTwomax with a clearing radius of σ = n/2,
where all winners are copies of either 0n or 1n. The results
hold both for genotypic clearing and phenotypic clearing as
the phenotypic distance of any point x to 0n (1n, resp.)
equals the Hamming distance of x to 0n (1n, resp.).

5.1 Population Dynamics with Clearing
We assume that the population contains only one winner

genotype x∗, of which there are κ copies. For any given

integer 0 ≤ d ≤ σ, we analyse the time for the population
to reach a search point of Hamming distance at least d from
x∗, or for a winner different from x∗ to emerge.

To this end, we will study a potential function ϕ that
measures the dynamics of the population. Let

ϕ(Pt) =
∑

x∈Pt

H(x, x∗)

be the sum of all Hamming distances of individuals in the
population to the winner x∗. The following lemma shows
how the potential develops in expectation.

Lemma 5.1 Let Pt be the current population of (µ+1) EA
with genotypic clearing on any fitness function such that the
only winners are κ copies of x∗ and H(x, x∗) < σ for all
x ∈ Pt. Then the expected change of the potential is

E(ϕ(Pt+1)− ϕ(Pt) | Pt) = 1− ϕ(Pt)

µ

(

2

n
+

κ− 1

µ+ 1− κ

)

unless a winner different from x∗ is created.

Before proving the lemma, let us make sense of this formula.
Ignore the term κ−1

µ+1−κ
for the moment and consider the

formula 1 − ϕ(Pt)
µ

· 2
n
. Note that ϕ(Pt)/µ is the average

distance to the winner in Pt. If the population has spread
such that is has reached an average distance of n/2 then the

expected change would be 1 − ϕ(Pt)
µ

· 2
n

= 1 − n
2
· 2

n
= 0.

Moreover, a smaller average distance will give a positive drift
(expected value in the decrease of the distance after a single
function evaluation) and an average distance larger than n/2
will give a negative drift. This makes sense as a search
point performing an independent random walk will attain an
equilibrium state around Hamming distance n/2 from x∗.

The term κ−1
µ+1−κ

reflects the fact that losers in the popu-
lation do not evolve in complete isolation. The population
always contains κ copies of x∗ that may create offspring
and may prevent the population from venturing far away
from x∗. In other words, there is a constant influx of search
points descending from winners x∗. As the term κ−1

µ+1−κ
in-

dicates, this effect grows with κ, but (as we will see later) it
can be mitigated by setting the population size µ sufficiently
large.

Proof of Lemma 5.1. If an individual x ∈ Pt is selected as
parent, the expected distance of its mutant to x∗ is

H(x, x∗) +
n−H(x, x∗)

n
− H(x, x∗)

n

= H(x, x∗) + 1− 2H(x, x∗)

n
.

Hence after a uniform parent selection and mutation, the
expected distance in the offspring is

∑

x∈Pt

1

µ
·
(

H(x, x∗) + 1− 2H(x, x∗)

n

)

=
ϕ(Pt)

µ
+1− 2ϕ(Pt)

µn
.

After mutation and clearing procedure, there are µ + 1
individuals in Pt with κ copies of x∗. As all µ+ 1− κ non-
winner individuals in Pt have fitness 0, one of these will be
selected uniformly at random for deletion. The expected



distance to x∗ in the deleted individual is
∑

x ∈Pt\{x∗}

1

µ+ 1− κ
·H(x, x∗)

=
∑

x∈Pt

1

µ+ 1− κ
·H(x, x∗)

=
ϕ(Pt)

µ+ 1− κ
.

Together, the expected change of the potential is

E(ϕ(Pt+1)− ϕ(Pt) | Pt) =
ϕ(Pt)

µ
+1− 2ϕ(Pt)

µn
− ϕ(Pt)

µ+ 1− κ
.

Using that

ϕ(Pt)

µ
− ϕ(Pt)

µ+ 1− κ
=

(µ+ 1− κ)ϕ(Pt)

µ(µ+ 1− κ)
− µϕ(Pt)

µ(µ+ 1− κ)

= − (κ− 1)ϕ(Pt)

µ(µ+ 1− κ)

the above simplifies to

E(ϕ(Pt+1)− ϕ(Pt) | Pt) = 1− 2ϕ(Pt)

µn
− (κ− 1)ϕ(Pt)

µ(µ+ 1− κ)

= 1− ϕ(Pt)

µ

(

2

n
+

κ− 1

µ+ 1− κ

)

.

The potential allows us to conclude when the population
has reached a search point of distance at least d from x∗.
The following lemma gives a sufficient condition.

Lemma 5.2 If Pt contains κ copies of x∗ and ϕ(Pt) > (µ−
κ)(d−1) then Pt must contain at least one individual x with
H(x, x∗) ≥ d.

Proof. There are at most µ−κ individuals different from x∗.
By the pigeon-hole principle, at least one of them must have
at least distance d from x∗.

