
This is a repository copy of Simple Statistical Probabilistic Forecasts of the winter NAO.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/114067/

Version: Published Version

Article:

Hall, R.J., Scaife, A.A., Hanna, E. et al. (2 more authors) (2017) Simple Statistical 
Probabilistic Forecasts of the winter NAO. Weather and Forecasting, 32 (4). pp. 
1585-1601. ISSN 0882-8156 

https://doi.org/10.1175/WAF-D-16-0124.s1

© 2017 American Meteorological Society (AMS). Permission to use figures, tables, and 
brief excerpts from this work in scientific and educational works is hereby granted provided
that the source is acknowledged. Any use of material in this work that is determined to be 
“fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions 
specified in Section 108 of the U.S. Copyright Act (17 USC §108) does not require the 
AMS’s permission. Republication, systematic reproduction, posting in electronic form, such
as on a website or in a searchable database, or other uses of this material, except as 
exempted by the above statement, requires written permission or a license from the AMS. 
All AMS journals and monograph publications are registered with the Copyright Clearance 
Center (http://www.copyright.com). Questions about permission to use materials for which 
AMS holds the copyright can also be directed to the AMS Permissions Officer at 
permissions@ametsoc.org. Additional details are provided in the AMS Copyright Policy 
statement, available on the AMS website (http://www.ametsoc.org/CopyrightInformation).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Simple Statistical Probabilistic Forecasts of the Winter NAO

RICHARD J. HALL

School of Geography and Lincoln Centre for Water and Planetary Health, University of Lincoln, Lincoln, United Kingdom

ADAM A. SCAIFE

Met Office, Hadley Centre, Exeter, United Kingdom

EDWARD HANNA

School of Geography and Lincoln Centre for Water and Planetary Health, University of Lincoln, Lincoln, United Kingdom

JULIE M. JONES

Department of Geography, University of Sheffield, Sheffield, United Kingdom

ROBERT ERDÉLYI

Solar Physics and Space Plasma Research Centre, School of Mathematics and Statistics,

University of Sheffield, Sheffield, United Kingdom

(Manuscript received 5 July 2016, in final form 20 March 2017)

ABSTRACT

The variability of the North Atlantic Oscillation (NAO) is a key aspect of Northern Hemisphere atmo-

spheric circulation and has a profound impact upon the weather of the surrounding landmasses. Recent

success with dynamical forecasts predicting the winter NAO at lead times of a fewmonths has the potential to

deliver great socioeconomic impacts. Here, a linear regressionmodel is found to provide skillful predictions of

the winter NAO based on a limited number of statistical predictors. Identified predictors include El Niño,

Arctic sea ice, Atlantic SSTs, and tropical rainfall. These statistical models can show significant skill when

used to make out-of-sample forecasts, and the method is extended to produce probabilistic predictions of the

winter NAO. The statistical hindcasts can achieve similar levels of skill to state-of-the-art dynamical forecast

models, although out-of-sample predictions are less skillful, albeit over a small period. Forecasts over a longer

out-of-sample period suggest there is true skill in the statistical models, comparable with that of dynamical

forecasting models. They can be used both to help evaluate and to offer insight into the sources of pre-

dictability and limitations of dynamical models.

1. Introduction

The North Atlantic Oscillation (NAO) is a key ele-

ment of Northern Hemisphere atmospheric circulation

and is related to the storminess, wind speeds, surface air

temperature, and precipitation variability over the

North Atlantic Ocean and the adjacent continents of

eastern North America and western Europe (e.g.,

Hurrell 1995; Hurrell et al. 2003). The NAO can be

described as a seesaw of atmospheric mass between two

nodes: a southern high pressure node over the sub-

tropical Atlantic (Azores) and a northern low pressure

node over Iceland. A positive NAO occurs with an in-

creased pressure difference between the nodes, while a

more negative NAO occurs as this difference decreases,

although even for a negative NAO the absolute pressure

difference is rarely reversed. This fluctuation of the

pressure gradient between the nodes is directly pro-

portional to changes in geostrophic wind speed. The

NAOcan be viewed as a consequence of storm track and
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jet-stream variability, (e.g., Vallis andGerber 2008), and

there are significant correlations between jet-stream lati-

tude and the NAO index (Woollings and Blackburn

2012). TheNAO ismost prominent in winter and explains

up to one-third of the total variance in sea level pressure

(SLP) over the North Atlantic (Hurrell and Deser 2009).

It is highly variable, frequently changing phase over

weeks and months, and there is little evidence for pre-

ferred time scales of variability (Hurrell and Deser 2009),

with large variations from month to month, from year to

year, and on decadal scales [see Hanna et al. (2015) for a

recent review of NAO variations from 1899 to 2014].

Using daily data, Feldstein (2000) found NAO evolution

to be consistent with a stochastic first-order autore-

gressive process with a time scale of around 10 days.

However, Keeley et al. (2009) find up to 70% of winter

NAO interannual variability is unexplained by short time-

scale variability and may therefore be externally forced.

There has been considerable debate over the extent to

which the NAO is 1) driven by external climate factors

and 2) is generated by internal atmospheric variability.

For example, James and James (1989) report a long-

term mode based on nonlinear feedbacks in the atmo-

sphere creating low-frequency variability similar to the

NAO. However, the NAO is not a consequence of local

dynamics alone, as the storm-track pattern exists as a

result of topographic forcing by the Rocky Mountains

and the temperature contrast between the cold Ameri-

can continent and the warm Atlantic Ocean (Vallis and

Gerber 2008). Furthermore, the enhanced interannual

variability and positive trend in the NAO observed in

the latter part of the twentieth century are greater than

would be expected from internal atmospheric variability

(Feldstein 2002) and are indicative of some external

forcing such as from the ocean or sea ice (Hurrell and

Deser 2009) that may not be properly reproduced in

climate models (Scaife et al. 2009).

While some dynamical models exhibit only limited

predictability in extratropical regions (e.g., Kim et al.

2012; Arribas et al. 2011; Jung et al. 2011), more recent

work indicates there is likely to be a useful degree of

predictability in the winter NAO. Folland et al. (2012)

use a regression approach to forecast European winter

temperatures based on a range of predictors, and recent

work with dynamical forecast models (Riddle et al. 2013;

Scaife et al. 2014) concludes that important aspects of

winter climate and the NAO are predictable months

ahead, with a high proportion of the variance being ac-

counted for by the models (Scaife et al. 2014). A number

of potential predictors have been identified: El Niño–

Southern Oscillation (ENSO; e.g., Bell et al. 2009),

spring North Atlantic sea surface temperatures (SSTs;

e.g., Rodwell and Folland 2002), tropical volcanic

eruptions (e.g., Robock and Mao 1995), Arctic sea ice

extent (e.g., Strong and Magnusdottir 2011), the

stratospheric quasi-biennial oscillation (QBO; Ebdon

1975), and autumn Eurasian snow cover (e.g., Cohen

and Jones 2011) have all been linked with North At-

lantic atmospheric circulation variability (Hall et al.

