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ABSTRACT

Ebola virus (EBOV) harbors an RNA genome encapsi-
dated by nucleoprotein (NP) along with other viral pro-
teins to form a nucleocapsid complex. Previous Cryo-
eletron tomography and biochemical studies have
shown the helical structure of EBOV nucleocapsid at
nanometer resolution and the first 450 amino-acid of NP
(NPΔ451–739) alone is capable of forming a helical
nucleocapsid-like complex (NLC). However, the struc-
tural basis for NP-NP interaction and the dynamic pro-
cedure of the nucleocapsid assembly is yet poorly
understood. In this work, we, by using an E. coli
expression system, captured a series of images of
NPΔ451–739 conformers at different stages of NLC
assembly by negative-stain electron microscopy, which
allowed us to picture the dynamic procedure of EBOV
nucleocapsid assembly. Along with further biochemical
studies, we showed the assembly of NLC is salt-sensi-
tive, and also established an indispensible role of RNA
in this process. We propose the diverse modes of NLC
elongation might be the key determinants shaping the
plasticity of EBOV virions. Our findings provide a new
model for characterizing the self-oligomerization of viral
nucleoproteins and studying the dynamic assembly
process of viral nucleocapsid in vitro.

INTRODUCTION

Ebola virus (EBOV) is the representative species of
Filoviridae family, including another two members, Marburg
virus (MARV) and Lloviu virus (LLOV), which causes severe
hemorrhagic fever with extremely high morbidity and mor-
tality in humans and non-human primates (Kuhn et al.,
2010). Typically, EBOV is circulating discretely within some
regions in Central and Southern Africa. However, at an
unprecedented scale, the emergence in Western Africa in
2014 raged with an extreme severity spreading to many
regions in Africa and some cases of occasional infection
(most of them were Africa-importing cases) were also
reported outside Africa, raising the great potential of a
worldwide prevalence (http://apps.who.int/gho/data/node.
ebola-sitrep) (Gao and Feng, 2014). Though the outbreak
is over with the great efforts made by many people all over
the world fighting at the frontline, this event revealed our
great shortage of effective vaccines and therapeutics, or a
detailed understanding of its biology. EBOV yet remains a
great threat to the public health worldwide.

EBOV belongs to the Mononegavirales order, Filoviridae
family, characterized as a non-segmented negative-strand
RNA virus (Kuhn et al., 2010). The genomic RNA of these
viruses exists as ribonucleoprotein (RNP) complex, or
nucleocapsid, with nucleoprotein (NP) binding along with
other viral proteins (Ruigrok et al., 2011; Zhou et al., 2013).
Both the transcription and replication processes are
accomplished within the RNP complex which directly serves
as the template for viral RNA dependent RNA polymerase
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(RdRp) (Zhou et al., 2013). The nucleocapsid complex of
EBOV is composed of the genomic RNA, NP, virion-asso-
ciated protein (VP) 30, VP24, VP35 and L protein (the viral
RdRp) (Huang et al., 2002; Noda et al., 2006). Upon infec-
tion, the virion would be engulfed into the endosome and
then the viral envelop would fuse with the endosome mem-
brane to release the nucleocapsid into the cytoplasm, initi-
ating the viral gene expression and genome replication
(Alvarez et al., 2002; Miller et al., 2012; Nanbo et al., 2010;
Hunt et al., 2011; White and Schornberg, 2012; Wang et al.,
2015; Gong et al., 2016). During the whole life cycle of
EBOV, the nucleocapsid complex serves as the basic func-
tional unit of its genome and is therefore an important target
for anti-viral intervention.

The EBOV nucleocapsid complex was shown to form a
helical structure by previous Cryo-electron tomography
(Cryo-ET) studies at nanometer resolution (Noda et al.,
2005; Bharat et al., 2012; Beniac et al., 2012). Biochemical
and biophysical studies on NP, the main component of viral
nucleocapsid, defined the boundary between N-terminal and
C-terminal domains and mapped the functional region
responsible for NP-NP interaction to be within the first 450
amino acids (Watanabe et al., 2006; Noda et al., 2010).
Though the full-length EBOV NP comprises 739 amino
acids, recombinant NPΔ451–739 protein expressed in
mammalian cells grabs non-specific cellular RNA and self-
assembles into helical structure, a nucleocapsid-like com-
plex (NLC), with similar morphology of the authentic viral
nucleocapsid (Noda et al., 2010).

