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Abstract. In this paper we present grid methods which we have devel-
oped for solving direct and inverse problems, and their realization with
different levels of optimization. We have focused on solving systems of
hyperbolic equations using finite difference and finite volume numerical
methods on multicore architectures. Several levels of parallelism have
been applied: geometric decomposition of the calculative domain, work-
load distribution over threads within OpenMP directives, and vector-
ization. The run-time efficiency of these methods has been investigated.
These developments have been tested using the astrophysics code As-
troPhi on a hybrid cluster Polytechnic RSC PetaStream (consisting of
Intel Xeon Phi accelerators) and a geophysics (seismic wave) code on an
Intel Core i7-3930K multicore processor. We present the results of the
calculations and study MPI run-time energy efficiency.

Keywords: High performance computing · Intel Xeon Phi accelerators
· Grid-based numerical methods

1 Introduction

Numerical methods have become very powerful tools for modeling problems in
physics and engineering. Many such problems can be described as a set of hyper-
bolic equations. In the last decade, a large number of numerical methods have
been developed and improved, with finite difference and finite volume methods
being almost the most popular. As models become more complex and often re-
quire high accuracies of calculation, the use of modern accelerators is more desir-
able. When moving towards exascale computing, energy consumption increases
dramatically and the run-time energy efficiency of calculations becomes very im-
portant. In the recent past, geometrical decomposition of the solution domain
of a problem (through message passing interface, MPI) was the only tool in par-
allelization. Since the release of multicore processors (e.g. Graphics Processing



Units and Xeon Phi processors), the combination of geometrical decomposition
with multithread parallelization and vectorization of the calculations has become
increasingly important.

Direct and inverse problems in geophysics are often impossible to solve ana-
lytically and hence numerical solution is the only option. One important example
is forward modeling of wave propagation through an elastic medium. This prob-
lem was first solved numerically using a finite difference scheme by Alterman in
1968 [1]. Later this method was applied to generate synthetic seismograms by
Kelly in 1976 [12]. A similar approach has been used to generate sound fields
in acoustic problems [22, 24]. Solution of the direct wave propagation problem
is widely used in full waveform inversion problems where a good initial guess
is extremely important. This problem demands large computing resources and
time and hence more and more scientists have optimized their codes using APIs,
GPU and MPI parallelization. Examples of parallelizing large scale geophysical
problems can be found in [20, 26, 6, 23, 2, 4].

When applying finite difference schemes to a problem it is necessary to cal-
culate a derivative on a stencil type structure. Unfortunately, it is impossible
to apply standard automatic vectorization techniques to a stencil type loop. In
this work we present a method of memory rearrangement which allows vector-
ization with high level instructions only. This method is universal to any stencil
type structure and its application considerably decreases the calculative time.
Moreover, a derivative order has very little effect on CPU time. This allows a
considerable increase in the accuracy of a scheme, without changing the CPU
time. In this paper we discuss issues of using the proposed method together with
OpenMP multithreading. We demonstrate the efficiency of the method on wave
propagation through an elastic medium.

Another example of a complex problem which requires parallelization is the
modeling of magnetic fields in astrophysics. Magnetic fields play a key role in
the formation of astrophysical objects. Taking magnetic fields into account when
modeling the evolution of interstellar turbulence makes a considerable difference
to the results (see [18]). In recent years, modeling magnetohydrodynamic turbu-
lence problems has helped our understanding of sub-alpha currents [19] and the
rate of star formation [3]. A comparison of different codes for subsonic turbulence
is presented in [13]. Classical methods for simulation of magnetohydrodynamic
turbulence such as adaptive mesh refinement (AMR) and smoothed-particle hy-
drodynamics are still widely used, but in recent years an impressive range of new
methods have been proposed (a good review of these methods can be found in
[14–16]).