2015). Links have also been suggested between tropical

SST anomalies and extratropical seasonal variability

(e.g., Bader and Latif 2003; Hoerling et al. 2004; Li et al.

2010), where the upward trend in the NAO from 1950 to

1999 is attributed to increased SST over the Indian

Ocean. However, the magnitude of the observed change

in the NAO was much greater in the observations than

in atmospheric climate models (Scaife et al. 2009). An

influence of solar variability on the winter NAO has also

been identified (e.g., Ineson et al. 2011). Some success

has been found when using some of these predictors to

make seasonal forecasts of winter weather in the North

Atlantic region [e.g., Riddle et al. (2013) for Eurasian

snow cover; Folland et al. (2012) for QBO, volcanic

eruptions, El Niño, and Atlantic SSTs]. However, the

sources of predictability in dynamical models are largely

unknown. Here, we use a simple NAO index to examine

this range of potential predictors, and compare our re-

sults with the Met Office (UKMO) Global Seasonal

Forecasting System 5 (GloSea5), which has high ocean

resolution (0.258) and 3-hourly atmosphere–ocean cou-

pling, as well as a fully resolved stratosphere and in-

teractive sea ice physics package (MacLachlan et al.

2014).While the coupled dynamical model is state of the

art, a simple probabilistic approach based on regression

methods may help to illuminate particular weaknesses

or limitations in the dynamical models and help to

identify sources of predictability. The focus is on fore-

casting the sign of the winter NAO, and while many

studies have looked at individual predictors, here we

include a wide range of explanatory variables.

2. Data

The UKMO construct their NAO index by subtract-

ing the raw values of SLP for the Azores and Iceland,

then normalizing, rather than (as is more typically done)

normalizing the station data separately and then sub-

tracting. However, this has little impact on the sign of

winter mean anomalies. Here, we construct a simple

NAO index using station data for Reykjavik, Iceland,

and Ponta Delgada, in the Azores, supplied by Adam

Phillips at NCAR, for the period 1956–2016, using the

UKMO approach. The NAO index is normalized to the

period 1993–2012, in accordance with Scaife et al. (2014)

to allow comparison with GloSea5 data. Normalizing by

1981–2010 has no effect on the sign of the NAO for any
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of the years in question. Winter is December–February

(DJF); the year of the winter is given by the year of the

January and February.

A range of potential predictors is examined, chosen

initially on the basis of a review of the literature. For the

ENSO, a normalized Niño-3.4 index (N3.4) is used from

1956 to 2016, based on SST from HadISST1 (Rayner

et al. 2003). A nonlinear relationship between ENSO

events and the Atlantic sector has previously been ob-

served, whereby moderate El Niño events are related

to a negative winterNAO,whereas stronger events, with

stronger SST anomalies in the eastern Pacific (greater

than 1.58C) do not produce an NAO-like response

(Toniazzo and Scaife 2006; Bell et al. 2009). For exam-

ple, in 2015/16 a strong El Niño did not produce the

negative NAO response that would be anticipated

from a moderate event. Therefore, following Folland

et al. (2012), a discontinuous El Niño index is also used,

with N3.4 values less than61 standard deviation of their

seasonal variability equating to 0, values more negative

than 21 are set to 21, and values from 11 to 11.75 are

set to 1, with values above11.75 being again set to zero,

to reflect the nonlinearity of the forcing of different

SSTs. Both versions of the ENSO index are available for

selection in the regression models but the selection of

one precludes the inclusion of the other.

Two metrics of Atlantic SST are used for 1956–2016.

Unsmoothed Atlantic multidecadal oscillation (AMO)

data (Enfield et al. 2001) are obtained from the Earth

System Research Laboratory (www.esrl.noaa.gov/psd/

data/timeseries/AMO), based on the Kaplan SST data-

set (Kaplan et al. 1998, updated). A North Atlantic SST

tripole index is developed using themethodology of Czaja

and Marshall (2001). It is the SST anomaly taken over

408–558N, 608–408W minus the anomaly over a southern

box, 258–358N, 808–608W (see Fig. S1 in the online sup-

plement to this paper). Anomalies are relative to the

1981–2010 climatology. This dipole lies to either side of

theGulf Stream, and the third southern node of the classic

tripole mirrors the northern node identified here. A

positive (negative) tripole index indicates higher (lower)

positive SST anomalies in the northern sector compared

with those in the southern sector and reflects a reduced

(increased) temperature gradient between the two.

Tropical SSTs can affect the atmosphere through al-

tered convective activity and divergence aloft, which can

generate Rossby waves that propagate away from the

source and are capable of influencing the extratropics

(Hoskins and Karoly 1981). Tropical rainfall is used as a

proxy for this tropical convection. Version 2 of the

Global Precipitation Climatology Project provides

global precipitation data at 2.58 resolution, based on

satellite data for the period 1979–2016, at monthly

resolution (Adler et al. 2003). Six subsections are taken

from the tropics: three from the Pacific Ocean [west

Pacific rainfall (WPR), 58S–58N, 1208–1708E; central Pacific

rainfall (CPR), 58S–58N, 1708–2208E; and east Pacific rain-

fall (EPR), 58S–58N, 2208–2708E], two from the Indian

Ocean [west Indian rainfall (WIR), 58S–58N, 508–858E; east

Indian rainfall (EIR), 58S–58N, 858–1208E], and one from

the Atlantic Ocean [Atlantic rainfall (AR), 58S–58N, 08–

508W]. These areas are shown in Fig. S1 and ensure

coverage of all equatorial tropical oceans. To increase the

number of predictors available from 1956, tropical SSTs

for the regions above are taken from the HadISST1

dataset (Rayner et al. 2003), for use with the longer NAO

time series only from 1956 onward, as an indicator of

tropical convective activity.

The QBO is an oscillation of zonal equatorial strato-

spheric winds with a period of around 28 months. It has

been shown to influence the strength of stratospheric

polar vortex anomalies (Holton and Tan 1980; Anstey

and Shepherd 2014), which can in turn propagate

downward and impact upon the polar front jet stream

and NAO, especially in the late winter (Baldwin and

Dunkerton 2001). QBOdata are obtained for 1956–2016

from the Free University of Berlin [www.geo.fu-berlin.

de/met/ag/start/produkte/qbo/; Naujokat (1986, up-

dated)]. The 30-hPa equatorial zonal wind speeds are

used, following Hamilton (1984).