Due to the high propensity of self-assembly and hetero-
geneity, structural investigations on NP is extremely chal-
lenging. Recently, the crystal structures of the truncated NP
C-terminal domain (CTD) and N-terminal domain (NTD)
were reported (Leung et al., 2015; Dong et al., 2015;
Kirchdoerfer et al., 2015; Dziubanska et al., 2014), providing
insights into the structural fold of the NP protein. However,
these truncated proteins were incapable of assembling into
NLC or encapsidating RNA. The detailed molecular mech-
anism for the dynamic process of nucleocapsid assembly yet
remains enigmatic.

In this regard, our current study showed that the NPΔ451–
739 protein expressed in E. coli indeed assembled into an
NLC. We further observed the dynamic process of EBOV
NLC assembly in vitro by electron microscopy (EM) and
investigated multiple factors that affect the assembly process
using this E. coli expression system. Our approach would
further expand our knowledge regarding the nucleocapsid
formation of all non-segmented negative-strand RNA viruses.

RESULTS

In vitro assembly of the ring-like EBOV NLC particles
expressed in E. coli

Previous work by several groups has demonstrated that the
N-terminal domain of EBOV NP is responsible for NP-NP

interaction and the first 450 amino acids is sufficient for a
helical NLC formation (Watanabe et al., 2006; Noda et al.,
2010). Therefore, we adopted a similar strategy to express
the recombinant NPΔ451–739 protein in Escherichia coli
(E. coli) system and examine the morphology of the protein
particles by negative-stain EM. Surprisingly, we observed a
large proportion of ring-like particles besides the helical NLC
(Fig. 1A), which were approximately 30 nm in diameter and
have never been reported in any previous studies on EBOV
NP. In addition, both the percentage and length of helical
NLC particles increased if the samples were kept at 4°C for a
certain period (Fig. 1A–E).

In the beginning, the freshly prepared NPΔ451–739 pro-
tein sample mainly formed ring structure with rather few
helical structured particles. Looking at the particles in detail,
we found they were varied in size and shape, indicating the
different intermediates in the process of NP oligomerization
(Fig. 1A). As the protein preparations were kept at 4°C for a
certain period of time and samples were taken regularly to
make a time lapse, an obvious increment in both the length
and percentage of the NLC particles was observed (Fig. 1A–
E). Meanwhile, we also noticed many particles with irregular
morphology, indicating the intermediates in the course of
helix formation. Given long enough time, the helical NLC
particles would interfere with each other and tend to aggre-
gate (Fig. 1E), which might be due to the hydrophobic nature
of the NPΔ451–739 protein. These observations above
indicated that the NLC was built up with the ring-like particles
as the building block and this assembly process could be
revealed in vitro with protein expressed in E. coli.

Reversibility of NLC assembly

Despite that many groups have made great efforts to char-
acterize the EBOV nucleocapsid complex both functionally
and structurally, no one has ever described the 30 nm ring-
like particles of EBOV NP. Kawaoka’s group pioneered in
this field (Noda et al., 2006; Noda et al., 2005; Watanabe
et al., 2006; Noda et al., 2010). In the previous biochemical
and biophysical studies, they first discovered that recombi-
nant expression of the first 450 amino acids of EBOV NP in
mammalian cells could generate helical structured NLC
particles with non-specific cellular RNA binding (Watanabe
et al., 2006; Noda et al., 2010). Our observation of ring-like
particles was made by expressing the protein in E. coli
system.

To test the reversibility of this process, we treated the pre-
assembled helical NLC preparations with sonication on ice
and visualized the resulting particles by negative-stain EM.
Consequently, the helical NLC particles largely dissociated
into ring-like particles (Fig. 2B and 2C). Accordingly, the
disrupted ring particles would reversibly re-assemble into
helical NLC particles if kept at 4°C for a certain period of time
(Fig. 2D). On the other hand, we prepared the NPΔ451–739
protein expressed in 293T cells following the same purifica-
tion protocol and examined the morphology of the protein
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particles by negative-stain EM as well. The ring-like particles
were also observed in the 293Tcell expressed NPΔ451–739
protein preparations along with the helical NLC particles
(Fig. 1F).

