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Abstract. In this paper, we draw on Spielman and Srivastava’s method
for graph sparsification in order to simplify shape representations. The
underlying principle of graph sparsification is to retain only the edges
which are key to the preservation of desired properties. In this regard,
sparsification by edge resistance allows us to preserve (to some extent)
links between protrusions and the remainder of the shape (e.g. parts of a
shape) while removing in-part edges. Applying this idea to alpha shapes
(abstract representations which have a huge number of edges) opens up
a way of introducing a hierarchy of the edge strength, thus being relevant
for shape analysis and interpretation.
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1 Introduction

1.1 Shape representations: Triangulations vs Alpha shapes

The traditional problem addressed by shape reconstruction is to recover a digital
representation of a physical shape that has been scanned, where the scanned data
contain a wide variety of defects or the representation of data acquired by dif-
ferent diagnostic equipments such as angiography, Computed Tomography (CT)
and Magnetic Resonance (MR). To encode the data in a digital model different
geometric representations have been explored in detail. The work reported in [?]
organizes them into a spectrum with respect to the achieved trade-off between
verbosity and complexity. Voxel grids are at one extreme of the spectrum, since
they are the simplest, but the most verbose and less accurate representation.
Although, in principle, the use of arbitrarily fine grids could achieve any level
of approximation, the practical limit comes from constraints on the resolution.
At the other end of the spectrum, the functional representations - using smooth
functions to specify the continuous of points that make up the shape - provide
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an accurate and complex representation. Piecewise linear representations are at
the center of the spectrum.

The most popular representations in the piecewise class are the simplicial
complexes [?], including triangular meshes that have become the de-facto stan-
dard in graphics accelerators [?] and tetrahedral meshes that are used to rep-
resent volumes and are used for the simulation of deformable models, such as
organs or tissues. A generalization of the concept of triangulation are the so-
called alpha (α-) shapes, that are families of piecewise linear simple curves in
the Euclidean space associated with a dense and unorganized set of data points.
An alpha shape is demarcated by a frontier, which is a linear approximation of
the original shape. First introduced in the 2D plane by Edelsbrunner et al. [?],
they were extended to 3D spaces [?] and higher dimensions [?]. In the case of
2D, an alpha shape consists of vertices, edges and triangles, while for 3D there
are also tetrahedra. In our graph representation, we consider the 1-skeleton of
both triangulations and alpha-shapes, i.e., the set of vertices and edges of the
complex.

Fig. 1. From left to right: a point set, a triangulation and a sequence of three alpha
shapes with increasing values of α.

Alpha shapes depend on the parameter α used as radius of spheres centered
on the points that determine the connection among the neighbourhoods. A very
small value will generate many isolated points and the alpha shape degenerates
to the point cloud when α → 0. On the other hand, a large value of α will
consider many points inside the spheres and therefore the size of the 1-skeleton
considerably increases. The limit of the alpha shape when α → ∞ is the con-
vex hull of the point cloud and the 1-skeleton of the alpha shape becomes the
complete graph.

The main application of alpha shapes is the reconstruction of objects which
have been sampled by points. How to determine the best value of α is not
obvious and in practice α is found using a trial-and-error strategy. This leads the
computation of quite large families of alpha shapes and the 1-skeleton increases
as long as the value of α increases. Moreover, there are point-sets for which
there is no unique α value, for instance because small α values capture local
characteristics while larger ones determine large connectivity. For instance, this
is the case when a point cloud is not uniformly sampled or the point cloud is
supposed to represent either small or large features (for instance, it contains
both thin and long handles like the examples shown in Fig. 1). Low density
sampling requires a rather large radius to build a connected representation. But
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a large value of α will unfortunately close some handles. In practice, a large value
of α results in (among possibly other things) a closure of handles, connection
of multiple components and joints (e.g., sharp turns) being destroyed. For this
reasons and because the general size of the 1-skeleton, the approach proposed in
this work is able to simplify connections without destroying the global topology
of the alpha shape.

1.2 Contributions

Spielman and Srivastava [?] have developed an efficient method for graph spar-
sification based on edge resistance (which is proportional to the commute time
of its end nodes). The method is based on the observation that the probability
of an edge appearing in a random spanning tree of a graph is equal to its effec-
tive resistance. Drawing on Spielman and Teng’s approximately linear solver[?],
they show how to efficiently compute resistance, and hence sample edges for the
purposes of sparsification.