Solar cycle data are available in a variety of forms.

Monthly sunspot numbers are used to create a normalized

index (1956–2016), available from the Solar Influences

Data Analysis Center (http://sidc.oma.be/). Regression is

also carried out using a lead of 1–5yr of the solar cycle

over the NAO as recent studies suggest that there is a

lagged North Atlantic climate response to solar variabil-

ity (Scaife et al. 2013; Gray et al. 2013) in addition to a

shorter time-scale response operating via changes in the

stratospheric polar vortex (Ineson et al. 2011).

A volcanic index is derived according to Folland et al.

(2012), which once again spans 1956–2016. The index is

set to one for the two years following a tropical volcanic

eruption, to allow for the lifetime of stratospheric vol-

canic aerosols, all other years being set to zero, with the

years of volcanic eruptions being derived from

Stenchikov et al. (2006). A positive NAO in winters

following a major tropical eruption has been observed

(e.g., Robock and Mao 1995).

Sea ice concentration data are taken from HadISST1

(Rayner et al. 2003) for the longer hindcast time series

since 1956, while data from the National Snow and Ice

Data Center (NSIDC) are used for hindcasts from 1980

(Cavalieri et al. 1996, updated). The correlation be-

tween the two datasets is very high for the period of

overlap (1979–2014 November sea ice, r 5 0.98). Data
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are acquired for the whole of the Arctic, plus subregions

identified as being of potential significance in the litera-

ture. Areas identified are the Barents–Kara Sea (BKI;

708–858N, 308–908E), NE Greenland (GI: 808–908N,

358W–08) and the area centered on the Laptev Sea (LVI;

708–908N, 608–2008E), but including the east Siberian,

Kara, and Chukchi Seas. Snow cover data for Eurasia

(458–808N, 558–1508E; 1979–2016) are obtained from

RutgersUniversity; http://climate.rutgers.edu/snowcover/;

Robinson et al. (2012)], to give the monthly snow cover

extent. These regions are shown in Fig. S1.

The GloSea5 ensemble hindcast data with 24 ensem-

ble members for 1993–2012 are supplied by the UKMO,

together with operational forecasts for winters 2014–16

(the system was not operational in 2013). Operational

forecast ensemble sizes vary in number: 31 in 2014 and

32 for 2015 and 2016.

All predictor datasets are normalized by subtracting

the monthly mean and dividing by the monthly standard

deviation for the period 1981–2010. Any trend in the data

is retained. No tuning of the predictors is performed to

obtain the initial statistical forecast models, although

detrending of sea ice is used in a subsequent model.

3. Methods

a. Regression models

We use a simple multiple regression approach to

identify linear aspects of predictability. Regression has

already been shown to provide evidence of significant

predictors of North Atlantic climate variability (Folland

et al. 2012), and it is good scientific practice to start with a

simple approach, which can then be further developed.

Potential predictors have been identified for the winter

NAO, based on the literature in section 1, and correla-

tions between the various drivers and theNAO index at a

range of monthly lead times, up to 1yr ahead, with the

exception of solar variability lead times, which were on a

monthly basis for up to 5yr ahead. The lead times se-

lected in themodels have the greatest explanatory power,

although if this is similar for different lead times (a dif-

ference in R no greater than 0.02), the month chosen is

that with the more plausible physical association, based

on known relationships in the literature. Predictors for

the multiple regression models are identified by forward

selection (e.g., Wilks 2011), with synchronous drivers

omitted. In sensitivity tests, other methods of selection

had qualitatively very little impact upon the predictors

selected. The stopping criterion is identified by

calculating a t value, which is defined as the ratio of the

regression coefficient estimate of each predictor to its

standard error. Forward selection is continued until no

further predictors can be added with p# 0.05. Predictors

are not included in the model if they have a significant

(p # 0.05) correlation with any of the prior selected

predictors, to minimize multicollinearity. The Akaike

information criterion (AIC) produced very similar results

for predictor selection but was slightly more liberal with

predictors of marginal significance.

Statistical hindcasts are constructed from 1980 to 2012,

hereafter identified as N80, covering the mainstream

satellite era, and from 1956 to 2012 (N56). In addition, a

20-yr hindcast (1993–2012; N93) is constructed for direct

comparison with GloSea5. The hindcast time series are

cross validated using leave-one-out cross validation, to

ensure that the time series generated is not correlated

with the year being predicted. Cross validation is also

applied in the production of normalized predictor values.

In principle, therefore, a separate model with different

coefficients is created for each year.

b. Simple ensemble creation

The variance of the fit generated from each regression

model is less than that of the observed time series. This is

because the regression model captures some of the

forced signal but not the unforced internal atmospheric

variability. Observations should be statistically in-

distinguishable from the ensemble forecasts, so in order

to generate a consistent ensemble, we incorporate an

unforced noise component. The variance due to both

noise and the part of the forced signal not captured by

the model can be taken as

Var(noise)5Var(obs)2Var(ensemble mean). (1)

The noise is added to the ensemble mean by generating

random numbers from a Gaussian distribution with

standard deviation equal to OVar(noise), in Eq. (1) and

with a mean of zero. For a time series consisting of n

years, n random numbers from the distribution are

generated, and one of these values is added to each of

the annual predicted values to generate an ensemble

member; this process is then repeated for the required

number of ensemble members. Note that this adjust-

ment is only applied for the generation of ensemble

members and does not affect the ensemble mean used in

hindcasting, which is generated directly by the re-

gression model. This simple method also assumes the

same spread in each year. To compare with GloSea5

dynamical forecasting data, 24 ensemble members are

created. The total variance of the 24-member ensemble

is very close to the variance of the observed time series

and is statistically indistinguishable. GloSea5 ensemble

members are generated by the forecasting general cir-

culation model and are averaged to create the GloSea5

ensemble mean.
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Verification rank histograms (VRHs) are plotted to

establish the extent to which the observed time series

differs from the ensemble members (both GloSea5

and statistical models). These indicate whether the

hindcast ensembles include the observations as

equally likely members (e.g., Wilks 2011). It is im-

portant to distinguish between an uneven distribution

due to sampling variations and true deviations from a

uniform distribution. An alternative to the chi-square

goodness-of-fit test is to use nonparametric tests

from the Cramér–vonMises group of tests, specifically

the Watson (Watson 1961) and Anderson–Darling

(Anderson and Darling 1952) statistics. These

methods have been developed for discrete distribu-

tions by Choulakian et al. (1994). Both tests are used,

as theWatson test has been found to be more sensitive

to U-shaped or peaked distributions, while the

Anderson–Darling test is more sensitive to bias or

rank (Elmore 2005).