Our data showed the dynamic process of NLC assembly
was reversible in vitro, providing us a novel model for
investigating the dynamics of the NLC assembly of non-
segmented negative-strand RNA viruses.

Dynamic procedure of the NLC assembly

All the above observations imply a process of helical NLC
particles assembly from the ring-like particles, originally from
the monomeric NPΔ451–739 protein. Therefore, freshly
prepared NPΔ451–739 protein was subjected to make a
more detailed time-lapse EM analysis to capture the various
conformers at different stages of NLC assembly. As expec-
ted, a series of intermediate NPΔ451–739 protein particles
were successfully observed in the assembly process from

ring formation to final NLC helical structure (Fig. 3), allowing
us to picture the whole dynamic procedure by logical
analysis.

Once the NPΔ451–739 protein was expressed in the cell,
it tends to oligomerize and gather adjacent molecules to form
ring-like particles (Fig. 3_II), which would serve as the build-
ing block for further NLC assembly. Due to the physical dis-
ruption, we also observed some incomplete ring particles
(Fig. 3_I), representing the precursors for ring formation.
Right after that, the ring particles would associate with each
other to generate the loose helical structured particles char-
acterized by the variable helical pitch distance and irregular
shape (Fig. 3_III-IV). This conformation is extremely flexible
and would soon further condense by tightening the pitches,
resulting in tight helix unit with near constant pitch distance
and more regular morphology (Fig. 3_V-VI). At this stage, the
helix unit is universally very short and would further serve as
the nuclear scaffold for elongation. As to helix elongation,
there are multiple ways to accomplish the process. Both ends

Figure 1. In vitro NLC assembly time lapse. (A) The freshly purified EBOV NPΔ451–739 protein was immol/Lediately applied for

negative stain EM observation. (B–E) The EBOV NPΔ451–739 protein preparation at a concentration of ∼1 mg/mL was kept at 4°C

for 2 days and samples were taken every 6 h and observed by negative-stain TEM. A, ring formation; B, short helix nucleation; C,

helix elongation; D, long helix assembly; E, long helix aggregation. (F) Mammol/Lalian cell (293Tcell) expressed EBOV NPΔ451–739
protein purified following the same protocol as described above for E. coli expressed samples. The cells were homogenized by

sonication. The ring particles and helices are labeled by green and red rectangles, respectively.
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of the helix unit could be elongated by new rings joining in
(Fig. 3_VII). Several adjacent short helix units could also
associate together to generate a longer helix by aligning the
axis and tightening the gaps (Fig. 3_VIII). Alternatively, both
the two elongation processes could happen simultaneously, i.
e. ring-like particles and short helix units could be recruited
and aligned together directly (Fig. 3_IX). Eventually, the long
helical NLC particles formed (Fig. 3_X).

With the accumulation of long helical NLC particles, they
tend to interfere with each other and aggregate, which might
result from the interactions of exposing hydrophobic inter-
faces of adjacent NLC particles (Fig. 1E).

Structural plasticity and heterogeneity of the helical
EBOV NLC particles

We then did some preliminary image processing and anal-
ysis for helical EBOV NLC particle micrographs. By direct
visual inspection, we noticed that the helical NLC particles
was not straight but with certain extent of twist (Fig. 1C–E,
Fig. 4A), remarkably different from the canonical rigid helix,
e,g. tobacco mosaic virus (TMV) virion and microtubes. This
is reminiscent of the plastic authentic EBOV virion, indicating
the NLC particles could to some extent reveal the physio-
logical properties of EBOV nucleocapsid.

We then measured the diameter of NLC helices and it
showed a rather broad range distribution, ranging from 28 to
36 nm (Fig. 4B), further demonstrating the structural hetero-
geneity of NLC particles. After sorting the NLC helix particles

by diameter, the most populated set, with a diameter of 30–32
nm, was picked out and subjected for 2D classification and
averaging. The best class average with the highest signal to
noise ratio and contrast was selected and somemore detailed
structural features could be observed. We noticed that the
helix was not regularly periodic but with obvious pleomor-
phism (Fig. 4C and 4D), i.e. the helical pitch distance was not
constant and the direction of each turn was not uniform either,
which was further evidenced by its poor power spectrum
pattern without recognizable layer lines (Fig. 4E).