Herein, we present a unified view of resistance sparsification through sam-
pling. In addition, we exploit such a sampling for retaining edges (both in trian-
gulations and alpha spaces) that are key to the preservation of the topological
properties of the input shape. Our experiments show high compression rates as
the allowed error ǫ increases. However each shape is sensitive to a different value
of ǫ. It is the persistence of a given edge as ǫ increases what will provide us
with is the relative importance of a vertex. This characterisation is pivotal for
subsequent tasks such as efficient shape matching and shape representation.

2 Graph Sparsification

2.1 Definition and Ingredients

Graph sparsification [?] is the principled study of how to significantly decrease
the number of edges of an input graph G so that the output, H, preserves some
of the structural properties of G.

Benczúr and Karger [?] showed that every cut in G = (V,E) can be approx-
imated in H = (V,E′), with E′ ⊆ E, so that every cut in H has a value within
(1± ǫ) times its value in G. For instance, a Kn (complete) graph with n vertices
and O(n2) edges can be approximated by a random d−regular graph, i.e. a graph
with O(dn) edges. This means that for every subset S ⊂ V the ratio between the
value of a cut in Kn and that of the same cut in the random d−regular graph
H is n/d. This link between sparsification and random graphs is useful (to some
extent). For instance, if an edge in G is included in H with probabilty p, we
must set p ≫ 1/c where c is the value of the minimal cut. As a result, if we have
m edges in G we can only have O(m/c) edges in H.

This limitation leads to non-uniform sampling, i.e. to associate a different
probability pe to each edge e ∈ E. The edge e it is included in E′ with prob-
ability pe and it is given a weight 1/pe if it is included. This inverse weighting



4 Escolano et al.

ensures that the expected weight of e in H is unity.
The choice of a suitable value of pe is the first step in graph sparsification.

For cut sparsification, the choice of pe relies on the strong connectivity ce of e.
The strong connectivity ce is the maximum value of a cut in a connected compo-
nent including e. This quantitiy is upper bounded by the standard connectivity
of e (the minimal value of a cut separating its endpoints), but it is hard to find.
However lower bounds c′e ≤ ce can be founds through sparse certification (see
details in [?]). In this way we have that pe = ρ/c′e ≥ ρ/ce, where ρ is the com-
pression factor, is a good choice for pe. The compression factor ρ has complexity
O(c(d+2)(log n)/ǫ2) and it is in turn inversely proportional to the squared error
ǫ2. The setting pe = min{1, ρ/c′e} then ensures the correctness of the approxi-
mation with probability 1− n−d.

The above rationale leads to the second ingredient of sparsification, namely
theminimal number of samples required to correctly sparsify the graph with high
probability. For cut sparsification, we have that taking O(nρ), i.e. O(n log n/ǫ2),
samples will suffice. This can be proved by means of the Chernoff bound, which
is a standard information-theoretic tool for limiting the number of samples.

2.2 Spectral Formulation and Effective Resistances

An alternative approach to the the sparsification problem consists of enforcing
the preservation of structural properties by bounding the quadratic form asso-
ciated with the graph Laplacian of the sparsified graph H with respect to that
of the input graph G (see the survey in [?]). Therefore, given G = (V,E,w) we
must obtain H = (V,E′, w′) by taking O(n log n/ǫ2) independent samples, so
that we satisfy (with probability at least 1/2) the following constraint

∀ x ∈ R
n : (1− ǫ) ≤ xTLGx ≤ xTLHx ≤ (1 + ǫ)xTLG , (1)

where ǫ > 0, n = |V |, and LG, LH are the respective Laplacian matrices of G
and H. Recall that LG = D−W where D is the diagonal degree matrix and W is
the weighted adjacency matrix, and that xTLGx =

∑

(u,v)∈E(x(u) − x(v))2wuv

and similarly for LH .
Since Laplacian matrices are Semidefinite Positive (SDP), which is denoted

by LG � 0, we can reformulate Eq. 1 in terms of circumventing the hyper ellipsoid
associated with LH with that associated with LG, i.e. one must satisfy

(1− ǫ)LG � LH � (1 + ǫ)LG, or equivalently LG � LH � κLG , (2)

with κ = 1+ǫ
1−ǫ . This implies that all of the eigenvalues λ′

i of LH satisfy λ′

i ≤
κλi, where λi is the corresponding eigenvalue of LG. In addition, since Eq. 2 is
invariant under rescaling, we have that

