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We prove a noncommutative analogue of the fact that every
symmetric analytic function of (z, w) in the bidisc D2 can be
expressed as an analytic function of the variables z+w and zw.
We construct an analytic nc-map S from the biball to an
infinite-dimensional nc-domain Ω with the property that, for
every bounded symmetric function ϕ of two noncommuting
variables that is analytic on the biball, there exists a bounded
analytic nc-function Φ on Ω such that ϕ = Φ ◦ S. We also
establish a realization formula for Φ, and hence for ϕ, in terms
of operators on Hilbert space.

© 2014 The Authors. Published by Elsevier Inc. This is an
open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Every symmetric polynomial in two commuting variables z and w can be written as a

polynomial in the variables z + w and zw; conversely every polynomial in z + w and zw

determines a symmetric polynomial in z and w. A similar assertion holds for symmetric

analytic functions on symmetric domains in C
2. For noncommuting variables, on the

other hand, no such simple characterizations are valid. For example, the polynomial
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zwz + wzw

in noncommuting variables z, w cannot be written as p(z + w, zw + wz) for any polyno-

mial p; M. Wolf showed in 1936 [11] that there is no finite basis for the ring of symmetric

noncommuting polynomials over C. She gave noncommutative analogues of the elemen-

tary symmetric functions, but they are infinite in number.

In this paper we extend Wolf’s results from polynomials to symmetric analytic func-

tions in noncommuting variables within the framework of noncommutative analysis, as

developed by J.L. Taylor [9] and many other authors, for example [2,3,5–7,10]. We prove

noncommutative analogues of the following simple classical result.

Let π : C2 → C
2 be given by

π(z, w) = (z + w, zw).

If ϕ : D2 → C is analytic and symmetric in z and w then there exists a unique analytic

function Φ : π(D2) → C such that the following diagram commutes:

D
2 π

ϕ

π(D2)

Φ

C

In this diagram the domain π(D2) is two-dimensional, in consequence of the fact that

there is a basis of the ring of symmetric polynomials consisting of two elements, z + w

and zw. Wolf’s result implies that in any analogous statement for symmetric polynomials

in two noncommuting variables, π(D2) will have to be replaced by an infinite-dimensional

domain. The same will necessarily be true for the larger class of symmetric holomorphic

functions of two noncommuting variables.

We use the notions of nc-functions and nc-maps on nc-domains, briefly explained in

Section 2. An example of an nc-domain is the biball

B2 def
=

∞
⋃

n=1

Bn × Bn,

where Bn denotes the open unit ball of the space Mn of n × n complex matrices. B2 is

the noncommutative analogue of the bidisc. It is a symmetric domain in the sense that

if (x1, x2) ∈ B2 then also (x2, x1) ∈ B2. Another example of an nc-domain is the space

M∞ def
=

∞
⋃

n=1

M∞
n

of infinite sequences of n × n matrices, for any n � 1.

The following result is contained in Theorem 5.1 below. An nc-function ϕ on B2 is

said to be symmetric if ϕ(x1, x2) = ϕ(x2, x1) for all (x1, x2) ∈ B2.
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Theorem 1.1. There exists an nc-domain Ω in M∞ such that the map S : B2 → M∞

defined by

S(x) =
(

u, v2, vuv, vu2v, . . .
)

, (1.1)

where

u =
x1 + x2

2
, v =

x1 − x2

2
, (1.2)

has the following two properties.

(1) S is an analytic nc-map from B2 to Ω;

(2) for every bounded symmetric nc-function ϕ on the biball there exists a bounded an-

alytic nc-function Φ on Ω such that the following diagram commutes:

B2 S

ϕ

Ω

Φ
⋃

n Mn

Moreover Φ can be expressed by the formula

Φ = F ◦ ΘU

for some graded linear fractional transformation F and some unitary operator U on ℓ2,

where ΘU denotes the functional calculus corresponding to U .

The sense in which the maps ϕ, S and Φ are analytic is explained in Definitions 2.1,

2.2 and 2.4 in the next section; graded linear fractional transformations are explained in

Section 4.

The domain Ω of Theorem 1.1 is not the analogue of the symmetrized bidisc in all

respects: S is far from surjective onto Ω, and we make no uniqueness statement for Φ in

the theorem.

A more algebraic approach to symmetric functions in noncommuting variables has

been adopted by many authors, for example, I.M. Gelfand et al. [4]. In the latter paper

the action of the symmetric group of order two on polynomials differs from the action

studied in the present paper (see [4, Example 7.16]).

2. nc-Functions

The settings for nc-functions are the “universal spaces” Md comprising d-tuples of

matrices of all orders, where d is a positive integer or ∞. For n in the set N of natural
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numbers we denote by Mn the space of n × n complex matrices with the usual operator

norm. For 1 � d < ∞ the space Md
n of d-tuples of n×n matrices is a Banach space with

norm

∥

∥

(

M1, . . . , Md
)
∥

∥ = max
j=1,...,d

‖Mj‖.

For d = ∞ it is more convenient to index sequences by the non-negative integers, so

that a typical element of M∞
n will be written g = (g0, g1, g2, . . .) with gj ∈ Mn. Of

course M∞
n is not naturally a normed space, but it is a Fréchet space with respect to

the product topology.

For d � ∞ define

Md def
=

∞
⋃

n=1

Md
n.

A set U ⊂ Md is said to be nc-open if U ∩ Md
n is open in Md

n for every n � 1. When

d < ∞ the space Md is a disjoint union of Banach spaces.

Definition 2.1. Let d ∈ N. An nc-domain in Md is a subset D of Md that is nc-open

and satisfies

(1) if M, N ∈ D then M ⊕ N ∈ D, and

(2) if M ∈ D ∩ Md
m and U ∈ Mm is unitary then U∗MU ∈ D.

Here if M = (M1, . . . , Md) ∈ Md
m and N = (N1, . . . , Nd) ∈ Md

n then M ⊕N denotes

(M1 ⊕N1, . . . , Md ⊕Nd) ∈ Md
m+n, where M j ⊕N j is the (m+n)-square block diagonal

matrix diag(M j , N j). In (2) U∗MU denotes (U∗M1U, . . . , U∗MdU).

The nc-domains are the natural domains on which to define nc-functions – see below.

For d = ∞ it is too restrictive to require that nc-domains be nc-open: there are too few

nc-open sets. The following refinement is a more fruitful notion.

Definition 2.2. An nc-domain in M∞ is a subset D of M∞ that is open in some union

of Banach spaces contained in M∞ and satisfies conditions (1) and (2) of Definition 2.1.