This flexibility of NLC particles to some extent reveals the
physiological properties of EBOV nucleocapsid, even the
virion, and makes the structural studies on its assembly
mechanism extremely challenging.

The assembly of NLC particles is salt-sensitive

Though the assembly of NLC particles basically relies on the
self-interactions of NPΔ451–739 protein, there are several
biochemical factors that affect the assembly process andmay
change the morphology of NLC particles. Previous work by
Noda et al. (2010) showed that the morphology of NLC parti-
cles is salt-sensitive as a result of NP conformational change
in response to environmental salt concentration changes
(Noda et al., 2010). Here we also demonstrate a critical role of
salt concentration in the assembly procedure of NLCparticles.

We purified the NPΔ451–739 protein in different buffer
conditions with either physiological salt concentration or salt-
free, respectively, and then examined the morphology of the
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Figure 2. Reversible NLC assembly in vitro. The pre-assembled NLC sample (A) was treated by sonication on ice (sonicate for 1 s

with 2 s interval, 200 W, 10 (B) /20 (C) cycles) to disrupt the helical structure. And then the sonicated sample was kept at 4°C for 24 h

(D).
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protein particles by negative-stain EM. The freshly prepared
protein samples at both conditions showed similar ring
structure indistinguishable between each other (Fig. 5A and
2C), indicating the high stability of NP-NP interactions to
maintain the ring structure. After being kept at 4°C for a certain
period of time, theNPΔ451–739 protein particles in buffer with
physiological salt concentration assembled into helical NLC
particles as described above (Fig. 5D). However, the sample
in salt-free buffer was unable to formNLC particles though the
ring particles did associate together to some extent without
the correct orientation for helix axis alignment, forming irreg-
ular shaped aggregates (Fig. 5B). Together with Noda’s pre-
vious studies, our data demonstrate that salt concentration
plays an important role in both the assembly process of the
NLC particle and maintaining its structure.

RNA is essential for NLC assembly
but not for maintaining its helical structure

Self-assembly and encapsidating RNA are two main func-
tions of viral NPs. In Noda’s previous work, the recombinant
expressed NP protein in mammalian cells, both full length
and constructs with C-terminal truncation (NPΔ451–739 and
NPΔ601–739), harbors non-specific cellular RNA (Noda
et al., 2010). Similarly, we also found the recombinant

NPΔ451–739 protein expressed in E. coli with nucleic acid
binding, indicated by an OD260/OD280 of ∼1.2, and it is pre-
sent throughout the whole procedure of NLC assembly.
Therefore, we set out to characterize the nucleic acid
encapsidated by NPΔ451–739 and investigate its role in the
assembly process of NLC particles.

We first performed agarose gel electrophoresis directly
with the NLC particle sample. Two bands were clearly
observed with different molecular weight, large species (L-
species) and small species (S-species), demonstrating the
presence of nucleic acid in the NLC particles (Fig. 6A). To
further characterize the chemical nature of the NPΔ451–739
binding nucleic acid, enzymatic digestion assay was con-
ducted with DNase I and RNase A, respectively. Interest-
ingly, DNase I treatment did not cause any change in the
band profile, indicating both nucleic acid species are not
DNA, while the RNase A treatment degraded the S-species
but leaving the L-species intact, which unambiguously
identified the S-species as RNA but still left the L-species a
mystery (Fig. 6A).

Considering the resistance to both DNase I and RNase A
of the L-species, we speculate that it might be shielded by
the NPΔ451–739 protein in the inner face, making it inac-
cessible for both enzymes. Therefore, in order to fully char-
acterize the L-species, we must extract it from the NLC

(I) Oligomers

Bar: 20 nm Bar: 50 nm Bar: 100 nm

(II) Ring particle

(III) Rings association (IV) Loose helix

(V) Pitch tightening

(VI) Short helix unit (VII) Helix elongation by new rings 
joining in

(VIII) Helix elongation by short helix 
units association

(IX) Multiple ways of elongation

(X) Final stage-long helix 
       (NLC particle)