In order to bound the time for reaching a high potential
given in Lemma 5.2, we will use the following drift theorem,
a straightforward extension of the variable drift theorem [11]
towards reaching any state smaller than some threshold a. It
can be derived with simple adaptations to the proof in [17].

Theorem 5.3 (Generalised variable drift theorem)
Consider a stochastic process X0, X1, . . . on N0. Suppose
there is a monotonic increasing function h : R+ → R

+ such
that the function 1/h(x) is integrable on [1,m], and with

E(Xt −Xt+1 | Xt = k) ≥ h(k)

for all k ∈ {a, . . . ,m}. Then the expected first hitting time
of any state from {0, . . . , a− 1} for a ∈ N is at most

a

h(a)
+

∫ m

a

1

h(x)
dx.

The following lemma now gives an upper bound on the
first hitting time (the random variable that denotes the first
point in time to reach a certain point) of a search point with
distance at least d to the winner x∗.

Lemma 5.4 Let Pt be the current population of (µ+1) EA
with genotypic clearing and σ ≤ n/2 on any fitness function
such that Pt contains κ copies of a unique winner x∗ and
H(x, x∗) < d for all x ∈ Pt. For any 0 ≤ d ≤ σ, if µ ≥

κ · dn−2d+2
n−2d+2

then, the expected time until a search point x

with H(x, x∗) ≥ d is found, or a winner different from x∗ is
created, is O(µn log µ).

Proof. We pessimistically assume that no other winner is
created and estimate the first hitting time of a search point
with distance at least d. As ϕ can only increase by at most n
in one step, hmax := (µ − κ)(d − 1) + n is an upper bound
on the maximum potential that can be achieved in the gen-
eration where a distance of d is reached or exceeded for the
first time.

In order to apply drift analysis, we define a distance func-
tion that describes how close the algorithm is to reaching a
population where a distance d was reached. We consider the
random walk induced by hmax−ϕ(Pt), stopped as soon as a
Hamming distance of at least d from x∗ is reached. Due to
our definition of hmax, the random walk only attains values
in N0 as required by the variable drift theorem.

By Lemma 5.1, abbreviating α := 1
µ

(

2
n
+ κ−1

µ+1−κ

)

, pro-

vided h(Pt) > 0, h decreases in expectation by

1− αϕ(Pt) = 1− αhmax + αh(Pt).

By definition of h and Lemma 5.2, the population reaches
a distance of at least d once the distance hmax − ϕ(Pt) has
dropped below n. Using the generalised variable drift theo-
rem, the expected time till this happens is at most

n

1− αhmax + αn
+

∫ hmax

n

1

1− αhmax + αx
dx

Using
∫

1
ax+b

dx = 1
a
ln |ax+ b| [1, Equation 3.3.15], we get

n

1− αhmax + αn
+

[

1

α
ln(1− αhmax + αx)

]hmax

n

=
n

1− αhmax + αn
+

1

α
· (ln(1)− ln(1− αhmax + αn))

=
n

1− αhmax + αn
+

1

α
ln((1− αhmax + αn)−1).

We now bound the term 1 − αhmax + αn from below as
follows.

1− αhmax + αn

= 1− (µ− κ)(d− 1) · 1
µ

(

2

n
+

κ− 1

µ+ 1− κ

)

≥ 1− (µ− κ)(d− 1) · 1
µ

(

2

n
+

κ

µ− κ

)

= 1− 2(µ− κ)(d− 1) + κ(d− 1)n

µn

=
µn− 2µd+ 2κd− κdn+ 2µ− 2κ+ κn

µn

=
κ

µ
+

n− 2d+ 2

n
− κdn− 2κd+ 2κ

µn

≥ κ

µ
+

n− 2d+ 2

n
− n− 2d+ 2

n

=
κ

µ

where in the penultimate step we used the assumption
µ ≥ κ · dn−2d+2

n−2d+2
. Along with α ≥ 2/(µn), the expected



time bound simplifies to

n

1− αhmax + αn
+

1

α
ln((1− αhmax + αn)−1)

≤ n

κ/µ
+

µn

2
ln(µ/κ) = O(µn log µ).

The minimum threshold for µ, κ · dn−2d+2
n−2d+2

, contains a
factor of κ. The reason is that the fraction of winners in the
population needs to be small enough to allow the population
to escape from the vicinity of x∗. The population size hence
needs to grow proportionally to the number of winners κ the
population is allowed to store.

Note that the restriction d ≤ σ ≤ n/2 is necessary in
Lemma 5.4. Individuals evolving within the clearing radius,
but at a distance larger than n/2 to x∗ will be driven back
towards x∗. If d is significantly larger than n/2, we con-
jecture that the expected time for reaching a distance of at
least d from x∗ becomes exponential in n.