L
−1/2
G LGL

−1/2
G � L

−1/2
G LHL

−1/2
G � κL

−1/2
G LGL

−1/2
G (3)

i.e.
I � L

−1/2
G LHL

−1/2
G � κI , (4)
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where I is the identity matrix and L
−1/2
G LHL

−1/2
G is the so called relative Lapla-

cian. This leads to locating LH so that the relative Laplacian is properly con-
tained between I and κI. In this regard, the structure of LH is determined by
a weighted sum of outer products: LH =

∑

e∈E w′

ebeb
T
e , where w′

e are the un-
known weights, be = δu − δv = buv, δu is the unit vector with a 1 at u and
zeros elsewhere (similarly for v), and e = (u, v) is the edge. In this regard, since
E′ ⊆ E, an edge of E not included in E′ will have w′

e = 0. We define the random
variables se (our unknowns) so that w′

e = sewe where E(se) = 1 for all e ∈ E.
Then, Eq. 4 can be rewritten as follows

I � L
−1/2
G

(

∑

e∈E

seweL
−1/2
G beb

T
e

)

L
−1/2
G � κI . (5)

It is well known that the Laplacian matrix L cannot be inverted since it contains
the zero eigenvalue. Expressions including the inverse must be computed using
the pseudo-inverse L+ instead. The pseudo inverse plays a key role in defining
the effective resistance across e = (u, v) (the scaled commute time) Re, which is
given by

Re = (δu − δv)
TL+(δu − δv) = bTe L

+be . (6)

Then, combining Eqs. 5 and 6 we obtain

I �
∑

e∈E

sewevev
T
e � κI , (7)

where ve = L
−1/2
G be, i.e., the squared norm of ve is

||ve||2 = (L
−1/2
G be)

T (L
−1/2
G be) = (bTe L

−1/2
G )(L

−1/2
G be) = bTe L

+
Gbe = Re . (8)

This squared norm allows us to treat
∑

e∈E sewevev
T
e in Eq. 5 as a quadratic

form quite close to the identity matrix I. This is extremely important since: i)
the relative Laplacian relies on the effective resistances of G, and ii) we can pose
the sparsification problem in terms of finding the sampling probabilities pe so
that the constraint in Eq. 5 is satisfied. To this end, Batson et al. [?] exploited
the following fact:

∑

e∈E

ṽeṽ
T
e = I , (9)

where ṽe = w
1/2
e ve. This can be proved by using the m × n incidence matrix

of G, i.e. B, with elements B(e, v) = 1 if v is e’s head, B(e, v) = −1 if v is
e’s tail, and B(e, v) = 0 otherwise. Then the Laplacian matrix of G is given by
LG = BTWeB, where We is the diagonal m × m matrix where We(e, e) = we.

Since the vectors ve = L
−1/2
G be rely on the columns of BT , we have that vectors

ṽe = vew
1/2
e are the columns of a n×m matrix Ṽ = L

−1/2
G BTW

1/2
e . Then

∑

e∈E

ṽeṽ
T
e = Ṽ Ṽ T = L

−1/2
G BTW 1/2

e W 1/2
e BL

−1/2
G = L

−1/2
G LGL

−1/2
G = I .
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In addition we have that

||ṽe||2 = (w1/2
e L

−1/2
G be)

T (w1/2
e L

−1/2
G be) = we(b

T
e L

+
Gbe) = weRe , (10)

i.e. we obtain weighted effective resistances. The identity ||ṽe||2 = weRe suggests
to sample E with probabilities pe proportional to weRe.

Let y1, y2, . . . , yq vectors drawn independently with replacement from the
distribution

y =
1√
pe

ṽe with probability pe . (11)

Then, the expectation of yyT (which contains the effective resistances) is

E
[

yyT
]

=
∑

e∈E

pe
1

pe
ṽeṽ

T
e = I . (12)

In addition, the shape of each of the q samples yi = ṽe/
√
pe leads to

1

q

q
∑

i=1

yiy
T
i =

1

q

q
∑

i=1

#e
ṽe√
pe

· ṽTe√
pe

=
1

q

q
∑

i=1

#e
ṽeṽ

T
e

pe
=
∑

e∈E

seṽeṽ
T
e , (13)

where #e is the number of times that e is sampled, and se = #e/qpe. Then, we
obtain