Here a union of Banach spaces contained in M∞ is a subset E of M∞ such that

(1) for every n ∈ N, E ∩ M∞
n is a Banach space with respect to some norm ‖ · ‖n

that is invariant under unitary conjugation and that induces a finer topology than the

product topology on E ∩ M∞
n , and

(2) E carries the topology of the disjoint union of the spaces (E ∩ M∞
n , ‖ · ‖n)n�1.

Here of course to say that ‖ · ‖n is invariant under unitary conjugation on E ∩ M∞
n

means that, for every x ∈ E ∩ M∞
n and every unitary matrix u ∈ Mn,

∥

∥u∗xu
∥

∥

n
= ‖x‖n.
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Example 2.3. The nc-disc algebra A(D) is the space of analytic square-matrix-valued

functions on D that extend continuously to the closure of D, with the supremum norm.

The space A(D) is a union of Banach spaces contained in M∞ (see Proposition 3.3

below).

Definition 2.4. An nc-function is a function ϕ : D → M1 for some nc-domain D in Md

(for some d � ∞) that satisfies the conditions

(1) ϕ maps D ∩ Md
n to Mn for every n ∈ N;

(2) for all M, N ∈ D,

ϕ(M ⊕ N) = ϕ(M) ⊕ ϕ(N), (2.1)

and

(3) for all n ∈ N, all M ∈ D ∩ Md
n and all invertible matrices s ∈ Mn such that

s−1Ms ∈ D,

ϕ
(

s−1Ms
)

= s−1ϕ(M)s. (2.2)

An nc-function ϕ on an nc-domain D ⊂ Md is analytic if its restriction to D ∩ Md
n

is analytic for every n ∈ N.

If d = ∞ the last statement should be interpreted to mean that ϕ is analytic with

respect to the norm ‖ · ‖n of Definition 2.2 on D ∩ M∞
n for every n.

An nc-domain D ⊂ M2 is symmetric if (M2, M1) ∈ D whenever (M1, M2) ∈ D.

Clearly B2 is a symmetric nc-domain. If ϕ is an nc-function on a symmetric nc-domain

D ⊂ M2, then ϕ is symmetric if ϕ(M1, M2) = ϕ(M2, M1) for every (M1, M2) ∈ D.

Definition 2.5. If D ⊂ Md1 and Ω ⊂ Md2 are nc-domains, for d1, d2 � ∞ then an

nc-map from D to Ω is defined to be a map F : D → Ω such that F maps D ∩ Md1

n to

Md2

n for each n � 1 and F respects direct sums and similarities, as in conditions (2.1)

and (2.2).

If Ω is an nc-domain in M∞ contained in a union of Banach spaces
⋃

n∈N
En, D is

an nc-domain in Md, d < ∞, and F : D → Ω is an nc-map then say that F is analytic

if, for each co-ordinate mapping

fj : M∞ → M1 : g = (g0, g1, . . .) 
→ gj ,

the map fj ◦ F is analytic for all j ∈ N.

An example of an nc-map from B2 to an nc-domain Ω in M∞ is the map S described

in Theorem 1.1.
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Operator-valued nc-functions will also be needed. For Hilbert spaces H and K denote

by L(H, K) the space of bounded linear operators from H to K with operator norm.

L(H, H) will be abbreviated to L(H). An L(H, K)-valued nc-function on an nc-domain D

in Md is a function ϕ on D such that

(1) for n ∈ N and M ∈ D ∩ Md
m,

ϕ(M) ∈ L
(

C
n ⊗ H,Cn ⊗ K

)

;

(2) for all m, n ∈ N and all M ∈ D ∩ Md
m and N ∈ D ∩ Md

n,

ϕ(M ⊕ N) = ϕ(M) ⊕ ϕ(N)

modulo the natural identification of (Cm ⊗ H) ⊕ (Cn ⊗ H) with C
m+n ⊗ H for any

Hilbert space H, and

(3) for any m ∈ N, any M ∈ D ∩ Md
m and any invertible matrix s ∈ Mm such that

s−1Ms ∈ D,

ϕ
(

s−1Ms
)

=
(

s−1 ⊗ 1K

)

ϕ(M)(s ⊗ 1H).

The Hilbert space H can be identified with L(C, H) in the obvious way, so that we may

speak of H-valued nc-functions.

We shall denote the identity operator on any Hilbert space by 1. Where it is deemed

particularly helpful to indicate the space we shall use subscripts; thus 1n, 1ℓ2 are the

identity operators on C
n, ℓ2 respectively.

3. Lurking isometries

A simple but powerful method in realization and interpolation theory is the use of

lurking isometries: if the gramians of two collections of vectors in Hilbert spaces are

equal then there is an isometry that maps one collection to the other. There is an nc

version of the lurking isometry argument due to Agler and McCarthy; it is contained in

the proof of [1, Theorem 7.1].

For an L(H, K)-valued nc-function f on an nc-domain D in Md (where H, K are

Hilbert spaces and d � ∞) define the redundant subspace of K for f , denoted by Red(f),

to be

{

γ ∈ K: C
n ⊗ γ ⊥

∨

x∈D∩Md
n

ran f(x) for all n ∈ N

}

. (3.1)



J. Agler, N.J. Young / Journal of Functional Analysis 266 (2014) 5709–5732 5715

Lemma 3.1. Let H, K1 and K2 be Hilbert spaces and let D be an nc-domain in Md for

some d � ∞. Let f be an L(H, K1)-valued nc-function and g be an L(H, K2)-valued

nc-function on D such that, for all n � 1 and x, y ∈ D ∩ Md
n,

f(y)∗f(x) = g(y)∗g(x) ∈ L
(

C
n ⊗ H

)

. (3.2)

There exists a partial isometry J : K1 → K2 such that, for every positive integer n and

x ∈ D ∩ Md
n,

(1n ⊗ J)f(x) = g(x).

Moreover, if the dimensions of the redundant subspaces of K1 and K2 for f and g re-

spectively are equal then J may be taken to be a unitary operator from K1 to K2.

Proof. Consider x, y ∈ D ∩ Md
n and an invertible s ∈ Mn such that s−1xs ∈ D. On

replacing x by s−1xs in Eq. (3.2) and invoking the fact that f, g are nc-maps we have

f(y)∗(

s−1 ⊗ 1K1

)

f(x)(s ⊗ 1H) = g(y)∗(

s−1 ⊗ 1K2

)

g(x)(s ⊗ 1H).