Figure 3. Dynamic process of NLC assembly. The different conformers captured by EM at different stages of NLC assembly

process showing the dynamics of EBOV NLC assembly model. Each stage is given by a micrograph of representative particles.
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particles. Unfortunately, we were never able to extract the
L-species from NLC samples though having tried many
strategies, including phenol-chloroform-isopentanol method,

ammonium sulfate precipitation and many other nucleic acid
extraction kits. In contrast, the S-species was easily
extracted and purified (Fig. 6C). Eventually, we tried

0 mmol/L NaCl, 0 h

h 42 ,lCaN L/lomm 051h 0 ,lCaN L/lomm 051

B

DC

0 mmol/L NaCl, 24 h

Figure 5. Effect of salt concentration on the assembly of NLC particles. The freshly purified NPΔ451–739 protein in buffer

containing 20 mmol/L Tris-HCl, 150 mmol/L NaCl, pH 8.0 (C) was buffer-exchanged into salt free buffer (A). And then the two samples

were kept still at 4°C for 2 days to compare the NLC assembly process with different salt conditions. Take samples every 12 h and

observe by negative-stain EM. (B) and (D) show the result at 24 h for assembly.
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Figure 4. Preliminary image processing of helical EBOV NLC particles. Preliminary 2D classification and average of helical NLC

particles. (A) Selected segmented short EBOV NLC helices raw images. (B) The helix diameter distribution histogram of NLC

particles. (C) 2D classification and average of most populated helix image set. (D) Zoom in of the best 2D class average image.

(E) The power spectrum of the best class average.
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protease K digestion strategy given that once the protein
shield was degraded the nucleic acid would be released and
could be purified. To our surprise, the L-species band dis-
appeared after protease K digestion (Fig. 6B). This indicated
that the L-species might be some really small nucleic acid or
oligo-nucleatides non-specifically bound to NPΔ451–739
protein. The low mobility rate in gel-electrophoresis might
result from the bound NPΔ451–739 protein shield which was
not completely disrupted in electrophoresis environment.
Therefore, the S-species RNA should be the mimic of viral
genomic RNA encapsidated by the nucleocapsid complex.
The RNase A and DNase I digestion assay demonstrates
that NPΔ451–739 protein specifically recognize RNA but not
DNA and the encapsidated RNA molecule is not protected
by the NLC complex from RNase A digestion.

We then investigated the role of RNA in the NLC
assembly process and maintaining its structure. Firstly, the
helical NLC particles were digested with RNase A to remove
the bound S-species RNA and the morphology of the intact
and digested NLC particles were visualized by negative-
stain EM. Both the digested and intact NLC particles showed
similar helix structures without appreciable morphology
changes (Fig. 7A and 7B), indicating the encapsidated RNA
is not essential for stabilizing the helical structure of NLC
particles. The NLC helical structure is mainly stabilized by
the profound NP-NP interactions. This experiment excluded
the bound RNA as an essential element for maintaining the
NLC structure but still cannot define the role it played in the
assembly process of NLC particles. In this regard, we dis-
rupted the helical structure of RNase A digested NLC parti-
cles by sonication to test whether the dissociated NPΔ451–
739 protein particles were able to re-assemble into helical

structure in the absence of bound RNA. As it turned out, the
RNase A digested sample largely remained ring structured
particles after sonication treatment and was unable to re-
assemble into helical structure as the undigested sample did
(Figs. 7C, 7D and 2A–D), demonstrating the bound RNA an
indispensible element for NLC assembly.

In conclusion, the recombinant NPΔ451–739 protein
expressed in E. coli forms helical structure and incorporates
RNA without specificity to assemble into NLC particles. The
NLC helical structure cannot shield the bound RNA from
enzymatic digestion. Though not essential for maintaining its
helical structure, the bound RNA is an indispensible compo-
nent in the assembly process of NLC particles. Our obser-
vation of in vitro assembly of EBOV NLC particles from ring
structure to helical particles provides a novel model for
studying the dynamic process of viral nucleocapsid formation.

