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Abstract Various mechanisms have been proposed to explain the transient, enhanced surface
deformation rates following earthquakes. Unfortunately, these different mechanisms can produce very
similar surface deformation patterns leading to difficulty in distinguishing between them. Here we return to
the observations themselves and compile near-field postseismic velocity measurements following moderate
to large continental earthquakes. We find that these velocities have a remarkably consistent pattern, with
velocity inversely proportional to time since the earthquake. This suggests that postseismic velocities
show an Omori-like decay and that postseismic displacements increase logarithmically over time. These
observations are inconsistent with simple, linear Maxwell or Burgers body viscoelastic relaxation
mechanisms but are consistent with rate-and-state frictional afterslip models and power law shear zone
models. The results imply that near-field postseismic surface deformation measurements are primarily the
result of fault zone processes and, therefore, that the inference of lower crustal viscosities from near-field
postseismic deformation requires care.

1. Introduction

The rheology of the continental lithosphere remains poorly understood, with a number of different disciplines
contributing sometimes conflicting observations. Glacial Isostatic Adjustment (GIA) studies in continental cra-
tons suggest that the lithosphere has very high viscosities (>1022 Pa s) or behaves elastically [e.g., Peltier and
Drummond, 2008; Zhao et al., 2012] and generally resolve deep, mantle relaxation with viscosities on the order
of 1020 –1021 Pa s. GIA studies examining plate boundary zones find much thinner elastic lithospheric thick-
nesses and mantle viscosities in the range 1018 –1019 Pa s [James et al., 2000; Ivins et al., 2011]. On shorter
timescales, surface deformation following the draining of lakes [e.g., England et al., 2013] and strain con-
centration associated with interseismic deformation [e.g., Johnson et al., 2007] also suggest relatively high
lithospheric viscosities in the range 1019 –1022 Pa s.

Viscosity estimates obtained from early postseismic deformation are typically several orders of magnitude
lower than those obtained from other disciplines (≲1018 Pa s) [Watts et al., 2013]. Apparent viscosities are
often seen to increase with time since the earthquake leading to inferences of various transient rheologies
[e.g., Pollitz, 2003; Ryder et al., 2007; Freed et al., 2010]. Whether these inferred viscosities apply to the lower
crust, upper mantle or simply the fault zone itself is not always clear [Bürgmann and Dresen, 2008; Wright et al.,
2013]. Furthermore, the observed surface deformation can also be explained by ongoing fault slip (afterslip)
and it is often challenging to distinguish between these competing hypotheses [e.g., Savage, 1990; Perfettini
and Avouac, 2004; Ryder et al., 2007; Hao et al., 2012; Wright et al., 2013]. Despite these common challenges, it
has been possible to determine the predominant postseismic deformation mechanism in a selection of cases
[e.g., Jónsson et al., 2003; Freed, 2007; Freed et al., 2007; Jónsson, 2008].

Many studies do not test multiple models against their postseismic data, and so evaluating the relative
importance of different deformation mechanisms is challenging. Different authors often reach very different
conclusions about the lithosphere using similar observations from the same earthquake [Wright et al., 2013].
For example, postseismic deformation following the 1992 Landers earthquake has been attributed to deep
afterslip [Savage and Svarc, 1997], poroelastic rebound and deep afterslip [Fialko, 2004], afterslip and fault
zone contraction [Massonnet et al., 1996], lower crustal relaxation [Deng et al., 1998], and power law mantle
flow [Freed and Bürgmann, 2004].

Here we compile postseismic observations from 34 moderate to large, continental, intracrustal earth-
quakes/earthquake sequences. The majority of these observations come from data sources within 25 km
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of the coseismic fault. We show that the temporal behavior over timescales from hours to tens of years is
remarkably consistent. The results support models in which rate-and-state frictional afterslip and/or viscoelas-
tic relaxation of a power law shear zone are the primary causes of postseismic deformation. We discuss the
implications for the rheology of the continental lithosphere.