Since the invertible matrices s−1 with ‖s‖‖s−1‖ close to 1 span all of Mn it follows that

f(y)∗(T ⊗ 1K1
)f(x) = g(y)∗(T ⊗ 1K2

)g(x) ∈ L
(

C
n ⊗ H

)

(3.3)

for all T ∈ Mn. Let e1, . . . , en be the standard basis of C
n and apply Eq. (3.3) with

T = eℓe
∗
k, k, ℓ = 1, . . . , n, to deduce that, for any ξ, η ∈ C

n ⊗ H,

〈(

e∗
k ⊗ 1K1

)

f(x)ξ,
(

e∗
ℓ ⊗ 1K1

)

f(y)η
〉

K1

=
〈(

e∗
k ⊗ 1K2

)

g(x)ξ,
(

e∗
ℓ ⊗ 1K2

)

g(y)η
〉

K2

. (3.4)

Let

pkξx =
(

e∗
k ⊗ 1K1

)

f(x)ξ ∈ K1,

qkξx =
(

e∗
k ⊗ 1K2

)

g(x)ξ ∈ K2

and

Pn = span
{

pkξx: k � n, ξ ∈ C
n ⊗ H, x ∈ D ∩ Md

n

}

⊂ K1,

Qn = span
{

qkξx: k � n, ξ ∈ C
n ⊗ H, x ∈ D ∩ Md

n

}

⊂ K2.

Eq. (3.4) states that

〈pkξx, pℓηy〉K1
= 〈qkξx, qℓηy〉K2

.

It follows that there exists an isometry Ln : Pn → Qn such that

Lnpkξx = qkξx

for all k � n, ξ ∈ C
n ⊗ H and x ∈ D ∩ Md

n.
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We claim that both (Pn) and (Qn) are increasing sequences of spaces, and Lm|Pn =

Ln when n � m. Consider positive integers n � m and regard C
n as the span of the first

n standard basis vectors of ℓ2. Let k � n, ξ ∈ C
n ⊗ H and x ∈ D ∩ Md

n. For any choice

of x0 ∈ D ∩ Md
m−n and ξ0 ∈ C

m−n ⊗ H,

pk(ξ⊕ξ0)(x⊕x0) =
(

e∗
k ⊗ 1

)

f(x ⊕ x0)(ξ ⊕ ξ0)

=
(

e∗
k ⊗ 1

)(

f(x) ⊕ f(x0)
)

(ξ ⊕ ξ0)

=
(

e∗
k ⊗ 1

)(

f(x)ξ ⊕ f(x0)ξ0

)

=
(

e∗
k ⊗ 1

)

f(x)ξ

= pkξx.

Similarly qk(ξ⊕ξ0)(x⊕x0) = qkξx. Hence Pn ⊂ Pm and Qn ⊂ Qm, while, for k � n,

Lmpkξx = qkξx = Lnpkξx,

so that Lm and Ln agree on Pn.

Let P, Q be the closures in K1, K2 of
⋃

n Pn,
⋃

n Qn respectively. The isometries Ln

extend to an isometry L : P → Q. Extend L further to a partial isometry J : K1 → K2.

Note that

K1 ⊖ P =
{

γ ∈ K1:
〈(

η∗ ⊗ 1K1

)

f(x)ξ, γ
〉

= 0 for all n ∈ N, ξ, η ∈ C
n, x ∈ D ∩ Md

n

}

=
{

γ ∈ K1:
〈

f(x)ξ, η ⊗ γ
〉

= 0 for all n ∈ N, ξ, η ∈ C
n, x ∈ D ∩ Md

n

}

=

{

γ ∈ K1: C
n ⊗ γ ⊥

∨

x∈D∩Md
n

ran f(x) for all n ∈ N

}

,

which is the redundant subspace of K1 for f . Likewise K2 ⊖ Q is the redundant subsace

of K2 for g. Hence, if the dimensions of the two redundant subspaces are equal then the

codimensions of P and Q in K1 and K2 respectively are equal, and consequently we can

choose the partial isometry J to be a unitary operator. Whether or not the redundant

subspaces have equal dimensions, for any n ∈ N and for x ∈ D ∩ Md
n, ξ ∈ C

n ⊗ H,

(1n ⊗ J)f(x)ξ = (1n ⊗ J)

n
⊕

k=1

(

e∗
k ⊗ 1K1

)

f(x)ξ

=
n

⊕

k=1

J
(

e∗
k ⊗ 1K1

)

f(x)ξ

=
n

⊕

k=1

(

e∗
k ⊗ 1K2

)

g(x)ξ

= q(x)ξ.

Hence (1n ⊗ J)f(x) = g(x). �
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Here is a simple property of nc-functions.

Proposition 3.2. Let H, K and L be Hilbert spaces and let D be an nc-domain in Md for

some d � ∞. Let f be an L(H, K)-valued nc-function and let g be an L(K, L)-valued

nc-function on D. Then the function gf defined by (gf)(x) = g(x)f(x) for all x ∈ D

is an L(H, L)-valued nc-function on D and Red(g) ⊂ Red(gf). If f(x) is an invertible

operator for every x ∈ D then f(·)−1 is an L(K, H)-valued nc-function.

Proof. It is routine to show that gf is an nc-function. Suppose γ ∈ Red(g): then for any

n ∈ N, ξ ∈ C
n ⊗ K, η ∈ C

n and x ∈ D ∩ Md
n,

〈

η ⊗ γ, g(x)ξ
〉

Cn⊗L
= 0.

In particular this holds when ξ = f(x)ξ′ for any ξ′ ∈ C
n ⊗ H, which implies that

γ ∈ Red(gf). �

Proposition 3.3. The nc-disc algebra A(D) is a union of Banach spaces contained in M∞

with respect to the norms

‖g‖ = sup
z∈D

∥

∥g(z)
∥

∥ for all g ∈ A(D) ∩ M∞
n and all n ∈ N

when the function g ∈ A(D) is identified with its sequence of Taylor coefficients.

Proof. The space

An(D)
def
= A(D) ∩ M∞

n , (3.5)

the n × n-disc algebra, is clearly a Banach space for the supremum norm, and this norm

induces a stronger topology than the topology of pointwise convergence of sequences

of Taylor coefficients, which is the product topology on M∞ restricted to An(D). The

supremum norm is also invariant under unitary conjugation. Hence A(D) is a union of

Banach spaces contained in M∞ in the sense of Definition 2.2. �

A(D) has the structure of an operator space, but we shall not use this fact.

4. Linear fractional maps

For any block matrix

p =

[

p11 p12

p21 p22

]

(4.1)

we shall denote by Fℓ
p the lower linear fractional transformation

Fℓ
p(X) = p22 + p21X(1 − p11X)−1p12 (4.2)
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whenever the formula is meaningful. For example, when pij is an mi × nj matrix, it is

defined for every n1 × m1 matrix X such that 1 − p11X is invertible, and then Fℓ
p(X) is

an m2 × n2 matrix. More generally, if Hi, Ki are Hilbert spaces for i = 1, 2 and p is a

block operator matrix from K1 ⊕ H2 to H1 ⊕ K2 and X is a bounded operator from H1

to K1 such that 1 − p11X is invertible on H1 then Fℓ
p(X) is defined and is an operator

from H2 to K2.