1

q

q
∑

i=1

yiy
T
i =

∑

e∈E

seṽeṽ
T
e =

∑

e∈E

sewevev
T
e , (14)

i.e. a proper sampling process leads to the relative Laplacian. This is ensured
insofar 1

q

∑q
i=1 yiy

T
i and EyyT conform the Chernoff bound for matrices [?]:

E

[
∥

∥

∥

∥

∥

1

q

q
∑

i=1

yiy
T
i − E

[

yyT
]

∥

∥

∥

∥

∥

]

≤ min

(

CM

√

log q

q
, 1

)

, (15)

where ||
[

EyyT
]

|| < 1 and supy||y|| ≤ M . The first norm condition is verified

since E
[

yyT
]

= I. For verifying the second norm condition we must set the link
between weRe (weighted effective resistances) and pe (sampling probabilities). In
order to do so, Spielman and Srivastava [?] exploit the fact that

∑

e weRe = n−1.
Therefore, we may set

pe =
weRe

n− 1
so that ||y|| = 1√

pe

√

weRe =

√

n− 1

weRe

√

weRe =
√
n− 1 . (16)

Therefore, taking q = 9C2n log n/ǫ2 yields

E

[∥

∥

∥

∥

∥

1

q

q
∑

i=1

yiy
T
i − E

[

yyT
]

∥

∥

∥

∥

∥

]

≤ C

√

ǫ2
log(9C2n log n/ǫ2)(n− 1)

9C2n log n
≤ ǫ/2, (17)

for n large enough and ǫ ≥ 1/
√
n.

Summarising, the resistance-based sparsifier [?] consists in five steps:
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1. Given the input graph G = (V,E,w), estimate the effective resistances Re

for each e ∈ E.
2. Set an error tolerance ǫ. Set E′ = ∅, w′ = ∅, define H = (V,E′, w′) and set

#e = 0 for all edges in E.
3. Make q = 9C2n log n/ǫ2 independent samples (with replacement) with prob-

ability pe ∝ weRe. Each sample is associated with an edge e.
4. If e is selected from a cumulative sum test, then increment #e and add e to

E′ with weight 1/pe.
5. For all e ∈ E′ set w′

e =
#e
qpe

.

Finally, the computation Re can be accomplished using exact spectral meth-
ods [?]. However, this step takes O(n3) steps and the eigenvalues are ill condi-
tioned if the graph G has several connected components. This is why Spielman
and Srivastava [?] propose to approximate the computation of effective resis-
tances by exploiting the Achlioptas version [?] of the Johnson-Lindenstrauss
(JL) Lemma. This lemma states that if we project the original vectors (for in-
stance those belonging to the effective resistance embedding) onto a subspace
spanned by O(log n) random vectors, the distances between the projected vec-
tors and the original ones are preserved, and then to some extent are given by
ǫ.

3 Experiments

We have performed several experiments on the reduction of the 1-skeleton of
both triangulations and alpha shapes. As previously mentioned, triangulations
are the standard de-facto representations of the surface of 3D objects.

Triangulations are sets of triangles and vertices and are fully described by
their 1-skeleton. All vertices of a triangulation have the same importance. For
instance, it is not possible to distinguish peaks, pits or passes from other struc-
tures. Moreover, connections are all represented without any relations with their
importance (for instance from shape outliers or dense regions). For this reason,
it is necessary to derive more abstract, high level shapes. In this sense, spar-
sification can act has a tool able to determine a hierarchy between the vertex
connections. It may therefore determine a relative importance of the vertices.

Alpha shapes provide a family of shape representations that is very useful
when performing shape reconstruction. The reason for this is that they connect
vertices with all neighbourhoods that are enclosed in a ball of radius alpha. In
general, alpha shapes generalize triangulations and their importance is mainly
theoretical. In our experiments on 3D point clouds, triangulations represent the
external boundary connections, while alpha shapes encode spatial (volumetric)
relationships.

Figure 2 shows five triangulations used in our experiments. These 3D models
correspond to an abstract shape, a cactus, a deer, a cup and a cow model,
respectively. Most of these models contain features that can be considered to be
at a small scale (for instance the small handles in the abstract shape, the details
of the cow and deer models, etc) or to a larger scale, such as the handles and
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the elongated parts (in the cactus, the deer and the cup models). The results in
Table 1 report the number of edges when sparsification is performed and how
they vary when the value of the ǫ parameter increases1.