2. Data Collection

We compiled 151 postseismic velocity data points from 45 publications. These studies cover 34 continental
earthquakes/earthquake sequences. The use of the full 3-D deformation field through time provides the most
information about postseismic processes and rheology. However, trying to combine this information from
multiple earthquakes is challenging. Instead, we combine information about the temporal variation of veloci-
ties from multiple earthquakes. In order to collect a consistent data set across different earthquakes and time
intervals, we extracted the maximum surface velocities observed in the studied time interval (see Table S1 in
the supporting information). If displacements are given at different time intervals for the same earthquake,
we use the same observation point (where possible), and this criterion supersedes the criterion of picking the
maximum amplitude signal. In other words, if the location of maximal displacement moves with time, we do
not follow this and instead extract measurements from the same location through time.

The distance of the maximum deforming surface location from the coseismic fault is a reasonable proxy for
the depth range of maximum deformation. Most of the maximum surface velocities come from points in the
near-field (Figure 2), which will primarily be affected by near-field, shallow deformation. However, some points
are at slightly larger distances; this suggests deeper deformation (e.g., in the lower crust) is dominant.

A variety of measurement techniques were used in the original studies, primarily Global Navigation Satellite
Systems (GNSS) (e.g., GPS), interferometric synthetic aperture radar (InSAR), and leveling. GNSS is routinely
used to study postseismic deformation; GNSS measurements account for 86 of our 151 data points. In gen-
eral, horizontal displacements/velocities are reported and we extracted the maximum values, excluding any
clear outliers. Interferometric synthetic aperture radar (InSAR) has provided 55 of our 151 data points. InSAR
measures the change in distance (range) between the satellite and the ground, equivalent to the projection
of the 3-D displacement vector in the satellite line-of-sight (LOS) direction. We chose to extract the maximum
postseismic LOS displacement change for each earthquake. This approach may underestimate postseismic
deformation if the predominant deformation direction is at a large angle to the satellite look direction. In
practice, InSAR is most sensitive to vertical and east-west displacements. Leveling data records changes in
height at particular points along transects and is the source of 10 data points in our compilation. The method
allows dense spatial coverage along transects but generally has sparse temporal coverage. Nevertheless, it
allows us to study postseismic deformation from old earthquakes, for example, from the 1940 Imperial Valley
earthquake [Reilinger, 1984]. This method is insensitive to horizontal motions, which is problematic for
predominantly strike-slip earthquakes.

Isolating a postseismic signal in actively deforming regions of the earth requires the removal of other signals
(e.g., interseismic deformation). Most of the studies in our compilation achieve this using data prior to the
earthquake or well-established models of other deformation sources. We note those studies where this signal
separation is not possible in Table S1 [e.g., Calais et al., 2002; Vergnolle, 2003]. The earliest velocity observations
included in our compilation are 3.5 h after an earthquake and the latest are 91.5 years after. Postseismic veloc-
ities range from over 10,000 mm/yr immediately following an earthquake to less than 1 mm/yr decades later.
Using a log-log plot allows us to show the data clearly from all timescales (Figure 1). We connect data points
from earthquakes where multiple postseismic deformation rates from different times after the earthquake
were available.

In order to examine postseismic velocities at very early times we use data from GPS stations POMM, LAND,
and HUNT following the 2004 Parkfield earthquake [Langbein, 2006]. We use the 30 min solutions provided by
Langbein [2006] to examine postseismic velocities very shortly after an earthquake. There is significant scatter
in the individual 30 min solutions, but a clear trend is visible in the displacement time series. We perform a
piecewise linear fit to the data and extract the postseismic surface velocity over different intervals following
the earthquake.