We shall also define the upper linear fractional transformation

Fu
p (X) = p11 + p12X(1 − p22X)−1p21. (4.3)

The following results are standard.

Lemma 4.1. For any matrices or operators p, X such that Fℓ
p(X) is defined

1 − Fℓ
p(X)∗Fℓ

p(X) = p∗
12

(

1 − X∗p∗
11

)−1(

1 − X∗X
)

(1 − p11X)−1p12

+
[

p∗
12(1 − Xp∗

11)−1X∗
1

](

1 − p∗p
)

[

X(1 − p11X)−1p12

1

]

.

(4.4)

Furthermore, if p, X are contractions then

∥

∥Fℓ
p(X)

∥

∥ � ‖p‖. (4.5)

Of course analogous results hold for Fu
p .

Proof. The identity (4.4) may be verified by straightforward expansion. Since 1 −
X∗X � 0 the identity implies that

1 − Fℓ
p(X)∗Fℓ

p(X) �
[

p∗
12(1 − Xp∗

11)−1X∗
1

](

1 − p∗p
)

[

X(1 − p11X)−1p12

1

]

.

Hence, since 1 − p∗p � (1 − ‖p‖2)1, for any vector ξ,

〈(

1 − Fℓ
p(X)∗Fℓ

p(X)
)

ξ, ξ
〉

�

〈

(

1 − ‖p‖2
)

[

X(1 − p11X)−1p12

1

]

ξ,

[

X(1 − p11X)−1p12

1

]

ξ

〉

�
(

1 − ‖p‖2
)

‖ξ‖2.

The inequality (4.5) follows. �

There are also graded linear fractional maps, which map n × n matrices to n × n

matrices.
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Definition 4.2. Let Hi, Ki be Hilbert spaces for i = 1, 2 and let p be a block operator

matrix from K1 ⊕ H2 to H1 ⊕ K2. The graded lower linear fractional map with matrix p

is defined to be the map Fℓ
1⊗p which, for n � 1, maps X ∈ L(Cn ⊗ H1,Cn ⊗ K1) such

that 1 − (1n ⊗ p11)X is invertible to

Fℓ
1⊗p(X) = 1n ⊗ p22 + (1n ⊗ p21)X

(

1 − (1n ⊗ p11)X
)−1

(1n ⊗ p12).

Similarly we define the graded upper linear fractional map

Fu
1⊗p(X) = 1n ⊗ p11 + (1n ⊗ p12)X

(

1 − (1n ⊗ p22)X
)−1

(1n ⊗ p21). (4.6)

Observe that Fℓ
1⊗p(X) is an operator from C

n ⊗ H2 to C
n ⊗ K2 for each n. Likewise

Fu
1⊗p(X) is defined for suitable operators X : Cn ⊗ K2 → C

n ⊗ H2 and is an operator

from C
n ⊗ K1 to C

n ⊗ H1 for each n.

The function Fu
1⊗p enjoys some properties of nc type. Its domain is the set

D =

∞
⋃

n=1

{

X ∈ L
(

C
n ⊗ K2,Cn ⊗ H2

)

: 1 − (1n ⊗ p22)X is invertible
}

.

Proposition 4.3. Let p be the block operator matrix from K1 ⊕ H2 to H1 ⊕ K2 given by

Eq. (4.1). Its domain D is closed under direct sums, and, for X, Y ∈ D,

Fu
1⊗p(X ⊕ Y ) = Fu

1⊗p(X) ⊕ Fu
1⊗p(Y ).

Moreover, if X ∈ D ∩ L(Cn ⊗ K2,Cn ⊗ H2) and s ∈ Mn is an invertible matrix then

(s−1 ⊗ 1H2
)X(s ⊗ 1K2

) ∈ D and

Fu
1⊗p

((

s−1 ⊗ 1H2

)

X(s ⊗ 1K2
)
)

=
(

s−1 ⊗ 1H1

)

Fu
1⊗p(X)(s ⊗ 1K1

).

The proof is straightforward.

5. A realization theorem

In this section we show that every bounded symmetric nc-function on the biball factors

through a certain nc-domain Ω in M∞ and is thereby expressible by a linear fractional

realization formula.

M∞ is naturally identified with the space M�z� =
⋃

n Mn �z� of formal power series

over M in the indeterminate z. For n � 1 the element g = (g0, g1, . . .) ∈ M∞
n corresponds

to the series
∑

j�0 gjzj ∈ Mn �z�. With this understanding the ‘functional calculus

map’ ΘT on (a subset of) M∞ corresponding to an operator T on a Hilbert space H is

given by

ΘT (g) =
∞

∑

j=0

gj ⊗ T j ∈ L
(

C
n ⊗ H

)

, (5.1)
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whenever the series converges in an appropriate sense. In the present context it is enough

that the series in Eq. (5.1) converge in the sense of Césaro summability of the partial

sums of the series in the operator norm. As is customary, ΘT (g) will also be denoted

by g(T ) when it exists.

Theorem 5.1. There exists an nc-domain Ω in M∞ such that the map S : B2 → M∞

defined by

S(x) =
(

u, v2, vuv, vu2v, . . .
)

, (5.2)

where

u =
x1 + x2

2
, v =

x1 − x2

2
, (5.3)

has the following three properties.

(1) S is an analytic nc-map from B2 to Ω;

(2) for every g ∈ Ω and every contraction T the operator g(T ) exists and ‖g(T )‖ < 1;

(3) for every symmetric nc-function ϕ on the biball bounded by 1 in norm there exists

an analytic nc-function Φ on Ω such that ‖Φ(g)‖ � 1 for every g ∈ Ω and ϕ = Φ◦S.

Moreover Φ can be realized as follows. There exist a unitary operator U on ℓ2 and a

contractive operator

p =

[

p11 p12

p21 p22

]

: C ⊕ ℓ2 → C ⊕ ℓ2

such that, for n � 1 and g ∈ Ω ∩ M∞
n ,

Φ(g) = Fu
1⊗p

(

g(U)
)

= p111n + (1n ⊗ p12)g(U)
(

1 − (1n ⊗ p22)g(U)
)−1

(1n ⊗ p21). (5.4)

Proof. The existence of models of bounded nc-functions on the polyball is proved in [1],

and can also be derived from [3]. We shall combine this result with a symmetrization

argument.

Let Ω be the open unit ball of the nc-disc algebra A(D) of Example 2.3. More precisely,

Ω is the union of the open unit balls of the Banach spaces An(D) = A(D) ∩ M∞
n for

n � 1. By Proposition 3.3 A(D) is a union of Banach spaces contained in M∞, and it is

easy to see that Ω is an nc-domain in M∞.