The inverse coefficient problem for a system of 2D hyperbolic equations has
been studied in [17]. In this paper the acoustic tomography problem was refor-
mulated as an inverse coefficient problem for a system of first order hyperbolic
equations (system of acoustic equations). To solve the inverse problem the gra-
dient method to optimize an objective functional was chosen. This method is
widely used in inverse and ill-posed problem theory [9, 10, 7, 8, 11]. The main
idea of the method is to solve direct and conjugate problems at every time step.



This means a numerical method to solve the direct problem needs to be well
optimized. Here we present a method of optimization which proved to be very
efficient.

In the first two sections we discuss various levels of optimization for the above
astrophysics problem. The third section explains difficulties of automatic vector-
ization when applied to finite difference schemes. A method is proposed which
overcomes the difficulties and considerably improves performance. The fourth
section discusses the importance of run-time energy efficiency of calculations
and demonstrates impressive results for the AstroPhi code. The fifth section
presents results from numerical experiments.

2 Geometric Decomposition Pattern

The use of a uniform mesh gives us a possibility to apply a generic Cartesian
topology for decomposition of the calculative domain. This approach leads to po-
tentially infinite scalability of the problem. As shown in [16], the AstroPhi code
implements multilevel one-dimensional geometric decomposition of the calcula-
tive domain. The first coordinate corresponds to the MPI level of parallelization.
Every MPI thread sends tasks to OpenMP threads, optimized for MIC architec-
tures. This type of topology is related to the topology and architecture of the
hybrid cluster RSC PetaSteam, which has been used for the numerical simula-
tions.

Various levels of AstroPhi code scalability have been tested on Intel Xeon
Phi 5120 D accelerators. A grid 512p × 256 × 256 has been used (where p is a
number of accelerators). Every accelerator has 4 logical cores. The calculative
domain is divided into data chunks of equal size, then the chunks are sent to
the accelerators. To study the scalability we have estimated the total run-time
(in seconds) for different numbers of Intel Xeon Phi accelerators. At every time
step a certain number of processes has to be completed. We calculate the total
run-time as the sum of the run-times of all these processes. The scalability has
been calculated according to the formula

T =
Total1
Totalp

, (1)

where Total1 and Totalp are a run-time and a calculation time on a single proces-
sor respectively, and the problem runs on p processors. The results are presented
in Table 1. From the table it is clear to see we have achieved an efficiency of 73%
on 256 Intel Xeon Phi 5120 D processors.

3 Multicore Threading on Intel Xeon Phi Accelerators

Parallelization of the AstroPhi code on Intel Xeon Phi accelerators has been
achieved through a standard technique:

1. decomposition of the calculative domain;



Table 1. Scalability T of the AstroPhi code on the hybrid cluster RSC PetaStream.
Time is in seconds.

MIC Total (SPb) Scalability (SPb)

1 55.5742 1.0000

8 56.3752 0.9857

64 64.1803 0.8659

128 68.6065 0.8101

256 76.1687 0.7296

2. workload distribution amongst the available threads;

For this problem we applied decomposition to a 512×2562 grid on a single Xeon
Phi accelerator. To calculate the acceleration we have measured the calculation
time of each function of the numerical simulation and then calculated its sum-
mation on one thread and on p threads. The acceleration has been calculated
according to the formula

P =
Total1
TotalK

, (2)

where Total1 is the calculative time for one logical core, TotalK is the calculative
time for K logical cores. The results of testing the AstroPhi code on hybrid
cluster PetaStream (SPb) are presented in the Table 2.

Table 2. Acceleration P with increasing numbers of logical cores (on a single Xeon
Phi accelerator). The code has been tested on a hybrid cluster RSC PetaStream (SPb).
Time is in seconds.

Threads Total (SPb) P (SPb)

1 219.7956 1.0000

8 27.7089 7.9323

32 7.9673 27.5872

128 2.6271 83.6647

240 2.5905 84.8467

4 Vectorization

The first processor supporting a SIMD (Single Instruction Multiple Data) in-
struction set was designed by Intel in 1999. This Streaming SIMD (SSE) exten-
sion accelerates the calculation due to the use of larger registers. The first SIMD
registers were designed to hold four 32-bit floats/ two 64-bit doubles (128-bit
registers). This means that 4 floats/ 2 doubles can be uploaded into a register



and the arithmetic and logic routine can be applied to a vector instead of a
single value.