Approximately 100 years after an earthquake, the postseismic signal is only just detectable with current
measurement techniques. The latest postseismic velocity estimates we have are those from earthquakes in
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Figure 1. Variation of postseismic surface velocities through time. (a) Zoom showing postseismic velocities over the first
90 years. Rapid, early postseismic velocities are cut off. Grey dots show data, black crosses are data points ⩾ 25 km from
the fault. Blue dashes show 95% prediction bounds. (b) Colored lines show time series of postseismic surface velocities
from a number of continental earthquakes that display a linear trend in log-log space. Grey data points show data from
earthquakes with less than three postseismic observation times. Grey points joined by lines represent earthquakes
where only two time series points have been acquired—dashed lines mean those two points came from different
studies. Blue dashed lines as in Figure 1a. (c) Normalized results. Light grey circles represent the original data. Blue
circles represent the data normalized using intercepts of linear trends through each earthquake time series (see text).
Red line shows the best fitting Omori model and black solid lines show the region where 95% of Omori models plot.
Data sources: Barbot et al. [2008], Atzori et al. [2008], Reddy et al. [2012], Calais et al. [2002], Hsu et al. [2002], Perfettini and
Avouac [2004], Gourmelen and Amelung [2005], Hammond et al. [2009], Hetland and Hager [2003], Bie et al. [2013], Biggs
et al. [2009], Freed et al. [2006a], Pollitz [2005], Lammali et al. [1997], Pollitz et al. [2012], Amoruso et al. [2005], Hao et al.
[2012]; Nishimura and Thatcher [2003]; Reilinger [1986]; Pollitz and Thatcher [2010]; Reilinger [1984], Dalla Via [2005],
Ergintav et al. [2009], Diao et al. [2010], Ryder et al. [2011], Deng et al. [1998], D’Agostino et al. [2012], Ryder et al. [2007],
Vergnolle [2003], Copley et al. [2012], Floyd et al. [2016], Ryder et al. [2010], Deng et al. [1999], Jouanne et al. [2011], Barbot
et al. [2009], Langbein [2006], Podgorski et al. [2007], Jónsson [2008], Copley and Reynolds [2014], Copley [2014], Riva et al.
[2007], Dogan et al. [2014], Feng et al. [2014], Cetin et al. [2012], and Mahsas et al. [2008]
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Mongolia, including the M 8.4 Bolnay earthquake [Calais et al., 2002; Vergnolle, 2003]. These estimates are
dependent on models to deconvolve secular, long-lived deformation and transient, postseismic velocities and
as such do not represent “raw” observations. Despite this difficulty, the postseismic deformation estimates
from these points agree with data from earlier in the postseismic phase.

The data show a remarkably simple trend in log-log space, with a gradient of approximately −1. Postseismic
surface velocity (V) is inversely proportional to the time (t) since the earthquake. This trend is evident in
individual earthquakes as well as for the whole data set. With these results, we can estimate the range of
possible postseismic surface velocities at a given time after an earthquake, assuming a 1∕t relationship.
Ninety-five percent of our postseismic velocities lie between the blue dashed lines in Figure 1, with a fac-
tor of approximately 55 separating the lower velocities and higher velocities at any time. This information
may be particularly useful for targeting future studies of long-lived postseismic deformation or deploying
GNSS stations.

3. Data Analysis
3.1. Normalized Results
There is some scatter in the data which can be attributed to a number of factors. These earthquakes have
different magnitudes, depths, and mechanisms, have occurred in different parts of the world, and have been
observed using different techniques at different distances from the coseismic fault. However, given the large
number of variables which could control postseismic surface velocities, it is surprising how little scatter there
is in the data.

A linear regression on each of the individual earthquakes where three or more postseismic velocity measure-
ments were available gave gradients with a mean of −0.96 and a standard deviation of 0.24. Coefficient of
determination (R2) values for these fits were generally high, with most (16 out of 22) higher than 0.9. The
slope of the relationship is remarkably similar for all earthquakes, but there is a scale factor that affects the
magnitude of postseismic velocities. To remove this effect we normalized each individual earthquake time
series. The normalization was based on the linear regression such that the linear fit for each earthquake had
a value of 12.16 mm/yr (log V = 1.09) at a time of 1 year (log t = 0); this normalized the results to the mean
linear fit to all the data. The normalized results show significant reduction in scatter and have a gradient of
−0.92±0.13 (95% confidence interval from Bayesian inversion) close to the average gradient of the individual
earthquakes (Figure 1).