To prove (2) consider any g ∈ Ω ∩ M∞
n and any contractive operator T on a Hilbert

space H. For k � 0 let hk(z) be the arithmetic mean of the k + 1 Taylor polynomials

g0 + g1z + · · · + grzr, r = 0, 1, . . . , k
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of g ∈ An(D). By Fejér’s theorem hk converges uniformly on D
− to g. By von Neumann’s

inequality (hk(T ))k�1 is a Cauchy sequence with respect to the operator norm, and so

g(T ) = ΘT (g) is defined to be the limit of the sequence (hk(T )) in L(Cn ⊗ H). Since

‖hk‖∞ → ‖g‖∞ < 1, it follows that ‖g(T )‖ < 1.

For (1) consider x ∈ B2 ∩ M∞
n : we must prove that S(x) ∈ Ω. If S(x) is identified

with its generating function S(x)(z) then, since ‖v‖ < 1,

S(x)(z) = u + v2z + vuvz2 + vu2vz3 + · · ·
= u + vz(1n − uz)−1v

=
x1 + x2

2
+

x1 − x2

2
z

(

1n − x1 + x2

2
z

)−1
x1 − x2

2
.

Clearly S(x) ∈ A(D). Let

Q(x) =

[

u v

v u

]

.

Then

Q(x) =
1

2

[

x1 + x2 x1 − x2

x1 − x2 x1 + x2

]

=
1√
2

[

1 1

1 −1

] [

x1 0

0 x2

]

1√
2

[

1 1

1 −1

]

and hence

∥

∥Q(x)
∥

∥ = max
{

∥

∥x1
∥

∥,
∥

∥x2
∥

∥

}

= ‖x‖ < 1.

Since

S(x)(z) = FQ(x)(z1n)

it follows from Lemma 4.1 that

∥

∥S(x)(·)
∥

∥

An(D)
� ‖x‖ < 1,

and so S(x) ∈ Ω.

If x ∈ B2 ∩ M2
n then S(x) ∈ Ω ∩ M∞

n for each n � 1. Moreover S respects direct

sums and similarities: if x ∈ B2 ∩ M2
m and y ∈ B2 ∩ M2

n then, for z ∈ D,

S(x ⊕ y)(z) =
x1 ⊕ y1 + x2 ⊕ y2

2

+
x1 ⊕ y1 − x2 ⊕ y2

2
z

(

1m+n − x1 ⊕ y1 + x2 ⊕ y2

2
z

)−1
x1 ⊕ y1 − x2 ⊕ y2

2

= S(x)(z) ⊕ S(y)(z),
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while if s is an invertible matrix in Mm such that s−1xs ∈ B2 then, for z ∈ D,

S
(

s−1xs
)

(z) =
s−1x1s + s−1x2s

2

+
s−1x1s − s−1x2s

2
z

(

1m − s−1x1s + s−1x2s

2
z

)−1
s−1x1s − s−1x2s

2

= s−1S(x)(z)s.

Hence S is an nc-map from B2 to Ω. It is analytic since the restriction of S mapping

B2 ∩ M2
n to Ω ∩ M∞

n ⊂ An(D) is an analytic Banach-space-valued map for each n. We

have proved (1).

Let ϕ be a symmetric nc-function on B2 bounded by 1 in norm. By [1, Theorem 6.5]

ϕ has an nc-model; that is, there is a pair (P, χ) where P = (P 1, P 2) is an orthogonal

decomposition of ℓ2 (so that P 1 + P 2 = 1ℓ2), χ is an ℓ2-valued nc-function on B2 and

1n − ϕ(y)∗ϕ(x) = χ(y)∗(

1Cn⊗ℓ2 − y∗
P xP

)

χ(x) (5.5)

for all x, y ∈ B2 ∩ M2
n. Here xP denotes x1 ⊗ P 1 + x2 ⊗ P 2, an operator on C

n ⊗ ℓ2.

Since

1 − y∗
P xP = 1 −

(

∑

j

yj ⊗ P j

)∗(

∑

i

xi ⊗ P i

)

= 1 −
∑

i

(

yi∗xi ⊗ P i
)

=
∑

i

(

1 − yi∗xi
)

⊗ P i,

Eq. (5.5) can also be written (in the case that x, y ∈ B2 ∩ M2
n)

1n − ϕ(y)∗ϕ(x) = χ(y)∗
∑

i

((

1n − yi∗xi
)

⊗ P i
)

χ(x)

=
∑

i

χ(y)∗(

1n ⊗ P i
)((

1n − yi∗xi
)

⊗ 1ℓ2

)(

1n ⊗ P i
)

χ(x)

=
2

∑

i=1

χi(y)∗((

1n − yi∗xi
)

⊗ 1P iℓ2

)

χi(x) (5.6)

where, for i = 1, 2,

χi(x)
def
=

(

1n ⊗ P i
)

χ(x) ∈ L
(

C
n,Cn ⊗ P iℓ2

)

.
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Let Hi = P iℓ2 for i = 1, 2. We claim that χi is an Hi-valued nc-function on B2.

Certainly χi(x) ∈ L(Cn,Cn ⊗ Hi) for x ∈ B2 ∩ M2
n. If x, y ∈ B2 are n-square and

m-square respectively then

χi(x ⊕ y) =
(

1n+m ⊗ P i
)

χ(x ⊕ y) =
(

(1n ⊕ 1m) ⊗ P i
)(

χ(x) ⊕ χ(y)
)

= χi(x) ⊕ χi(y).

Furthermore, if s ∈ Mn is invertible and s−1xs belongs to B2 for some x ∈ B2 ∩ M2
n,

then

χi
(

s−1xs
)

=
(

1n ⊗ P i
)

χ
(

s−1xs
)

=
(

1n ⊗ P i
)(

s−1 ⊗ 1ℓ2

)

χ(x)s

=
(

s−1 ⊗ 1Hi

)(

1n ⊗ P i
)

χ(x)s

=
(

s−1 ⊗ 1Hi

)

χi(x)s.

Thus χi is an Hi-valued nc-function on B2 as claimed.

Since ϕ is symmetric we may interchange y1 and y2, x1 and x2 in Eq. (5.6) to obtain

1n − ϕ(y)∗ϕ(x) = χ̃1(y)∗((

1n − y2∗x2
)

⊗ 1H1

)

χ̃1(x)

+ χ̃2(y)∗((

1n − y1∗x1
)

⊗ 1H2

)

χ̃2(x) (5.7)

where, for any function ψ on B2, ψ̃(x1, x2) denotes ψ(x2, x1). Notice that χ̃i is also an

Hi-valued nc-function on B2.