This simple idea has become very popular and nowadays almost all mod-
ern architectures support SIMD operations. The capacity of SIMD registers has
also been considerably increased. For example the Sandy Bridge microarchitec-
ture includes the AVX extension with 256-bit SIMD registers and the Skylake
microarchitecture includes the AVX-512 (Xeon models only) extension which
operates with 512-bit SIMD registers.

To be able to take advantage of automatic vectorization either an optimiza-
tion flag (/O2 and higher for Intel machines) needs to be switched on, or a
microarchitecture specific flag (ex. /QxSSE4.1, /QxAVX for Intel) should be cho-
sen. It is important to note that an automatic vectorization routine cannot be
applied to any loop. The memory in the loop needs to be aligned and the vector
length must be divisible by 4 (8 or 16 depending on the size of a SIMD register
and the bit size of values operated with). It is important that there shouldn’t be
any read-write memory conflict, for example a cycle of the type

for(int i = 0; i < N; i++){

a[i] = b[i] + c[i];

}

is automatically vectorizable (assuming the memory is aligned and N is divisible
by 4). However a loop of the type

__assumed_aligned(a, 32);

__assumed_aligned(b, 32);

#pragma simd

for(int i = 0; i < N; i++){

a[i] = b[i] + b[i + 2];

}

cannot be vectorized by high level instructions.
When calculating the derivative on a stencil structure we get a loop which is

not automatically vectorizable. However, the situation changes if we rearrange

the memory in the way described in Fig. 1. In this case the compiler will be
uploading and applying arithmetic and logical operations to all 4 values simul-
taneously and the necessary acceleration will be achieved.

In the case of larger than 128-bit registers or smaller bit size values it is
always possible to rearrange the data in a such way the compiler would work
with a vector of 8, 16, etc. In this case the values we use for calculation of one
derivative i will be located with the step spacing 8, 16 etc. from each other.

A very important property of such rearrangement is that the speed of deriva-
tive calculation is almost unaffected by the order of the derivative. This property
is especially important for problems where it is problematic to achieve the re-
quired degree of accuracy due to long run times.

We have tested this property by calculating 2d, 4th, 6th, 8th and 10th order
derivatives on the grid 8192 × 8192 (for 500 cycles). Note that the order of the



derivative increases the size of the stencil. Table 3 shows the calculation time
without memory rearrangement and automatic optimization (flag /Od for Intel),
without memory rearrangement and with aggressive automatic vectorization (flag
/O3 for Intel) and with memory rearrangement and with aggressive automatic
vectorization. The table shows that in the initial case, run time is 74% greater for
the 10th order than the 2nd order. When automatic vectorization is used without
memory rearrangement, run time is much shorter but the difference between 10th
order and second order becomes 200%. Finally, when vectorization is combined
with memory rearrangement, run time becomes almost independent of the order
of the derivative. The acceleration for 10th order is ≈ 11.57 times, compared
with ≈ 6.63 times for 2nd order.

i- 2 i- 1 i i+ 1i- 2 i- 1 i i+ 1i- 2 i- 1 i i+ 1i- 2 i- 1 i i+ 1

i- 2 i- 1 i i+ 1i- 2 i- 1 i i+ 1 i- 2 i- 1 i i+ 1i- 2 i- 1 i i+ 1

point 2 point 3 point 4point 1

Fig. 1. Memory reorganization for high level vectorization.