DISCUSSION

Non-segmented negative-strand RNA viruses all possess an
RNA genome encapsidated by nucleoprotein and other viral
factors to form a nucleocapsid, which directly serves as the
template for gene transcription and genome replication by
the viral RdRp (Ruigrok et al., 2011; Zhou et al., 2013).
Though varying in size and shape, the nucleocapsid per-
forms similar functions to stabilize and protect the genome
from host anti-viral defense and facilitate the virus replication
in the host cell. It has been shown that the nucleocapsid of
many members in this virus group forms helical structure and
the NP plays a critical role for its assembly and provides the
basic scaffold for genome accommodation (Ruigrok et al.,
2011; Zhou et al., 2013; Iseni et al., 1998; Bhella et al.,
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Figure 6. Characterization of NPΔ451–739 binding nucleic acid. (A) The NLC sample was treated with either DNase I or RNase A

and analyzed by agarose gel electrophoresis. The band profile mainly includes 2 bands, L and S. (B) The NLC sample was digested

with RNase A and purified by Superose 6 10/300 GL (GE Healthcare) size exclusion chromatograph to remove the remaining RNase

A. The resulting product (lane 2) was digested with protease K (lane 3) and analyzed by agarose gel electrophoresis. (C) Agarose gel

electrophoresis of nucleic acid extracted from EBOV NLC particles by phenol-chloroform- isopentanol method. Only the S-species

could be observed.
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2002). The nucleocapsid compositions vary between differ-
ent viruses. In VSV (Vesicular Stomatitis Virus), Rabies
virus, RSV (Respiratory Syncytial Virus) and Nipah virus, the
nucleocapsid is mainly composed of NP, P protein (phos-
phoprotein) and the RdRp (Ruigrok et al., 2011; Iseni et al.,
1998; Bhella et al., 2002; Yabukarski et al., 2014). In con-
trast, the nucleocapsid of EBOV is a much larger complex
consisting of NP, VP24, VP30, VP35 and L protein (RdRp)
(Huang et al., 2002; Noda et al., 2006). The composition
complexity of EBOV nucleocapsid provides a vast platform
for undertaking multiple functions at different stages in the
virus life cycle and probably also leads to the significant
plasticity of the virus morphology, which distinguishes EBOV
critically from other non-segmented negative-strand RNA
viruses (Beniac et al., 2012; Booth et al., 2013).

The functional region responsible for EBOV NP-NP inter-
action and the core helix formation has been mapped to the
first 450 amino acids of NP and it is sufficient to bind RNA and
support genome replication (Watanabe et al., 2006).
Recombinant expression of NPΔ451–739 inmammalian cells
would generate a helical NLC structure with smaller pitch
distance as compared with the authentic EBOV nucleocapsid
and harboring non-specific cellular RNA (Bharat et al., 2012;
Watanabe et al., 2006). In our work, the recombinant
NPΔ451–739 protein was expressed in E. coli system and
showed not only helical structure but also quite a proportion of
ring-like particles, roughly 30 nm in diameter, as observed by
EM. Though not having been reported in any previouswork on
EBOV NP, similar ring-like particles were observed in several
other viral NPs as well, for instance, VSV, Rabies virus and
RSV (Iseni et al., 1998; Bhella et al., 2002; Albertini et al.,

2006; Tawar et al., 2009; Green et al., 2006; Maclellan et al.,
2007). It is noteworthy that in Leung’s and Kirchdoerfer’s
previous work they also observed ring structured NP oligo-
mers by preparing NPΔ458–739 and NPΔ451–739 protein
alone respectively without RNA binding (Leung et al., 2015;
Kirchdoerfer et al., 2015). However, the size of these ring
particles were averagely around 40 nm in diameter, which is
far larger than the diameter of NP comprised inner layer of
EBOV nucleocapsid established by previous cryo-ET recon-
structions (Bharat et al., 2012; Beniac et al., 2012). In contrast,
the ring particles we observed in this study are in good
accordance with the cryo-ET models in size, which implies
that the ring particles we observed may have some functional
correlations with the real viral nucleocapsid. Besides, we also
observed a process of transition from ring particles to helical
NLC particles in vitro. We then figured out that this process
could be reverted automatically in vitro. This strategy for
NPΔ451–739 protein preparation provides a novel and ideal
model for studying the dynamics of EBOV NLC particles for-
mation, which would further help to shed light on the under-
lying mechanism of nucleocapsid assembly of all non-
segmented negative-strand RNA viruses.