Average Eqs. (5.6), (5.7) to deduce that

1n − ϕ(y)∗ϕ(x) = w(y)∗((

1 − y1∗x1
)

⊗ 1ℓ2

)

w(x)

+ w̃(y)∗((

1 − y2∗x2
)

⊗ 1ℓ2

)

w̃(x) (5.8)

for x, y ∈ B2, where

w(x) =
1√
2

[

χ1(x)

χ̃2(x)

]

: Cn →
(

C
n ⊗ H1

)

⊕
(

C
n ⊗ H2

)

= C
n ⊗ ℓ2. (5.9)

and so

w̃(x) =
1√
2

[

χ̃1(x)

χ2(x)

]

: Cn → C
n ⊗ ℓ2.

Since χi, χ̃i are Hi-valued nc-functions on B2, the functions w and w̃ are ℓ2-valued

nc-functions.

In Eq. (5.8) interchange x1, x2 (but not y1, y2) and use the symmetry of ϕ to deduce

that
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w(y)∗((

1n − y1∗x1
)

⊗ 1ℓ2

)

w(x) + w̃(y)∗((

1n − y2∗x2
)

⊗ 1ℓ2

)

w̃(x)

= w(y)∗((

1n − y1∗x2
)

⊗ 1ℓ2

)

w̃(x) + w̃(y)∗((

1n − y2∗x1
)

⊗ 1ℓ2

)

w(x).

Rearrangement of this equation yields

w(y)∗w(x) + w̃(y)∗w̃(x) − w(y)∗w̃(x) − w̃(y)∗w(x)

= w(y)∗(

y1∗x1 ⊗ 1ℓ2

)

w(x) + w̃(y)∗(

y2∗x2 ⊗ 1ℓ2

)

w̃(x)

− w(y)∗(

y1∗x2 ⊗ 1ℓ2

)

w̃(x) − w̃(y)∗(

y2∗x1 ⊗ 1ℓ2

)

w(x).

Both sides of the equation factor:

(

w(y)∗ − w̃(y)∗)(

w(x) − w̃(x)
)

=
(

w(y)∗(

y1∗ ⊗ 1ℓ2

)

− w̃(y)∗(

y2∗ ⊗ 1ℓ2

))

×
((

x1 ⊗ 1ℓ2

)

w(x) −
(

x2 ⊗ 1ℓ2

)

w̃(x)
)

(5.10)

Since both w and w̃ are ℓ2-valued nc-functions on B2, so are w − w̃ and the function

g(x) =
(

x1 ⊗ 1ℓ2

)

w(x) −
(

x2 ⊗ 1ℓ2

)

w̃(x).

We can assume that the redundant spaces of both w−w̃ and g are infinite-dimensional.

To see this replace the nc-model (P, χ) of ϕ by the model (Q, ψ) with model space ℓ2 ⊕ℓ2

(which may be identified with ℓ2) which is trivial on the first copy of ℓ2 and agrees with

(P, χ) on the second copy. More precisely, Q1 = 0 ⊕ P 1, Q2 = 0 ⊕ P 2 and

ψ(x) = 0 ⊕ χ(x) : Cn →
(

C
n ⊗ ℓ2

)

⊕
(

C
n ⊗ ℓ2

)

for x ∈ B2 ∩ M2
n. Then

ψ(y)∗(

1Cn⊗(ℓ2⊕ℓ2) − y∗
QxQ

)

ψ(x) =
[

0 χ(y)∗ ](

1 − diag
(

0, y∗
P xP

))

[

0

χ(x)

]

= χ(y)∗(

1 − y∗
P xP

)

χ(x)

= 1n − ϕ(y)∗ϕ(x)

and so (Q, ψ) is a model of ϕ. It is easy to see that ψ is an ℓ2 ⊕ ℓ2-valued nc-function

on B2. Now if w♯ is the analog of w defined with (Q, ψ) instead of (P, χ) then for

x ∈ B2 ∩ M2
n,

w♯(x) = 0 ⊕ w(x) : Cn →
(

C
n ⊗ ℓ2

)

⊕
(

C
n ⊗ ℓ2

)

and the redundant space of ℓ2 ⊕ ℓ2 for w♯ − w̃♯ contains ℓ2 ⊕ {0}: for ξ, η ∈ C
n and

x ∈ B2 ∩ M2
n and ζ ∈ ℓ2,
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〈

η ⊗ (ζ ⊕ 0),
(

w♯(x) − w̃♯(x)
)

ξ
〉

Cn⊗(ℓ2⊕ℓ2)

=
〈

(η ⊗ ζ) ⊕ 0Cn⊗ℓ2 , 0Cn⊗ℓ2 ⊕
(

w(x) − w̃(x)
)

ξ
〉

= 0

and so C
n ⊗ (ζ ⊕ 0) ⊥ ran ψ(x) for all n ∈ N and x ∈ B2 ∩ M2

n. Similarly ℓ2 ⊕ {0} is

contained in the redundant subspaces of ℓ2 ⊕ ℓ2 for w♯ and for g♯.

With the assumption of infinite-dimensional redundant subspaces of w and g, by

Lemma 3.1 there exists a unitary operator U on ℓ2 such that for all n � 1 and all

x ∈ B2 ∩ M2
n,

w(x) − w̃(x) = (1n ⊗ U)
((

x1 ⊗ 1ℓ2

)

w(x) −
(

x2 ⊗ 1ℓ2

)

w̃(x)
)

, (5.11)

and hence

(

1 −
(

x1 ⊗ U
))

w(x) =
(

1 −
(

x2 ⊗ U
))

w̃(x). (5.12)

We wish to rewrite the model relation (5.8) incorporating Eq. (5.12). To make it more

concise let us introduce the abbreviations

ω(x) =
(

1 −
(

x1 ⊗ U
))

w(x) : Cn → C
n ⊗ ℓ2,

Xj = xj ⊗ U ∈ L
(

C
n ⊗ ℓ2

)

,

Y j = yj ⊗ U ∈ L
(

C
n ⊗ ℓ2

)

for j = 1, 2. It is straightforward to check that ω is an ℓ2-valued nc-function on B2.

Eq. (5.12) states that ω(x) is symmetric in (x1, x2), and we have

w(x) =
(

1 − X1
)−1

ω(x), w̃(x) =
(

1 − X2
)−1

ω(x)

and

Y 1∗X1 = y1∗x1 ⊗ 1ℓ2

In terms of ω and Xj , Y j the model relation (5.8) can be written

1n − ϕ(y)∗ϕ(x) = ω(y)∗(

1 − Y 1∗)−1(

1 − Y 1∗X1
)(

1 − X1
)−1

ω(x)

+ ω(y)∗(

1 − Y 2∗)−1(

1 − Y 2∗X2
)(

1 − X2
)−1

ω(x).