5.2 An Upper Bound for TwoMax
It is now easy to apply Lemma 5.4 in order to achieve a

running time bound on Twomax. Putting d = σ = n/2,
the condition on µ simplifies to

µ ≥ κ · dn− 2d+ 2

n− 2d+ 2
= κ · n

2/2− n+ 2

2

which is implied by µ ≥ κn2/4. Lemma 5.4 then implies the
following. Recall that for x∗ ∈ {0n, 1n}, genotypic distances
H(x, x∗) equal phenotypic distances, hence the result applies
to both genotypic and phenotypic clearing.

Corollary 5.5 Consider (µ+1) EA with genotypic or phe-
notypic clearing, κ ∈ N, µ ≥ κn2/4 and σ = n/2 on Twomax

with a population containing κ copies of 0n (1n). Then the
expected time until a search point with at least (at most) n/2
ones is found is O(µn log µ).

Theorem 5.6 The expected time for (µ+1) EA with geno-
typic or phenotypic clearing, µ ≥ κn2/4, µ ≤ poly(n) and
σ = n/2 finding both optima on Twomax is O(µn log n).

Proof. We first estimate the time to reach one optimum, 0n

or 1n. The population is elitist as it always contains a winner
with the best-so-far fitness. Hence we can apply a fitness-
level argument as follows. If the current best fitness is i,
it can be increased by selecting an individual with fitness i
(probability at least 1/µ) and flipping only one of n− i bits
with the minority value (probability at least (n − i)/(en)).
The expected time for increasing the best fitness i is hence
at most µ ·en/(n− i) and the expected time for finding some
optimum x∗ ∈ {0n, 1n} is at most

n−1
∑

i=n/2

µ · en

n− i
= eµn

n/2
∑

i=1

1

i
≤ eµn lnn.

In order to apply Corollary 5.5, we need to have κ copies
of x∗ in the population. While this isn’t the case, a gener-
ation picking x∗ as parent and not flipping any bits creates
another winner x∗ that will remain in the population. If
there are j copies of x∗, the probability to create another
winner is at least j/µ · (1 − 1/n)n ≥ j/(4µ) (using n ≥ 2).
Hence the time until the population contains κ copies of x∗

is at most

κ
∑

j=1

4µ

j
= O(µ log κ) = O(µ log n)

as κ ≤ µ ≤ poly(n).
By Corollary 5.5, the expected time till a search point on

the opposite branch is created is O(µn log µ) = O(µn log n).
Since the best individual on the opposite branch is a winner
in its own niche, it will never be removed. This allows the
population to climb this branch as well. Repeating the ar-
guments from the first paragraph of this proof, the expected
time till the second optimum is found is at most eµn lnn.
Adding up all expected times proves the claim.

Note that, in contrast to previous analyses of fitness shar-
ing [5,14], the above analysis does not make use of the spe-
cific fitness values of Twomax. The main argument of how
to escape from one local optimum only depends on the size
of its basin of attraction. Our results therefore easily ex-
tend to more general function classes that can be optimised
by leaving a basin of attraction of width at most n/2 (e. g.
variants of Twomax with different slopes as defined in The-
orem 1 of [10], or asymmetric variants with a suboptimal
branch having a smaller basin of attraction).

One limitation of Theorem 5.6 is the steep requirement
on the population size: µ ≥ κn2/4. Experiments suggest
that smaller population sizes are effective as well, so the
quadratic dependence on n could be an artefact of our ap-
proach. The condition on µ was chosen to ensure a positive
drift of the potential for all populations that haven’t reached
distance d yet, including the most pessimistic scenario of all
losers having distance d−1 to x∗. Such a scenario is unlikely:
experiments suggest that the population tends to spread out,
covering a broad range of distances (see Figure 4). With
such a spread, a distance of d can be reached with a much
smaller potential than that indicated by Lemma 5.2. For
such populations, a smaller µ might still guarantee a pos-
itive drift. We conjecture that (µ+1) EA is still efficient
on Twomax if µ = O(n). However, proving this may re-
quire new arguments on the distribution of losers inside the
population.

6. CONCLUSIONS
The present empirical and theoretical investigation has

shown that clearing possesses desirable and powerful char-
acteristics. We have used these empirical investigations to
get an insight into the behaviour of this diversity-preserving
mechanism and to rigorously prove its ability to explore the
landscape in two cases, small and large niches.

In the case of small niches, we have proved that clearing
can exhaustively explore the landscape when the proper dis-
tance and parameters like clearing radius, niche capacity and
population size are set. Also, we have proved that clearing
is powerful enough to optimise all functions of unitation. In
the case of large niches, clearing has been proved to be as
strong as other diversity-preserving mechanisms like deter-
ministic crowding and fitness sharing since it is able to find
both optima of the test function Twomax.

Our theoretical results have also shown that the present
analysis can be extended to more general function classes.
Also, further theoretical analysis is necessary related to the
dynamics of the population (including the distribution of the



losers inside the population) since the experiments suggest
that smaller population sizes are effective in the case of large
niches for Twomax.
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