c. Probabilistic hindcasts

The ensemble mean as derived above gives a de-

terministic NAO forecast. We also present a probabi-

listic hindcast of the sign of the NAO. We choose to use

this hindcast threshold (NAO # 0) as the number of

forecast–observation pairs will be increased compared

with a more extreme threshold, for example of the NAO

being less than 21, which will have relatively few oc-

currences in the observed record. Actual occurrences of

the observed NAO at or below an NAO index value of

zero are expressed in binary form (15 occurs, 05 does

not occur) for each year. Probabilistic hindcasts are

constructed from the 24-member ensemble. Probability

is calculated as the proportion of the 24 members giving

predictedNAOvalues at or below zero for each year. As

the ensemble size is not large, a simple adjustment is

made for small sample size (Wilks 2006), such that the

probability of the forecast f being less than or equal to a

given quantile q (in this case NAO # 0) is

Pr( f # q)5
Rank(q)2 1/3

(n
ens

1 1)1 1/3
(2)

or, in the case of the positive forecasts, it is

Pr( f $ q)5 12
Rank(q)2 1/3

(n
ens

1 1)1 1/3
, (3)

where Rank(q) shows the rank of the quantile in

question in terms of its position within the ensemble

forecast for a given year. Here, Rank(q) 5 1 if it is

smaller than all nens ensemble members and Rank(q) 5

nens 1 1 if it is larger than all members. The further

adjustments in the equation ensure that the value ob-

tained is approximately equal to the median of the es-

timated sampling distribution of the cumulative

probability in question.

d. Probabilistic forecast verification

A wide range of forecast verification tools can be

used. Here, the Brier score (BS), Brier skill score

(BSS), reliability diagrams, and relative operating

characteristic (ROC) diagrams are used to provide a

range of metrics for assessing the forecast (e.g., Wilks

2011). Consistency bars (Bröcker and Smith 2007) are

added to the reliability diagrams, which give an in-

dication of how far the observed relative frequency

is likely to depart from the diagonal if the forecast

is perfectly reliable. Bars are shown for the 95%

confidence limits.

Ten forecast probability bins are used for the initial

analysis, although the sensitivity of the results to bin size

is addressed by rerunning the verification tests for five

bins. Five bins provides a more optimal representation

for the reliability diagram and verification statistics,

giving sufficient bins while ensuring these bins are

populated, as well as reducing the noise evident in the

initial 10-bin run.

The area under the ROC curve (ROC area) can be

tested for significance against the null hypothesis that

the area equals 0.5. The ROC area is equivalent to the

Mann–Whitney U statistic testing forecast probabilities

for cases when the forecast occurred compared with

occasions when events did not occur (Mason and

Graham 2002).

VERIFICATION BY FORECASTING FUTURE NAO
VALUES

The ability of the N56, N80, and N93 models to

provide genuine forecasts of the NAO is initially

tested on the years 2013–16, which are years outside

the period over which the model is developed (the

training period). However, as this is a very small

sample, increasing incrementally by one value each

year, it is necessary to also use an alternative ap-

proach, which is based on a larger out-of-sample

group of years. Therefore, a regression model is de-

veloped based on the training period 1980–97 and

then tested on another period (the testing period) of

similar length (1998–2016). The NAO value for each

year in the testing period is predicted using values of

the selected predictors in the regression equation.

Statistical models are frequently overtuned as pre-

dictors are often based upon those identified from

observational associations, and so could be a conse-

quence of noise rather than a meaningful physical
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connection. Use of a testing period assists in sepa-

rating the noise and coincidental relationships from

the physical connections.

4. Results

a. Deterministic hindcasts

In this section we present the regression models de-

veloped for each time series and illustrate their perfor-

mance as deterministic hindcasts. Table 1 shows the

regression coefficients of the predictors selected for the

models. The R2 values and the y-intercept term A are

given, allowing straightforward construction of the re-

gression equations.

The models, although differing in some aspects of

predictor selection, identify similar potential pre-

dictors of the winter NAO. The models demonstrate

predominantly tropical and Arctic influences. Octo-

ber N3.4 is present in all models while a sea ice term is

also used in N80 and N93 (November BKI). Tropical

influences from the western Indian Ocean are also

represented in all models by October precipitation

(N80 and N93) and September SST in N56. In addi-

tion, N80 shows an extratropical influence from the

June North Atlantic tripole, while in N93 the October

AMO is selected as a predictor and solar forcing is

also significant in the longer time series. The solar

forcing term here is at a lead of around 3 yr, consistent

with that identified from other studies (Scaife et al.

2013; Gray et al. 2013; Andrews et al. 2015). A number

of very similar correlations are found at lead times

ranging from 6 months to 3 yr. Extending models back

to 1956 provides no additional skill. The R2 values are

higher for the models based on post-1980 data, per-

haps reflecting the improvement in observational data

quality during the satellite era, although in the models

developed, all predictors identified are available for

both longer and shorter series, if tropical SST is

substituted for tropical precipitation in the longer

series. It could also be that the early period is less

predictable.

Figure 1 shows the observedNAO index together with

the time series of predicted NAO values derived from

the models above. It is clearly seen that for N56, the

correlation between observations and predictions is less

good before 1979 (r 5 0.33) and insignificant (p $ 0.05)

compared with the post-1979 period (r5 0.48, p# 0.05).

This is likely to be at least partly due to the improved

data quality of predictors such as sea ice post-1979 as a

result of the availability of satellite data. There are pe-

riods where all models show a close match with obser-

vations (e.g., 2008–12) while during other periods there

is greater divergence (e.g., 2001–05). This possible var-

iability in predictive skill on decadal scales breaks the

assumption of stationarity.

An indication of the uncertainty of hindcasts for in-

dividual years is obtained by identifying years when the

observed value lies outside the hindcast 95% confidence

limits defined by 61.96 times the ensemble noise stan-

dard deviation [1.96SD; Eq. (1)], shown in Table 2.