Previously Noda et al. (2010) has shown that environ-
mental salt concentration had a reversible effect on the
morphology of EBOV NLC particles (Noda et al., 2010). At
physiological salt concentration conditions, the NP protein
assembles into helical NLC particles in the presence of RNA.
Once subjected to salt free conditions, the tight helical NLC
particles would be deformed into loose helix and this tran-
sition could be reverted if the salt concentration was recov-
ered (Noda et al., 2010). These data demonstrate the role of
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Figure 7. Effect of binding nucleic acid on the NLC assembly process. The NLC sample (A) was digested with RNase A (B), and

disrupted by sonication (C), then kept still at 4°C for 2 days to test the NLC assembly process. Samples were taken and observed by

negative-stain EM for every 12 h and (D) showed the result of 48 h post treatment.

Dynamic assembly of Ebola virus nucleocapsid-like complex RESEARCH ARTICLE

© The Author(s) 2016. This article is published with open access at Springerlink.com and journal.hep.com.cn 895

P
ro
te
in

&
C
e
ll



salt concentration for stabilizing the NLC structure. We fur-
ther examined the effect of salt concentration on the for-
mation process of NLC particles. The NLC assembly
process presented above was conducted in buffer containing
150 mM NaCl, which closely resembles the physiological
salt concentration. As we replicate the assembly process in
salt free buffer conditions, the NLC particles could not be
observed despite given much longer time for assembly.
Thus, we can conclude that salt concentration regulates the
formation of NLC particles both in the assembly process and
stabilizing its structure after assembly. These phenomena all
might be related to the hydrophobicity of the NPΔ451–739
protein and there are probably more than one interface for
NP-NP interactions, one horizontal interface for stabilizing
neighbor NP protomers in the ring and one vertical interface
for adjacent rings adherence. From the data above, we can
infer the horizontal interface is more stable than the vertical
one. This is probably the most crucial structural basis
determining the plasticity of the NLC structure and further
leading to the flexibility of EBOV virion.

Apart from the influence of salt concentration on EBOV
NLC morphology, Noda’s work also established an essential
role of RNA for keeping its plasticity (Noda et al., 2010).
However, the role of RNA in the assembly process of NLC
particles was unclear. In our studies, we showed that the
in vitro assembly of NLC particles could only be achieved in
the presence of RNA. More specifically, RNA is essential for
guiding the ring particles to assemble into helical NLC. As to
the ring particle formation, the sole NPΔ451–739 protein is
sufficient to assemble into the ring structure, which is also
supported by Leung’s and Kirchdoerfer’s observations that
the RNA free NP(1–457 or 1–450) protein self-assembled
into ring structured particles though larger than the ones we
observed here (Leung et al., 2015). Once the helical NLC
formed, removal of RNA would not cause any appreciable
change in the morphology of NLC particles. These data
together with Noda’s observations proved that RNA is an
indispensable component for the assembly process of NLC
particles but not required for stabilizing its helical structure
which mainly relies on the vertical interface mediated NP-NP
interactions instead.

Finally, as self-assembly and accommodating RNA are
the two main functions of viral NPs, it is of great significance
to figure out the molecular mechanism of NP-RNA interac-
tions. However, there is no EBOV NP-RNA complex struc-
ture available so far. Recently, the crystal structure of EBOV
NP N-terminal core domain was reported by several groups
(Leung et al., 2015; Dong et al., 2015; Kirchdoerfer et al.,
2015). The core domain structure shows similar overall fold
with other viral NPs, indicating a general mechanism to
encapsidate the genomic RNA (Yabukarski et al., 2014;
Albertini et al., 2006; Tawar et al., 2009; Green et al., 2006).
However, these structures were obtained from monomeric
core proteins that unable to either assemble into NLC or bind
RNA. Therefore, the detailed molecular mechanism of
nucleocapsid assembly still warrants further investigation.