Table 3. Applying different levels of optimization (see text for details) for derivatives
of a high order. Run time is in seconds.

order /Od /O3, [1× 1] /O3, [4× 1]

2 311.601 63.978 40.987

4 378.303 96.804 41.502

6 433.277 122.147 42.687

8 485.380 158.753 41.350

10 543.615 192.288 46.996

5 Study of Run-time Energy Efficiency

Nowadays, run-time energy efficiency is mostly used for commercial projects
working with big data problems. However, the idea of exascale computing is
becoming more and more popular and petascale computers are expected to be
widely used in the near future. Exascale computing is capable of more then 1018



calculations per second. The first petascale computers were released in 2008 and
are considered to be very promising and powerful tools for solving big data prob-
lems, for example modeling for climate, in geophysics and astrophysics. Running
such a computer efficiently is of great importance. If only 10 MW of energy for
running an exascale supercomputer were used inefficiently it could cancel out
all the advantage of using it. Overall the definition of run-time energy efficiency
includes about 20 parameters, most of them related to run time efficiency. In
this work we assume the code to be efficient if

1. CPU cores and CPUs are used in the most efficient way;
2. the data exchange between the CPU cores and CPUs is minimized;
3. the code has good balance.

By minimizing data exchange between CPU cores/CPUs we reduce the waiting
time for a CPU/CPU cluster (the time while the CPU/CPU cluster doesn’t work,
awaiting the completion of all necessary processes). Good balance allows tasks
to be distributed in between cores and accelerators evenly. By applying these
ideas to the AstroPhi code we have reduced the time spent on data exchange
by MPI instructions to 7–8% of the total run-time. The level of imbalance has
been reduced to no more then 2–3% between all the threads. This helped us to
achieve 72% efficiency (scalability in the “weak” sense) in parallelizing on a 256
Intel Xeon Phi accelerator (more then 50K cores). Modern accelerators help to
achieve the maximum run-time efficiency by multithreading and vectorization.
By applying vectorization to the AstroPhi code we have achieved 6.5 times
acceleration and by run-time energy efficiency we have approached the efficiency
of libraries like MAGMA MIC [5].

6 Results

6.1 Modeling of Wave Propagation through an Elastic Medium

To model wave propagation through two-dimensional elastic media the second
order wave equation is often reduced to a system of first order partial differential
equations
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(3)

where (u, v) is the velocity vector, σij is the stress tensor, and λ and µ are Lamé
parameters.

It is also usual to move from an ordinary grid to a staggered grid. The method
was first proposed in [25] to solve elastic wave propagation problems and has been
proved to have better stability and dispersion behavior for 4th order accuracy
schemes [21].



Let us define

δu ≡ ui−2
− 27ui−1 + 27ui

− ui+1,

δv ≡ vj−2
− 27vj−1 + 27vj − vj+1,

δσ11 ≡ σi−1
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11 ,
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11 ,
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− 27uj + 27uj+1
− uj+2,
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− vi+2.

(4)

Then according to Finite Difference rules the new expression for σ11, σ22, σ12

and velocities u, v for every time step can be found as
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∆t

24ρ∆x2

(

σ
j−2
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)

,

vt+1/2 = vt−1/2 ∆t
24ρ∆x1

(

σi−2
12 − 27σi−1

12 + 27σi
12 − σi+1

12

)

+ ∆t
24ρ∆x2

δσ22.

(5)

Fig. 2 shows the general scheme for vectorization. It is clear to see that
application of boundary conditions for the problem will lead to divergence. This
happens because the boundary conditions will be applied to the internal points
of the problem. To eliminate this bottleneck we introduce virtual blocks. The
boundary conditions will be applied to virtual blocks instead and at every time
step we have to copy the data from internal points to the virtual ones to achieve
convergence.

Table 4 shows the acceleration of the problem for different sizes. If the flag
/O1 is switched on the compiler applies automatic optimization, but not vector-
ization. Flag /O2 and higher enables automatic vectorization.

Table 4. Comparison of run time for problems of different sizes (N × N) without
optimization and with flags /O1 and /O3. The problems have been calculated on one
thread. Time is in seconds.