The observed years lying outside the 1.96SD range of

the ensemble mean can be identified as poorly pre-

dicted. The number of these cases is small for each

hindcast (Table 2). It would be expected that 1 year in

20 (5%) would be outside the 1.96SD range by chance

alone. For N56, 9% of years are outside this range (five

years), while N93 and GloSea5 have one more year

identified than would be expected by chance (10%), and

N80 has 12% of years outside the range (four years), but

sample sizes are small so results may still be due to

chance. The year 1996 is consistently poorly hindcast for

all models except N56, a positive NAO being predicted

in every case while a negative NAO was observed. The

year 2012 is also poorly hindcast, being underpredicted

by N80 and N93. N56 manages to predict well years that

TABLE 1. Regression coefficients of predictors selected for the regression models N56, N80, and N93. The y-intercept term isA, and R2

and cross-validatedR2 (xvR2) values are given. Columns indicate the following: OctN3.45October N3.4 discontinuous index, SepWISST5

September west Indian Ocean tropical SSTs (used in N56 only), Feb 2yr lead SS5 February solar activity at a lead of 2 yr (34 months total),

NovBKI5 November Barents–Kara Sea ice (NSIDC), OctWIR5October west Indian Ocean tropical rainfall (only available for N80 and

N93), JunTRI5 June Atlantic tripole SST, and OctAMO 5 October AMO. Within the table, NA denotes a predictor is not available for

a particular model. AllR2 values are significant at p# 0.05, through calculation of the F statistic. Significance values for predictor coefficients

are set within parentheses below each coefficient.

Model A Oct N.34 Sep WISST Feb 2yr lead SS Nov BKI Oct WIR Jun tripole Oct AMO R2 xvR2

N56 20.004 20.91 0.24 0.28 — NA — — 0.34 0.24

(3 3 1024) (1 3 1023) (0.02)

N80 0.01 20.79 — — 0.43 0.38 0.15 — 0.68 0.58

(6 3 1024) (4 3 1022) (3 3 1024) (0.05)

N93 0.15 20.97 — — 0.34 0.51 — 21.75 0.78 0.63

(9 3 1024) (4 3 1022) (2 3 1024) (0.01)
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are poorly predicted by other models, but in turn pre-

dicts different years poorly. Such variations between

poor hindcast years in different models, while in part

attributable to random fluctuations, can give insights

into possible reasons for the poor performance in a

particular year. For example, 2005 is a poor hindcast in

GloSea5 with a negative predicted (20.53) and a posi-

tive observed NAO (0.78). The correct positive hind-

casts in the statistical models for this year can in part be

related to a strong positive signal from the October west

Indian Ocean precipitation (N80 and N93) or the Sep-

tember west Indian Ocean SST value (N56). However,

the absence of a sea ice term in N56 means that 2010 is

poorly predicted in this model. Although the sign is

correct, the predicted negative NAO is far too weak. It

is likely that the increasing negative sea ice trend in the

autumn accounts for the underprediction of 2012 in N80

and N93 (see below).

The year 1996 was an important one, marking the end

of the positive NAO trend of the late twentieth century

and coinciding with a rapid warming of the North

Atlantic subpolar gyre (Robson et al. 2012), which

seems not to be evident in the resulting predictions, even

though the June tripole is used as a predictor in N80 and

models are able to predict this event (Hermanson

et al. 2014).

In contrast, winter 2011 is well predicted by N93 and

N80. For this year the Atlantic SST signal outweighed

the sea ice signal in both forecasts. For N93, the October

AMO provides 28.8% of the negative NAO forcing,

comparedwith 16.6% from sea ice, while for N80, sea ice

and the June Atlantic SST tripole provided 24.6% and

FIG. 1. (a) Observed (black solid) and predicted cross-validated NAO time series (N56, red

solid; N80, blue solid), based on the statistical models. (b) As in (a), but for GloSea5 (blue

solid) and N93 (red solid) compared with the observed NAO index (black solid). Out-of-

sample forecasts are shown as dotted lines. Note the different time scales along the axes.

TABLE 2. Years for which the difference between forecast–

observation pairs is greater than 1.96SD ensemble noise for the

year in question.

Forecast Years

N56 1957, 1963, 1990, 2010, 2011

N80 1990, 1995, 1996, 2012

N93 1996, 2012

GloSea 5 index 1996, 2005
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28% of negative forcing, respectively. This is consistent

with the conclusions of Maidens et al. (2013), who found

that Atlantic SSTs were a major contributory factor to

the negative NAO of this year. Interestingly though, in

both models around 50% of the negative forcing comes

from west Indian Ocean rainfall, which is indicative of

convective activity and divergence leading to Rossby

wave propagation. Such a possibility is indeed explicitly

acknowledged by Maidens et al. (2013).

b. Ensemble predictions

We now present the ensemble hindcast values and

evaluate the effectiveness of the ensemble by comparing

the observed NAO values to those of the ensemble

members, using VRHs. Figure 2 shows ensemble pre-

dictions (gray dots) compared with the observed NAO

and ensemble mean (the predicted values), together

with the VRH constructed from the ensemble.

At first sight, the VRHs appear uneven (Fig. 2) and

difficult to interpret, but this could be due to the rela-

tively small ensemble size resulting in statistical noise at

certain ranks. There is no discernible systematic bias in

the histograms for the statistical forecast models, and

the Watson and Anderson–Darling statistics suggest

that the null hypothesis of a uniform distribution cannot

be rejected at p # 0.05 for any of the ensembles. The

statistics are similarly inconclusive for VRHs using raw

pressure differences between the Azores and Iceland

(not shown). Other statistics of the GloSea5 ensemble

(Eade et al. 2014) do however confirm the statistical

significance of overdispersion in GloSea5 when using

raw rather than standardized data. The small sample

sizes do not allow accurate identification of systematic

bias among ensemble members.

c. Probabilistic hindcast verification

This section examines the probabilistic forecasts out-

lined in section 3c. Table S1 summarizes the probabi-

listic hindcasts from statistical models and GloSea5 and

the observed NAO and these data are used as the basis

for probabilistic forecast verification. Forecast verifica-

tion statistics for the NAO # 0 probabilistic forecasts

are presented in Table 3.

All models show positive skill, and the scores from

N80 are usually better than GloSea5 in terms of accu-

racy (BS) and skill relative to climatology (BSS) (Table

3). However, some of this may be a consequence of an

increased length of time covered, although N93 per-

forms even better, over the same time period as GloSea5.

N56 generally has the poorest set of verification scores,

which would be expected as the model is a less good fit to

the observations (Fig. 1a), although the scores are com-

parable to those of GloSea5. The correlation skill of N56

over the years 1980–2012 is 0.41, compared to 0.76

for N80.