3.2. Scaling Factors
We investigate whether these postseismic velocities are dependent on a number of physical properties of the
earthquake (moment, depth, and focal mechanism) or are measuring artifacts (distance of the observation
from the fault, measuring technique) (Figure 2). Earthquake stress drop is expected to play a significant role
in determining the magnitude of any postseismic response. Larger stress drops result in greater stress trans-
fer to neighboring regions of the fault/lithosphere. However, the surface deformation resulting from regions
releasing stress depends on how large these regions are (determined by magnitude), and where they are in
the lithosphere (determined by depth and focal mechanism). Stress drops are not easily accessible or gen-
erally well resolved for all earthquakes in our compilation, and so we do not include this parameter in our
analysis. We performed a Bayesian inversion to determine the linear regression coefficients and their errors for
magnitude, distance from fault, centroid moment tensor (CMT) depth, and time since the earthquake. Time
exerted the strongest control, with magnitude and distance from fault playing secondary roles. We found that
larger earthquakes generally produced greater postseismic velocities and that velocities increased with dis-
tance from the fault (for distances up to 35 km). CMT depth appeared to play no significant role, but this may
be due to large errors in the reported CMT depths.

On a larger scale, there may be scatter due to lateral rheological heterogeneity over the Earth’s surface.
To test this, we plot each earthquake’s power law decay coefficient at the location of the earthquake
(see Figures S1a and S1b). We find no clear patterns, although higher decay coefficients are seen in the Tibetan
plateau, suggesting that postseismic relaxation may occur more rapidly there. We also examined whether
the best fit velocity gradient or intercept varies with time after an earthquake by using the fits to individual
earthquakes (see Figures S1c and S1d). There was no clear pattern, with both velocity gradients and intercepts
seemingly independent of time since the earthquake.
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Figure 2. Variation of postseismic deformation results with other possible controls. (a) Variation with observation
technique. (b) Variation with moment magnitude of the earthquake. (c) Variation with predominant focal mechanism.
(d) Variation with CMT depth. (e) Histograms showing distribution of samples in terms of distance from fault (X), CMT
depth and moment magnitude. (f ) Variation with perpendicular distance between the measurement point and the fault.

3.3. Consistency With Omori’s Law
Our data compilation suggests that postseismic velocities can be fit using a version of Omori’s law. Utsu [1957]
developed the modified Omori’s law which describes the number of aftershocks, n, expected at any time, t,
after an earthquake:

n(t) = K
(t + c)p

(1)

Our postseismic velocity compilation can be fit using an equation of the same form, where n(t) is replaced
with V(t). We find that p values range between 0.80 and 1.04 (at 95% confidence).

4. Modeling

We use the temporal constraints provided by these observations to test postseismic relaxation models for
the crust/upper mantle and fault zones. These models are all based on viscoelastic relaxation or afterslip.
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Figure 3. Modeling results. (a) Model runs for Maxwell elements with different viscosities. (b) Maximum likelihood
model for a Burgers rheology with two relaxation times. Histogram shows acceptable relaxation time ratios.
(c) Maximum likelihood model for a steady state afterslip model. (d) Model runs for power law rheologies
with different stress exponents.

We do not consider poroelastic rebound here since this effect is only expected to last a short time following
an earthquake [Jónsson et al., 2003; Fialko, 2004; Wright et al., 2013].

4.1. Linear Maxwell Models
The simplest rheological model usually invoked to explain postseismic deformation is the linear Maxwell
model. A Maxwell material can be conceptualized as an elastic spring and viscous dash pot in series. In an
earthquake there is an instantaneous elastic response followed by a decaying response through time as the
material relaxes. Postseismic velocity in a Maxwell material will decay exponentially as

V(t) = V0e
−t
𝜏 (2)

where V0 and 𝜏 are constants [e.g., Montėsi, 2004]. The Maxwell relaxation time of the material (𝜏) is equal
to the ratio of viscosity (𝜂) to shear modulus (𝜇), and the instantaneous velocity (V0) is inversely proportional
to the relaxation time. Although instantaneous postseismic velocities at any time can be matched by this
linear Maxwell model, it cannot explain the temporal decay. Low viscosities are required to explain rapid early
motions while higher viscosities would be required to explain sustained slow motion (Figure 3).