N /Od /O1 /O3 acceleration

32× 32× 2 216.761 54.143 26.133 8.295

64× 32× 2 974.981 186.679 81.356 11.984

128× 32× 2 3789.820 705.704 309.508 12.245

The problem can easily be parallelized on available CPU cores by applying
OpenMP directives. The whole domain is divided into blocks. Each block has
so-called buffer points. At every time step the values from the buffer points are
updated by copying from the internal grid points of corresponding blocks. The
blocks are run in a random order. For our problem we have found the following
OpenMP structure gives the best acceleration
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Fig. 2. Copying of data from real blocks to virtual.

#pragma omp parallel

{

for (int j = 0; j < numberOfSteps; j++){

int i;

#pragma omp for private (i) schedule(auto)

//calculate velocity

#pragma omp for private (i) schedule(auto)

//copy velocities

#pragma omp for private (i) schedule(auto)

//calculate stress

#pragma omp for private (i) schedule(auto)

//copy stress

#pragma omp for private (i) schedule(auto)

//calculate boundaries

#pragma omp for private (i) schedule(auto)

//copy virtual blocks

}

}

It should be mentioned, that vectorization blocks can be arranged in a differ-
ent order and the order has a small influence on acceleration. For this problem
we studied [4× 1], [1× 4], [2× 2] structures. They are presented in Fig. 3.



Experiments and results from VTune Intel Amplifier profiling proved the
best vectorization structure to be [4 × 1]. This structure is used in Table 5 for
OpenMP parallelization.

0

1

2

3

3

0 1 2 3

[4 x 1][1 x 4]

[2 x 2]

virtual blocks

boundary blocks

internal blocks

10

2

Fig. 3. Types of vectorization structure.

6.2 Modeling of Magneto-hydrodynamics Turbulence Evolution

This numerical model is based on coupling of equations for multidimensional
magneto-gas-dynamics, the ordinary differential equation for the evolution of
the concentration of ionized hydrogen, and a special form for external force.
External force is found from the mass conservation law and Poisson equation.
Its time derivative can be described by the Cauchy–Kovalevskaya equation. By
using this mathematical model it becomes possible to formulate a generalized
parallelization calculation method [15], which is based on a combination of an
operator-splitting method, Godunov method, and a piecewise-parabolic approxi-
mation on a regular grid cell. Fig. 4 shows the result of the numerical simulations
described above. The figure shows the high density area of a “palm tree” shape,
which resembles the nebular NGC 6188. Fig. 5 shows the correlation of M ∼ n2

(white line) and most of a nebular cloud n > 10 m−3 is in the super-Alfvenic
speed area. Contours of the cosine of the colinear angle between velocity vector



Table 5. Parallelization of seismic wave problem through OpenMP API. The size of
the problem is [4096×4096], the vectorization structure is [4×1]. In all cases the most
aggressive automatic vectorization has been applied. Time is in seconds.

N threads run time acceleration

1 82.300 1.000

4 28.157 2.923

6 25.286 3.255

and magnetic field have a saddle shape (see Fig. 6). This means that compression
occurs along magnetic field lines.

7 Conclusions

In this paper we have demonstrated the following.

1. It is important to apply all levels of parallelization to big data problems: vec-
torization, multithread parallelization within shared memory API (OpenMP
directives in the test cases) and clusters.

2. Run-time energy efficiency is very important in parallelization as demon-
strated by application to modeling of magnetic fields in astrophysics prob-
lems.

3. It is impossible to apply high level vectorization methodology to a stencil
type loop for a standard memory structure. We have presented a new method
of memory rearrangement which overcomes this bottleneck and allows auto-
matic vectorization to take place. In application to finite difference schemes
we have demonstrated the method to be particular efficient when using high
order derivatives. We proved that if the suggested memory organization is
used, the run-time for derivative calculations is almost independent of its
order (which is not the case for a standard memory structure!).

4. We have presented the results of astrophysics code AstroPhi efficiency, (tested
on the hybrid cluster RSC PetaStream based on Intel Xeon Phi accelerators),
vectorization and multithreading withing OpenMP of seismic wave propa-
gation problem (tested on Intel Core i7-3930K machine) and the study on
AstroPhi code run-time energy efficiency. The results from numerical simu-
lations are presented.
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