Figure 3 presents reliability diagrams for the statistical

probabilistic hindcasts and for GloSea5, for the proba-

bility of the NAO being less than or equal to zero, based

on five bins for probability forecasts. It will be noted that

the consistency bars are wide, a consequence of the

small sample sizes. All points plotted on the curve lie

within the consistency bars, but are on occasion at the

extreme ends of the bar, when the number of forecasts

within a probability bin is low, which is again a conse-

quence of small sample size.

It is difficult to compare reliability diagrams between

models because of the degree of fluctuation due to small

sample size. All diagrams have a positive slope in-

dicating that as forecast probability increases, so does

the frequency with which the event is observed; there-

fore, all are to some extent reliable. Refinement distri-

butions, as shown by the inset histograms, indicate that

all forecasts show some sharpness, in that all forecast

probability bins are used. The sharper forecasts are N80,

N93, and GloSea5, where there are more instances of

extreme high or low probabilities, rather than clustering

around climatological probability values.

The greatest departures from the diagonal occur when

there are few occurrences within a forecast probability

bin. In such cases, one further occurrence will make a

large difference to the proximity of the curve to the di-

agonal. Normalized values of GloSea5 show greater

reliability than the raw pressure differences (not shown),

indicating that reliability can be added to a forecast by

data processing techniques.

ROC areas (Table 3) show the forecasts to yield good

discrimination between events and nonevents and to be

potentially useful. N80 and N93 have the highest ROC

area scores although values for all statistical models and

GloSea5 are high and statistically significant (p# 0.05).

N80 and N93 provide the best probabilistic forecast

models in terms of skill, reliability, resolution, and ac-

curacy and compare well with GloSea5, although it is

hard to say that one forecast is better than another due

to small sample sizes. Attempting to use a longer time

series does not necessarily produce a better-quality

forecast. With N56 this is likely to be due to reduced

data quality in the presatellite era or, perhaps, due to a

change in inherent predictability.

d. Using the models for out-of-sample forecasting

Here, we apply the regression models outlined in

section 4a to out-of-sample forecasting for the years

2013–16. This acts as a better indicator of the models’

true forecasting potential. A model developed using

only data from the years 1980–97 is then applied to
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FIG. 2. Ensemble members (gray dots), ensemble mean (gray line), and observed NAO values (boldface black

line) together with VRHs for (a) N56, (b) N80, (c) N93, and (d) GloSea5. Dashed lines in histograms indicate

expected values of counts for each rank if the observations are equiprobable at all ranks.
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forecast the winter NAO for 1998–2016, giving a longer

period of forecasting.

Forecast values for the years 2013–16 based on the

statistical models are shown in Table 4. Here, the sta-

tistical forecasts appear to be less well matched to ob-

servations than for the period 1980–2012. N80 and N93

issue four negative forecasts each, and only one of these

is matched in sign by observations (2013). N56 issues one

negative and three positive forecasts, and the sign of the

observed NAO is correct for 2015 and 2016 (positive).

Nine out of the 12 forecasts have a probability greater

than or equal to 0.5 of a negative NAO occurring, al-

though 7 of these are for N80 and N93, out of a total of 8

forecasts. However, plotting the results reveals that the

predicted values for N93 and N80 track the observed

values for most years but with a systematic negative bias

(Fig. 1). The year 2014 is an exception to this, appearing

as a relative minimum in all models including GloSea5,

while the observed NAO is a relative maximum. Dif-

ferences between forecast and observed values for 2013

do not appear to be distinctly different in magnitude

FIG. 3. Reliability diagrams for forecast models NAO# 0, for five bins. Histograms in bottom-right-hand corner

show the frequency of occurrence for each forecast probability bin. Gray vertical lines are the consistency bars for

the 95% confidence interval.

TABLE 3. Verification statistics for probability forecasts

using five bins. All ROC area values are considered significant

( p # 0.05).

NAO # 0 BS BSS ROC area

N80 0.15 0.40 0.87

N93 0.09 0.64 0.96

GloSea5 index 0.21 0.18 0.76

N56 0.20 0.17 0.71
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from those seen during 1980–2012; however, the differ-

ences for 2014–16 are large relative to differences over

1980–2012.GloSea5 forecasts all predict a positiveNAO

(2014–16), which matches the observed NAO, although

in 2014 the prediction is only just positive (0.01; see

Table 4). While the 2015 forecast has a very close match

to the observed value, 2014 was underestimated and

2016 overestimated by GloSea5. Therefore, the N80 and

N93 statistical models show a systematic negative bias

for out-of-sample forecasting while matching relative

maxima andminimawith those of observations, whereas

N56 does not show the negative bias but the match of

maxima and minima is less good. GloSea5 manages to

successfully predict the sign of the winter NAO and

matches the interannual change of magnitude of the

NAO with the exception of 2014. Forecast skill for

GloSea5 in winter 2016 is likely to come fromENSOand

theQBO (Scaife et al. 2017). The strength of the positive

winter NAO in 2014 is underpredicted in all models

including GloSea5, suggesting a greater role for internal

variability or a factor not well represented in any of

the models.

The forecast model developed for the training period

1980–97 is only based on two predictors, November

Barents–Kara Sea ice and the October N3.4 adjusted

index using the selection criteria outlined above for

identifying predictors over the training period:

DJFNAO520:141 0:71NovBKI2 0:74OctN3:4

R2
5 0:56. (4)

Figure 4 shows the fit during the training period (1980–97)

together with the subsequent fit of forecasts during the

testing period (1998–2016). The correlation between

observed and forecast NAO results for the training pe-

riod is significant (0.75, p # 0.05) while that for the

verification period is 0.32 (not significant; p $ 0.05).

However, for most of the testing period, the match is

TABLE 4. Observed and forecast values for the years 2013–16 from the statistical models. Observed and ensemblemean (forecast) NAO

values and probabilistic forecasts are given. Boldface values in the forecasts column show that the sign of the NAO is predicted correctly

for the year in question.