A slightly more complicated linear rheology is a Burgers body. The Burgers body has a Maxwell material in
series with a Kelvin (Voigt) material and shows two relaxation times (𝜏) [e.g., Pollitz, 2003, 2005]. A transient
phase of deformation is observed as the Kelvin material relaxes which is superimposed on the longer timescale
Maxwell relaxation. Postseismic motion in a Burgers rheology can be described using

V(t) = V0

[
e
− t

𝜏1 + Ke
− t

𝜏2

]
(3)

where 𝜏i =
𝜂i

𝜇i
, V0 is a constant initial velocity and K is a scalar [Malkin and Isayev, 2012]. The curves produced by

these analytical expressions have the same form as those produced using VISCO1D [Pollitz, 1992], suggesting
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that the use of these expressions is valid. We perform a Bayesian inversion to obtain the maximum likelihood
solution for a Burgers body (Figure 3). We find that a 1-D Burgers body model can produce results within the
scatter of the data. The acceptable ratios of relaxation times are shown in a histogram in Figure 3. If both
relaxing elements have a similar shear modulus, then the ratio in relaxation times can be seen as a ratio in
viscosities. We find viscosity ratios of approximately 100 best fit the data. This is larger than the typical ratios
found in previous studies [Ryder et al., 2011, and references therein] and is likely due to the need to explain a
greater time range of observations simultaneously. Overall, though, the model prediction is inconsistent with
the linear log-log trends observed in both the overall data compilation and in individual earthquakes.

Linear Maxwell models and Burgers body models cannot adequately reproduce the temporal evolution
observed for postseismic velocities over extended time periods. The addition of more viscoelastic relaxation
elements (e.g., a continuum of viscosity values) is able to better reproduce the observed trends [Hetland and
Hager, 2006]. This viscosity variation may also be in space, for example, with depth [Riva and Govers, 2009;
Yamasaki and Houseman, 2012] or distance from the fault zone [e.g., Yamasaki et al., 2014].

4.2. Afterslip Models
The rate-and-state friction law [Dieterich, 1979] has been widely used to explain a number of fault-related
phenomena including earthquakes, slow slip events, steady creep, and afterslip. A number of authors have
applied the rate-and-state friction law to postseismic afterslip [Marone, 1998; Hearn, 2002; Barbot et al., 2009].
Rate-and-state friction is often simplified by assuming that the fault is close to the steady state regime.
Close to the steady state regime, the state variable is constant in time (�̇� = 0) and there is no loading stress
rate. Under these conditions Marone [1998] showed that postseismic velocities are

V(t) =
V0

1 + t
𝜏

(4)

where 𝜏 is a characteristic decay time. In this regime velocity is seen to decay with time following a 1∕t relation-
ship from an initial value V0 (Figure 3). This is identical to the modified Omori’s law formulation (equation (1))
if c = 𝜏 , K = V0𝜏 and p = 1. The model reproduces the overall temporal decay well.

4.3. Shear Zone Models
Montėsi [2004] investigated postseismic deformation in a power law shear zone and derived a general
relaxation law describing postseismic relaxation:

Vs(t) = V0

[
1 +

(
1 − 1

n

) t
𝜏

] −1(
1− 1

n

)
(5)

where n is the power law exponent. Nonlinear rheologies are those where strain rate is proportional to stress
raised to the value of the power law exponent.

This relaxation law allows us to test various shear zone rheologies since the surface velocity is simply expected
to be directly proportional to the shear zone velocity. The law simplifies to two end members. When 1∕n → 1,
the general law tends toward the following:

Vs(t) = V0e
−t
𝜏 (6)

This equation defines Newtonian viscous flow in a shear zone and is identical to the linear Maxwell result
(equation (2)). This is shown as the blue line in Figure 3d. When n ≫ 1 and therefore 1∕n → 0, we obtain the
equation for rate-and-state afterslip (equation (4)) [Montėsi, 2004]. From postseismic deformation alone, it is
impossible to distinguish between postseismic relaxation of a shear zone with high n and frictional afterslip
(see red line in Figure 3d). These models are also capable of explaining the overall pattern seen in our post-
seismic deformation data, provided the power law exponent is greater than the usual range of experimentally
determined values.