Now

(

1 − Y 1∗)−1(

1 − Y 1∗X1
)(

1 − X1
)−1

=
(

1 − Y 1∗)−1(

1 − X1
)−1 −

(

1 − Y 1∗)−1
Y 1∗X1

(

1 − X1
)−1



5726 J. Agler, N.J. Young / Journal of Functional Analysis 266 (2014) 5709–5732

=
(

1 − Y 1∗)−1(

1 − X1
)−1 −

((

1 − Y 1∗)

− 1
)((

1 − X1
)

− 1
)−1

=
(

1 − Y 1∗)−1
+

(

1 − X1
)−1 − 1.

Hence Eq. (5.8) becomes

1n − ϕ(y)∗ϕ(x) = ω(y)∗[(

1 − Y 1∗)−1
+

(

1 − X1
)−1 − 1

+
(

1 − Y 2∗)−1
+

(

1 − X2
)−1 − 1

]

ω(x)

= ω(y)∗[

A(x) + A(y)∗]

ω(x) (5.13)

where

A(x) =
(

1 − X1
)−1

+
(

1 − X2
)−1 − 1

=
(

1 −
(

x1 ⊗ U
))−1

+
(

1 −
(

x2 ⊗ U
))−1 − 1 ∈ L

(

C
n ⊗ ℓ2

)

. (5.14)

It is easy to verify that A is an L(ℓ2)-valued nc-function on B2. Since

A(x) + A(y)∗ =
1

2

(

1 + A(y)
)∗(

1 + A(x)
)

− 1

2

(

1 − A(y)
)∗(

1 − A(x)
)

,

Eq. (5.13) implies that, for any x, y ∈ B2,

1n − ϕ(y)∗ϕ(x) =
1

2
ω(y)∗(

1 + A(y)
)∗(

1 + A(x)
)

ω(x)

− 1

2
ω(y)∗(

1 − A(y)
)∗(

1 − A(x)
)

ω(x).

The last equation can also be written

[

1n
1√
2
(1 − A(y))ω(y)

]∗ [

1n
1√
2
(1 − A(x))ω(x)

]

=

[

ϕ(y)
1√
2
(1 + A(y))ω(y)

]∗ [

ϕ(x)
1√
2
(1 + A(x))ω(x)

]

.

Since both ω and A are nc-functions, the maps

x ∈ B2 ∩ M2
n 
→

[

1n
1√
2
(1 ± A(x))ω(x)

]

∈ L
(

C
n,Cn ⊗

(

C ⊕ ℓ2
))

are (C ⊕ ℓ2)-valued nc-functions. Hence by Lemma 3.1 there exists a contraction

T
def
=

[

a B

C D

]

: C ⊕ ℓ2 → C ⊕ ℓ2 (5.15)
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such that, for n � 1 and x ∈ B2 ∩ M2
n,

[

ϕ(x)
1√
2
(1 + A(x))ω(x)

]

=

[

a1n 1n ⊗ B

1n ⊗ C 1n ⊗ D

] [

1n
1√
2
(1 − A(x))ω(x)

]

. (5.16)

We need a simple matrix identity.

Lemma 5.2. Let Z1, Z2 ∈ Mn and suppose that Z1, Z2 and Z1 + Z2 are all invertible.

Then Z−1
1 + Z−1

2 is invertible and

4
(

Z−1
1 + Z−1

2

)−1
= Z1 + Z2 − (Z1 − Z2)(Z1 + Z2)−1(Z1 − Z2).

Proof.

(Z1 − Z2)(Z1 + Z2)−1(Z1 − Z2) = (Z1 + Z2 − 2Z2)(Z1 + Z2)−1(Z1 − Z2)

= Z1 − Z2 − 2Z2(Z1 + Z2)−1(Z1 − Z2)

= Z1 − Z2 − 2Z2(Z1 + Z2)−1
(

2Z1 − (Z1 + Z2)
)

= Z1 − Z2 − 4Z2(Z1 + Z2)−1Z1 + 2Z2

= Z1 + Z2 − 4
(

Z−1
1 + Z−1

2

)−1
. �

Resume the proof of Theorem 5.1. From the definition (5.14) of A(x) and Lemma 5.2

with Zj = 1 − Xj ,

(

1 − A(x)
)(

1 + A(x)
)−1

= −1 + 2
(

1 + A(x)
)−1

= −1 + 2
((

1 − X1
)−1

+
(

1 − X2
)−1)−1

= −1 +
1

2

{

21 − X1 − X2 −
(

X1 − X2
)(

21 − X1 − X2
)−1(

X1 − X2
)}

= −X1 + X2

2
− X1 − X2

2

(

1 − X1 + X2

2

)−1
X1 − X2

2

= −
(

x1 + x2

2
⊗ U +

x1 − x2

2
⊗ U

(

1 − x1 + x2

2
⊗ U

)−1
x1 − x2

2
⊗ U

)

(5.17)

which is an operator on C
n ⊗ ℓ2 when x ∈ M2

n.

Recall the notations u = 1
2 (x1+x2), v = 1

2 (x1−x2) and S(x) = (u, v2, vuv, vu2v, . . .) ∈
M∞. We have, for any x ∈ B2,

ΘU

(

S(x)
)

= u ⊗ 1ℓ2 + v2 ⊗ U + vuv ⊗ U2 + vu2v ⊗ U3 + · · ·
= u ⊗ 1ℓ2 + (v ⊗ U)(1 − u ⊗ U)−1(v ⊗ 1ℓ2),
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so that Eq. (5.17) becomes

(

1 − A(x)
)(

1 + A(x)
)−1

= −(1n ⊗ U)ΘU

(

S(x)
)

. (5.18)

Next combine Eqs. (5.18) and (5.16) to obtain a realization formula for ϕ. To this end

write

ω♭(x) =
1√
2

(

1 + A(x)
)

ω(x) ∈ L
(

C
n,Cn ⊗ ℓ2

)

,

so that

1√
2

(

1 − A(x)
)

ω(x) =
(

1 − A(x)
)(

1 + A(x)
)−1

ω♭(x)

= −(1n ⊗ U)ΘU

(

S(x)
)

ω♭(x).