N56 N80 N93 GloSea5

Year

Observed

NAO

Forecast

NAO Pr(NAO# 0)

Forecast

NAO Pr(NAO# 0)

Forecast

NAO Pr(NAO# 0)

Forecast

NAO Pr(NAO# 0)

2013 20.06 0.19 0.42 20.42 0.74 20.65 0.70 NA NA

2014 1.93 20.31 0.62 20.84 0.89 21.41 0.97 0.01 0.48

2015 1.93 0.03 0.50 20.05 0.62 20.05 0.38 1.89 0.02

2016 0.77 0.83 0.08 20.87 0.97 20.52 0.93 1.52 0.05

FIG. 4. ObservedNAO (black) and predictedNAOvalues (gray) for the testing period 1998–

2015, based on a training period model covering 1980–97. Black vertical line denotes the end of

the training period and the start of the testing period. Error bars are for61.96 ensemble noise

standard deviation for each year.
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significant (1998–2011; r 5 0.75). The model forecasts

also appear to reproduce the increased variability

present in the NAO during the testing period and rep-

licate the magnitude of extreme NAO events, such as

winter 2010. It is in the last 5 yr that the observations and

forecasts become less well correlated, with forecasts

being too negative, consistent with the results from

statistical forecasts in Table 4. As there is no input from

the N3.4 predictor for the years 2011–16, and with the

index being set to zero for these years, the negative bias

in the forecast NAO must come from the sea ice. Both

forecasts for the testing period and the autumn sea ice

extent show a negative trend, while the observed NAO

does not. Winter 2013 was preceded by a very low

Barents–Kara sea ice value (November 2012), resulting

in a strong predicted negative NAO of the same order of

magnitude as that for 2009–10, but this is not reflected in

the observed winter NAO in Fig. 4, where the dip is

relatively slight. In reality, the very low sea ice value

appears to either be offset by other drivers not included

in the model or the sea ice is given too much weight in

the statistical method. The sea ice recovered in 2013 and

2014, which is reflected in the models and observations

of the NAO for 2014 and 2015, but there is still an un-

derestimation of the forecast compared with the ob-

served index. This may be due to the influence of the sea

ice trend, which is quadratic over the period, steepening

since 2000 (Fig. S2). For the testing period, observations

outside the forecast error bars occur in 1996, 2007–09,

and all years after 2011. In all cases observations are

more positive than forecast NAO values, confirming the

systematic negative bias evident in forecasts from the

latter period, although relative maxima and minima in

forecasts and observations frequently coincide. The in-

fluence of the sea ice trend is supported by out-of-

sample forecasts for N56, which does not contain a sea

ice term and shows no negative bias.

A further statistical model for the training period

1980–97 is therefore constructed using detrended sea

ice data, to remove the influence of the sea ice trend

on forecast NAO values. The same predictors are se-

lected, but with slightly different coefficients and a

positive y-intercept term and with an R2 value that is

very similar:

DJFNAO5 0:201 0:70NovBKI(detrended)

2 0:76OctN3:4 R2
5 0:53: (5)

When the forecasts are made for the testing period

(1998–2016) using this model, and the systematic bias in

statistical forecasts is eliminated (Fig. 5), a much closer

match is obtained between forecast–observation pairs,

with only three of the six most recent observations lying

outside the forecast error bars. A higher NAO value is

predicted in 2011 while 2012 and 2014 predict lower

NAO values than observed. Correlations between ob-

served and predicted values are now 0.73 for the training

period and 0.56 for the testing period, both of which are

significant (p # 0.05). When detrended sea ice data are

used, the model in Eq. (2) correctly predicts the sign of

the NAO in 13 out of 19 yr for the testing period, com-

pared with only 9 when the trend is retained. It appears

that interannual variability of sea ice is a better predictor

of the winter NAO than absolute sea ice values and that

inclusion of the sea ice trend leads to an overestimate of

the influence of sea ice. The correlation skill of 0.56 for

FIG. 5. As in Fig. 4, but using detrended sea ice data.

1596 WEATHER AND FORECAST ING VOLUME 32



the testing period compares with the correlation of 0.61

achieved by GloSea5.

Verification data for the 1980–97 trend-in model

confirm that NAO forecasts for 1998–2016 for this

model have little skill and accuracy (Table 5), which

improve considerably if the sea ice trend is removed.

Overall for the whole time period (1980–2016), re-

moving the sea ice trend improves the verification sta-

tistics (improved BSS, a small improvement in BS).

5. Discussion

While much work has suggested that the variability of

the NAO/Arctic Oscillation (AO) is due to internal at-

mospheric dynamics (e.g., James and James 1989;

Hurrell et al. 2003), analysis with GloSea5 and statistical

models indicates that there does appear to be a signifi-

cant predictable component in the winter NAO, derived

from slowly varying boundary conditions. It is possible

to produce statistical hindcasts for the NAO that have

high levels of skill and reliability. However, although

care has been taken not to overfit the regression models

with too many predictors, it is still possible that these

models are overtuned, as they have fared more poorly in

recent out-of-sample years, compared with the dynam-

ical forecasts of GloSea5. Associations with potential

predictors could be nonstationary, or simply a result of

noise, and therefore not necessarily indicative of true

relationships. Nevertheless, such models may help to

provide a benchmark for dynamical models, although it

must be borne in mind that they rely upon chosen pre-

dictors that follow data inspection through observa-

tional studies. There is reasonable success in testing

regressionmodels against independent verification data,

shown by the ability of models to forecast the NAO for

2013–16, matching fluctuations in the observed NAO

albeit with an apparent negative bias.

The June tripole has a 6-month lead time over the

winter NAO and a mechanism has been established that

makes this link. The late spring/early summer tripole

pattern is preserved beneath the summer thermocline.

The thermocline breaks down in winter, allowing the

tripole signal to reemerge (Rodwell et al. 1999; Deser

et al. 2003).

Regarding the association with west Indian Ocean

rainfall and SSTs, the time scale for Rossby wave

propagation to midlatitudes of 1–2 weeks (Hoskins and

Karoly 1981) does not appear to match the lead time

found here of 2–3 months prior to the start of winter.

However, Li et al. (2010) report that an annular mode

response to tropical Indian Ocean heating is not

achieved until after around 45 days. Although the

Rossby wave propagation time scale is of the order of

2 weeks, this does not produce an annular mode re-

sponse, which is dependent on the presence of feedback

from transient eddies onto the large-scale atmospheric

flow. This suggests a plausible physical mechanism for

the time scales found here, with persistent patterns ex-

tending the time scale, although the potential mecha-

nism should be further investigated.

A solar variability term with a lead time of 34 months

is used in N56, as a number of significant correlations

were identified with lead times ranging from 6months to

2 yr. Models produced using these different lead times

for solar variability are qualitatively very similar, with

the same predictors, and very similar coefficients and R2

values. This lagged response of the NAO to solar vari-

ability has been shown both in observations (e.g., Scaife

et al. 2013) and model experiments (e.g., Andrews et al.

2015). The mechanism suggested is that the North At-

lantic upper-ocean temperatures provide memory of the

solar variability, which produces a lagged NAO re-

sponse (Andrews et al. 2015).