5. Discussion
5.1. Agreement With Common Postseismic Observations
Our compilation of observations is in agreement with a number of common postseismic observations which
we outline below. First, postseismic surface displacement time series are commonly fit using logarithmic
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equations [e.g., Donnellan and Lyzenga, 1998; Freed et al., 2006a; Mahsas et al., 2008; Dogan et al., 2014]. These
equations take the general form

x(t) = C ln
(

1 + t
𝜏

)
(7)

where C is a constant and 𝜏 is a time constant. If this equation is differentiated then we obtain the equation
predicted by rate-and-state afterslip and/or relaxation of a high-n shear zone (i.e., V ∝ 1∕t for high t). Our
data also show that postseismic deformation takes an identical functional form to Omori’s law describing
the decay of aftershocks (equation (1)). Typical p values lie in the range 0.6–2.5 with a median of about 1.1
[Utsu et al., 1995]. Our value for the decay of postseismic surface deformation through time has a p value of
about 1 which shows that both postearthquake processes decay at similar rates. Aftershock sequences for
continental earthquakes can last for decades to centuries [e.g., Ryall, 1977; Utsu et al., 1995; Ebel et al., 2000;
Stein and Liu, 2009], which is in agreement with the long postseismic deformation timescales included here.
Many have noted the similar decay rates of aftershocks and afterslip velocity, leading to the proposition that
aftershocks are primarily controlled by frictional afterslip [e.g., Perfettini and Avouac, 2004; Savage et al., 2007;
Helmstetter and Shaw, 2009].

When postseismic relaxation is explained using a viscoelastic material, many authors have noted an apparent
increase in crustal/mantle viscosity through time following earthquakes [e.g., Pollitz, 2003; Freed et al., 2006a;
Ryder et al., 2007]. Our results support this observation and show that this trend continues over a period of
100 years (Figure 3). Maxwell viscoelastic models require an increase in effective viscosity through time in
order to match the decreasing postseismic velocities. This changing effective viscosity is sometimes modeled
using multiple layers with different viscosity [e.g., Jónsson, 2008; Hetland and Hager, 2006], a transient rheol-
ogy like a Burgers body or standard linear solid [e.g., Pollitz, 2003, 2005; Ryder et al., 2007, 2011], power law
rheologies [e.g., Freed and Bürgmann, 2004; Freed et al., 2006b], or a combination of the above. Our compila-
tion shows that any successful model must have a continuously changing viscosity, e.g., power law models
with high n or linear models with a large number of relaxation times.

5.2. Temporal Variation and Model Characteristics
We have sampled postseismic deformation over a long time period: from a number of hours after an earth-
quake up to almost 100 years later. All these data define a linear trend in log-log space with a gradient close
to −1. This observation suggests that all continental earthquakes exhibit similar temporal postseismic defor-
mation patterns and allows us to give bounds for expected postseismic velocities at any given time after an
earthquake.

Univiscous linear Maxwell materials and Burgers bodies with just two relaxation times cannot reproduce the
linear trends seen in our compilation. Viscoelastic models need to be more complex with variations of viscosity
in time, space, or both. In sufficiently complex rheologies, the surface displacements can be described by a
logarithmic function, which when differentiated will produce a 1∕t relationship [Hetland and Hager, 2006].

Power law creep can reproduce linear trends in log-log space as required by our data. This model is also sup-
ported by rock experimental results, but the exponents found in these studies are usually between 2 and 5
[Carter and Tsenn, 1987; Hirth and Kohlstedt, 2003; Freed and Bürgmann, 2004]. Our compilation requires higher
power law exponents and suggest that either the experimental results cannot be scaled up to tectonic
conditions or more likely, that afterslip is the dominant mechanism recorded by our data.