Eq. (5.16) can thus be written as the pair of relations

ϕ(x) = a1n + (1n ⊗ B)
1√
2

(

1 − A(x)
)

ω(x)

= a1n + (1n ⊗ B)
(

−(1n ⊗ U)ΘU

(

S(x)
))

ω♭(x) (5.19)

and

ω♭(x) = 1n ⊗ C + (1n ⊗ D)
1√
2

(

1 + A(x)
)

ω(x)

= 1n ⊗ C − (1n ⊗ D)
(

(1n ⊗ U)ΘU

(

S(x)
))

ω♭(x). (5.20)

Eliminate ω♭(x) from this pair of equations to obtain

ϕ(x) = a1n − (1n ⊗ BU)S(x)(U)
(

1 + (1n ⊗ DU)S(x)(U)
)−1

(1n ⊗ C). (5.21)

Let

p =

[

a −BU

C −DU

]

= T

[

1 0

0 −U

]

∈ L
(

C ⊕ ℓ2
)

, (5.22)

so that p is a contraction on C ⊕ ℓ2. Eq. (5.21) states that, for x ∈ B2,

ϕ(x) = Fu
1⊗p

(

S(x)(U)
)

= Fu
1⊗p

(

ΘU

(

S(x)
))

. (5.23)

According to the definition (5.4)

Φ = Fu
1⊗p ◦ ΘU .

Eq. (5.23) states precisely that ϕ = Φ ◦ S on B2.
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It remains to check that Φ is an analytic nc-function on the nc-domain Ω and is

bounded by 1. It is clear that Φ is well defined and maps an element g ∈ Ω ∩ M∞
n into

the closed unit ball of Mn, so that Φ is graded. Clearly Φ is Fréchet differentiable on

the open unit ball of An(D) for each n � 1. By Proposition 4.3, for g, h ∈ Ω,

Φ(g ⊕ h) = Fu
1⊗p

(

(g ⊕ h)(U)
)

= Fu
1⊗p

(

g(U) ⊕ h(U)
)

= Fu
1⊗p

(

g(U)
)

⊕ Fu
1⊗p

(

h(U)
)

= Φ(g) ⊕ Φ(h),

and so Φ respects direct sums. It also respects similarities. Consider g ∈ Ω∩An(D) and an

invertible matrix s ∈ Mn such that s−1gs ∈ Ω. Note that, if g = (g0, g1, g2, . . .) ∈ Mn,

ΘU

(

s−1gs
)

=
∞

∑

j=0

(

s−1gjs
)

⊗ U j =
(

s−1 ⊗ 1ℓ2

)

ΘU (g)(s ⊗ 1ℓ2).

Consequently

Φ
(

s−1gs
)

= Fu
1⊗p

((

s−1gs
)

(U)
)

= Fu
1⊗p

((

s−1 ⊗ 1ℓ2

)

g(U)(s ⊗ 1ℓ2)
)

.

Apply Proposition 4.3 with H1 = K1 = C, H2 = K2 = ℓ2 (recall Eq. (5.22)) to obtain

Φ
(

s−1gs
)

= s−1Fu
1⊗p

(

g(U)
)

s

= s−1Φ(g)s.

Thus Φ is an nc-function on Ω. �

In the course of the above proof the following realization formula was derived.

Corollary 5.3. For every symmetric function ϕ on B2 bounded by 1 in norm there exist

a unitary operator U on ℓ2 and a contraction p on C ⊕ ℓ2 such that

ϕ = Fu
1⊗p ◦ ΘU ◦ S. (5.24)
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This is just a restatement of Eq. (5.23). Diagrammatically, U and p satisfy

M∞

∪
Ω

ΘU

B2

S

ϕ

⋃

n ball L(Cn ⊗ ℓ2)

Fu
1⊗p

M1

where ball L(Cn ⊗ ℓ2) denotes the open unit ball of L(Cn ⊗ ℓ2).

Remark 5.4. (1) There is a trivial converse to Theorem 5.1. If Φ : Ω → M1 is a bounded

analytic nc-function then Φ◦S is a symmetric bounded analytic nc-function on B2, with

the same bound.

(2) The realization formula (5.24) can be re-stated in terms of the Redheffer prod-

uct [8]. If A, B are suitable 2 × 2 operator matrices then B ∗ A is the 2 × 2 operator

matrix with the property

Fu
B∗A(X) = Fu

B ◦ Fu
A(X)

for every X for which the expressions make sense. In fact

B ∗ A =

[ Fu
B(A11) B12(1 − A11B22)−1A12

A21(1 − B22A11)−1B21 Fℓ
A(B22)

]

.

If we take

A(x) = Q(x) ⊗ 1ℓ2 =

[

u v

v u

]

⊗ 1ℓ2 , B = 1n ⊗ p,

then we find that, for x ∈ B2 ∩ M2
n,

ϕ(x) = FB ◦ FA(x)(1n ⊗ U)

= FB∗A(x)(1n ⊗ U).

Consequently

ϕ(x) = FC(x)(1n ⊗ U) (5.25)

where
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C(x) = B ∗ A(x)

=

[ Fu
1n⊗p(u ⊗ 1ℓ2) (1n ⊗ p12)(1 − u ⊗ p22)−1(v ⊗ 1ℓ2)

(v ⊗ 1ℓ2)(1 − u ⊗ p22)−1(1n ⊗ p21) Fℓ
Q(x)⊗1ℓ2

(1n ⊗ p22)

]

and, as usual, u = 1
2 (x1 + x2), v = 1

2 (x1 − x2). The representation (5.25) differs from

familiar realization formulae in that it is linear fractional not in x, but in 1 ⊗ U .

(3) Since the operator p in Eq. (5.15) corresponds to the Schur-class scalar function

ψ(λ) = p11 + p12λ(1 − p22λ)−1p21

one might expect that Φ could be written in terms of ψ and the functional calculus ΘU .

However, Φ depends on the particular realization of ψ; if

q = (1 ⊕ s)−1p(1 ⊕ s)

for some invertible operator s on ℓ2 then Fu
1⊗q �= Fu

1⊗p in general.

As we observed in the Introduction, Ω is not a true analogue of the symmetrized

bidisc π(D2) because the nc map S : B2 → Ω is not surjective. To repair this failing we

might replace Ω by its subset S(B2). However, S(B2) is not an open subset of M∞ in

any natural topology.

We ask: for a given bounded symmetric analytic nc-function ϕ on B2, is there a unique

analytic nc-function Φ : Ω → M1 such that ϕ = Φ ◦ S?

If one does not require Φ to be an nc-function then Φ is not unique. Let ϕ be the

zero function on B2: then we may construct a non-zero analytic Φ on Ω such that

Φ ◦ S = ϕ = 0 as follows. Fix z0 ∈ D, z0 �= 0. For g ∈ Ω ∩ M∞
n = Ω ∩ Mn �z� let

Φ(g) =

(

det
(

g(z0) − g(0)
)

− zn
0

det g′(0)

det(1 − g(0)z0)

)

1n.

Φ is well defined on Ω and is not identically zero at any level. It is easy to see that

Φ(S(x)) = 0 for all x ∈ B2. However Φ does not respect direct sums.
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