The testing of a model over a longer verification pe-

riod showed that the ensemble mean forecasts were

frequently able to capture the sign and magnitude of the

observed NAO (Fig. 4). However, forecasts for recent

years (since 2007) show a negative bias, which is very

strongly evident for the 1980–97-basedmodel, where the

only predictors are November Barents–Kara Sea ice and

October N3.4 (Fig. 4), although relative maxima and

minima are reasonably well reproduced. This suggests

that the negative bias comes from the marked decline in

sea ice as the N3.4 index was set to zero for most of these

years, and the statistical models therefore overestimate

the influence of sea ice. This results in negative forecasts

being issued too frequently and poorer skill in these

negative forecasts. This is evident to some extent in all

statistical models with the exception of N56, which

contains no sea ice term but is particularly noticeable in

the very recent years since 2007. It has been demon-

strated that removing the sea ice trend can improve the

TABLE 5. Verification statistics for 1980–97 regression model,

with the sea ice trend retained and removed, for the training period

(1980–97) and the testing period (1998–2015).

NAO forecast BS BSS ROC area

Trend-in sea ice

1980–97 0.10 0.60 0.94a

1998–2016 0.32 20.27 0.54

Overall 0.21 0.17 0.73a

Detrended sea ice

1980–1997 0.12 0.51 0.94a

1998–2016 0.22 0.11 0.70

Overall 0.17 0.31 0.80a

aROC values are considered significant ( p # 0.05).
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accuracy of these forecasts and remove the systematic

negative bias; therefore, the interannual variability of

sea ice may be a better predictor of the winter NAO

rather than absolute sea ice values (Fig. 5; Table 3).

The sea ice signal contains two components. First the

trend, up to 60% of which is a likely consequence of

greenhouse gas forcing and increased Arctic amplifica-

tion, with the remainder being due to internal variability

(Kay et al. 2011; Stroeve et al. 2012). Second, there is the

interannual variability of autumn sea ice coverage,

which can be influenced by initial ice conditions, sum-

mer weather conditions, and storms in the Arctic, which

can affect the amount of solar radiation absorbed by the

ocean, and poleward atmospheric moisture and heat

fluxes and oceanic heat fluxes (Holland et al. 2011; Park

et al. 2015; Stroeve et al. 2016). It is possible that some of

these factors influencing sea ice interannual variability,

such as shifts in the Gulf Stream, may themselves be

effective predictors of the NAO, and the sea ice in fact

modulates such a signal (e.g., Sato et al. 2014). Fur-

thermore, using sea ice data with the trend retained

incorporates a greenhouse gas forcing signal that, while

influencing the sea ice negative trend, at the same time is

expected to lead to a mean northward shift in the jet

stream, as a result of warming in the tropical upper

troposphere (e.g., Butler et al. 2010). The fact that this is

not seen in the Atlantic sector (e.g., Barnes and Polvani

2015) could be a result of greenhouse forcing on the jet

stream and Arctic amplification effectively working in

opposite directions (e.g., Barnes and Screen 2015), with

little net change in jet latitude seen. Thus, if the sea ice

trend is retained, the compensating effect of greenhouse

forcing through tropical warming is not accounted for in

the models, hence the systematic negative bias.

It is therefore recommended that for future

forecasts, a detrended sea ice index be used, but also

there is scope for retaining the sea ice trend and further

refining models by including terms such as tropical

upper-tropospheric heating. This also indicates that the

current decline in sea ice cover may not result in a more

negative NAO. In contrast, the GloSea5 predictions of

the winter NAO show no such bias and a closer corre-

spondence to the observed NAO from 2014 to 2016

(forecasts were not issued in 2013).

While models differ in the precise predictors selected,

there is a broad similarity among the predictors, in-

dicating greater confidence that the association with

predictors is genuine, rather than fitting to noise. N3.4 is

used in all models and a sea ice term appears in all

models apart from N56. The relationship with the North

Atlantic June tripole is found in N80 only, while an

extratropical Atlantic influence is also present in N93

(the AMO), although a recent study suggests that the

mainAMO influence on theNorthAtlantic atmospheric

circulation comes from tropical SSTs (Davini et al.

2015). The only suggestion of solar variability influence

is in the longer series N56, and the west Indian Ocean

influence is indicated in all three statistical models. The

influence of these predictors is confirmed in modeling

studies (e.g., Li et al. 2010; Maidens et al. 2013; Andrews

et al. 2015) and therefore suggests that genuine skill is

present in the statistical forecasts. However, as the sta-

tistical models use a limited range of predictors only,

there are likely to be periods when they are less suc-

cessful than dynamical forecasts such as those from

GloSea5, when other factors may be more dominant.

Also of interest are the predictors that are not selected

by the models. Despite the available evidence (e.g.,

Ebdon 1975), relationships between the QBO and win-

ter NAOwere not found to be strong enough to warrant

inclusion in the models. While studies with dynamical

models suggest the need for a fully resolved stratosphere

(e.g., Marshall and Scaife 2010; Scaife et al. 2016), the

stratospheric influence via the drivers selected in these

statistical models is limited, probably just to N3.4 (Bell

et al. 2009). Similarly, no role for Eurasian snow cover is

identified, despite evidence presented in other research

(Cohen and Jones 2011; Riddle et al. 2013). Although

Cohen and Jones (2011) found their snow advance index

(SAI) demonstrated better correlation with winter

NAO than did snow cover extent, the reason for this has

not been established and their 2014 forecasts were poor.

Here, snow cover shows covariance with sea ice in the

Barents–Kara Sea and is thus not selected.

The detrended sea ice forecast model compares fa-

vorably to GloSea5 when used for out-of-sample fore-

casts (correlation of 0.56 compared with 0.61 for

GloSea5). The ability of a statistical forecast to correctly

predict the winter NAO means that such forecasts can

act as benchmarks for dynamical forecast models such as

GloSea5. For example, simple statistical models may

shed light on the reasons why a dynamical model issues a

poor forecast in particular years by identifying a par-

ticular factor. The poor hindcast ofwinter 2005 inGloSea5

has an as yet undetermined cause but the skill in the

statistical modelsmay come from tropical rainfall.While

the signal from tropical rainfall was evident in GloSea5

and suggestive of a hindcast similar to statistical models,

other as yet unidentified processes within the model

prevented this. The statistical approach used lends

support to the argument that the winter NAO has a

significant predictable component and shows that skill-

ful and reliable statistical forecasts are possible. In the

future, these simple forecasts can be extended to in-

corporate other predictors and nonlinear relationships

through the use of more advanced methods.
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