5.3. Localized Deformation
We find that the temporal variation of our near-field compilation is best explained by afterslip or power law
creep at high n. Afterslip is a very localized deformation mechanism, involving continued slip on the fault
plane. Moore and Parsons [2015] found that a power law rheology contributed to the narrowing of viscous
shear zones. They found that narrow shear zones would develop in viscous materials where viscosity varies
with depth, with shear stress heating further narrowing the shear zone. Our data are consistent with a localiza-
tion of postseismic deformation as aseismic afterslip in the upper crust and in deep shear zones in the middle
to lower crust.

Fault zone-related processes best explaining our compilation is perhaps not surprising, since our surface
velocity measurements are mostly from within a few kilometers of the fault zone (Figure 2). These length
scales are certainly small enough to be affected by processes centered on the fault zone [e.g., Freed, 2007] and
may be dominated by fault zone processes rather than lithospheric relaxation. Furthermore, other strands of
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evidence support localized deformation in fault zones. Geodesy reveals that the majority of continental fault
zones show significant strain localization between earthquakes [Wright et al., 2013; Vernant, 2015]. Geological
evidence from exhumed roots of faults shows that motion at depth is likely localized into shear zones up
to a few kilometers wide [Hanmer, 1988; Norris and Cooper, 2003; Vauchez and Tommasi, 2003; Frost et al.,
2011]. Seismic experiments have also shown deep narrow structures along the North Anatolian Fault in Turkey
[Fichtner et al., 2013; Kahraman et al., 2015; Taylor et al., 2016], the San Andreas [Zhu, 2000], and dip-slip faults
in Tibet [Zhang et al., 2014].

Both afterslip models and power law creep models find support from other observations. Afterslip models can
explain the temporal decay in aftershock frequency [Helmstetter and Shaw, 2009]. The rate-and-state friction
laws which form the basis for the afterslip models used here can also explain a large number of other aspects
of the seismic cycle [Dieterich, 1994; Marone, 1998; Liu and Rice, 2005; Helmstetter and Shaw, 2009]. At high
temperatures and stresses, rocks deform by power law creep in laboratory experiments [Wilks and Carter, 1990;
Kohlstedt et al., 1995; Montėsi and Hirth, 2003; Bürgmann and Dresen, 2008]. These conditions may be prevalent
in the deeper portions of fault zones.

Fault zone relaxation processes are usually considered to be relatively short-lived, but our data spans decades
of the postseismic period. Afterslip has been observed in a few examples decades after earthquakes [Reilinger,
1984; Kaneko et al., 2013; Copley and Reynolds, 2014; Copley, 2014] and often is not tested for on these long
timescales. Studies examining postseismic deformation decades after an earthquake should consider the role
of continued afterslip, especially for explaining near-fault observations.

While afterslip/power law creep can explain the temporal variation seen in our data, it is unclear whether it
can explain the time varying spatial patterns of postseismic deformation. For example, immediately after an
earthquake, poroelastic rebound may play a significant role in determining the spatial pattern of postseismic
deformation [Joünsson et al., 2003; Fialko, 2004] in the near field. Other studies have suggested that broad vis-
coelastic relaxation of the mantle is required to match far field observations, for example, after the 2002 Denali
(Alaska) earthquake [Freed et al., 2006a] or the Landers and Hector Mine earthquakes in California [Freed et al.,
2007]. While we argue that the temporal decay of postseismic deformation is a powerful discriminant between
competing mechanisms, the spatial patterns of postseismic deformation have been enough to constrain the
most important deformation mechanism in a selection of cases [e.g., Joünsson et al., 2003; Freed et al., 2006a;
Freed, 2007; Copley et al., 2012].

5.4. Implications
Despite these caveats, our findings have some important implications. Our compilation suggests that fault
zone processes (afterslip or high n shear zones) generate the largest near-field postseismic signals. These
signals may dominate postseismic deformation fields for decades, particularly at near-field sites. As such,
caution should be exercised when interpreting lower-crustal viscosities derived from postseismic studies
using predominantly near-field data.
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