MATERIALS AND METHODS

Protein production

The gene of the Zaire ebolavirus nucleoprotein (GenBank:

AAG40164.1, residues 1-450) was cloned into the pET-21a

expression vector within NdeI and XhoI restriction sites following the

general protocol. The accuracy of the inserts was verified by

sequencing. The recombinant plasmid of EBOV NPΔ451–739 was

transformed into Escherichia coli strain BL21(DE3) and overex-

pressed as a 6×His-tag fused protein at the C-terminus. The bacteria

were cultured at 37°C in 2 L LB media containing 100 μg/mL

ampicillin. Once OD600 reached 0.6, 1 mmol/L isopropyl-β-D-1-

thiogalactopyranoside (IPTG) was added to induce the protein

expression and the culture was further incubated for an additional 8

h. The cell was harvested by centrifugation at 8,000 ×g for 30 min at

4°C and resuspended in 100 mL lysis buffer (20 mmol/L Tris-HCl,

150 mmol/L NaCl, pH 8.0) and homogenized by sonication. The

lysate was centrifuged at 20,000 ×g for 30 min at 4°C to remove cell

debris. The supernatant was then loaded three times onto a Ni

SepharoseTM (GE Healthcare) column pre-equilibrated with lysis

buffer. Resin was washed with 100 mL wash buffer (20 mmol/L Tris-

HCl, 150 mmol/L NaCl, 50 mmol/L imidazole, pH 8.0) and eluted with

30 mL elution buffer (20 mmol/L Tris-HCl, 150 mmol/L NaCl, 300

mmol/L imidazole, pH 8.0). The protein was further purified on a

SuperoseTM 6 10/300 GL (GE Healthcare) column equilibrated with

the buffer containing 20 mmol/L Tris-HCl, pH 8.0 with 150 mmol/L

NaCl or without where specified. SDS-PAGE analysis revealed over

95% purity of the final purified recombinant protein.

For protein expression in mammol/Lalian cells (The mammol/

Lalian cells used in this study refer to 293T cells, obtained from cell

resource center of Shanghai Institutes for Biological Sciences, Chi-

nese Academy of Sciences), the coding sequence of EBOV

NPΔ451–739 was cloned into pCAGGS vector with a 5′-GCCACC

Kozak sequence and 3′-6×His-tag coding sequence using EcoRI

and NheI restriction sites. The 293T cells were cultured with Dul-

becco’s modified Eagle’s medium (DMEM, Gibco) supplemented

with 10% fetal bovine serum in 100 mmol/L Petri dishes at 37°C in

the presence of 5% CO2 to a confluence of ∼90% and transfected

with 10 μg recombinant plasmid per dish. After 3 days post trans-

fection, the cells were harvested and washed with 1× Phosphate

Buffered Saline once, followed by resuspension in lysis buffer (20

mmol/LTris-HCl, 150 mmol/L NaCl, pH 8.0) and purification following

the same protocol described above for purifying protein expressed in

E. coli.

Negative staining and electron microscopy.

The EBOV NPΔ451–739 protein preparation was pre-treated with all

kinds of conditions as required and diluted to 0.1 mg/mL in 0 or 150

mmol/L NaCl buffer. Then 5 μL sample was applied to 400 mesh

copper grids coated with continuous carbon film, which had been

plasma cleaned by glow charge, and negative-stained with 1% uranyl

acetate. After air drying, the sample was observed on a JEOL-1400

EX electron microscope equipped with a Gatan Orius 832 CCD

camera, operated at an acceleration voltage of 120 kV. For helical

NLC particle data acquisition, the image was recorded on a magnifi-

cation at a calibrated pixel size of 1.97Å anddefocus range of 2–6μm.
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Image processing

All the micrographs were fully CTF-corrected in whole image with

CTFFIND3 (Mindell and Grigorieff, 2003). The NLC helix particles

were boxed with e2boxer.py in EMAN2 (Ludtke et al., 1999) pack-

age. Then the particles were sorted by diameter using IHRSR

(Egelman, 2000) and reference free 2D classification was performed

with e2refine2d.py in EMAN2 (Ludtke et al., 1999) package. The

helix diameter and power spectrum was calculated with SPIDER

(Shaikh et al., 2008). The histogram was generated by Origin 8.0.

Enzymatic digestion assay

The pre-assembled EBOV NLC preparations were supplemented

with DNase I or RNase A at a working concentration of 1 unit per 20

μL reaction system. The mixture was incubated at 4°C for 12 h

before checking by running 1.5% agarose gel electrophoresis. The

nucleic acid bands were visualized with ethidium bromide staining.
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