Fig. 2. Examples of triangulations used in our experiments.

Table 1. Statistics on the number of edges of the 1-skeleton of some triangulations
when the parameter ǫ increases.

Triangulation ǫ = 0 ǫ = 0.25 ǫ = 0.75 ǫ = 1.25 ǫ = 1.75 ǫ = 2.25

Model in Fig. 2(a) 3906 3905 3837 3090 2098 1438

Model in Fig. 2(b) 4623 4622 4550 3643 2543 1782

Model in Fig. 2(c) 15012 15011 14757 11871 80623 5506

Model in Fig. 2(d) 18837 18836 18504 17146 10392 7290

Model in Fig. 2(e) 21759 21757 21415 17201 11677 7989

Similarly Fig. 3 shows the 1-skeletons of five alpha shapes that were con-
structed over various point clouds, also varying the α value. These correspond
to two different versions of the abstract shape already shown in 2(a), two alpha
shapes of the deer model in 2(c) and an alpha shape from the cow point set
that correspond to 2(e). The choice of these alpha shapes is motivated by the
presence of small and larger handles and features that alpha shapes have diffi-
culty capturing with a single choice of the parameter α, as previously discussed.
The results in Table 2 report the number of edges of the 1-skeleton of the alpha
shape when the value of the ǫ parameter increases. From these experiment, we
think that with sparsification would be possible to overcome the limitations of
alpha shapes in the sense that we hope that it will be possible to commence
from a quite large value of the parameters α and then to remove the redun-
dant edges by using sparsification, thus implementing a connected, progressive,
geometrical-topological peeling of the shape.

Finally, Fig. 4 shows the potential degradation of the topological properties
of the simplified shape as ǫ increases. For the abstract shape (models (a),(b)
in Fig. 3) we observe that the shape of the graph is preserved up to ǫ = 1.2.
However, for ǫ = 1.25 the representation collapses to the most important con-

1 In this paper, the parameter ǫ controls the number of samples needed by the process,
whereas the weight for choosing the edges is given by effective resistances.
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Fig. 3. Examples of alpha shapes used in our experiments.

nected component. This is partially due to the fact that the link between the
original resistances Re (ǫ = 0) and their sampled counterparts R′

e is governed
by R′

e = (1 ± ǫ)2Re according to the JL lemma, if we do not compute them
by spectral means. In addition, as ǫ increases we reduce the number of samples
q = 9C2n log n/ǫ2 (C = 1 in this paper). This leads to an increment of en-
tropy, which in turn flattens the importance of certain key edges. Therefore, the
critical value of ǫ is larger for shapes with an increasing number of nodes. For
instance, for the deer alpha shapes we have that the critical value of ǫ is in the
range [1.4, 1.45] whereas for the cow alpha shape we have that it is in the range
[1.4, 1.5]. For triangulations the values are similar but larger. For the blob the
critical value is close to 1.4, and for the remaining ones is the range [1.4, 1.5].

Fig. 4. Degradation of topological properties as ǫ increases. 2D projections of the blob
alpha shape. From left to right: ǫ = 0, ǫ = 0.75, ǫ = 1.0 and ǫ = 1.25.

Table 2. Statistics on the number of edges of the 1-skeleton of some alpha shapes
when the parameter ǫ increases.

Alpha-shape α ǫ = 0 ǫ = 0.25 ǫ = 0.75 ǫ = 1.25 ǫ = 1.75 ǫ = 2.25

Model in Fig. 3(a) 3 8492 8491 6960 4167 2453 1621

Model in Fig. 3(b) 10 9526 9525 7643 4316 2563 1663

Model in Fig. 3(c) 1 39224 39223 33083 19476 11596 7531

Model in Fig. 3(d) 10 39707 39705 33416 19440 11664 7502

Model in Fig. 3(e) 10 55598 55596 48044 28769 17304 11235

4 Conclusions

In this paper, we have shown that graph sparsification leads to a principled way
of simplifying shapes. Experiments on both triangulations and alpha shapes
show promising preliminary results. In particular, it introduces a hierarchy (and
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therefore a priority queue) of the edge strength. It is relevant for shape analysis
and interpretation. We plan to further develop these ideas, in particular, in
relation to the filtrations induced by the theory of topological persistence [?,?].
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10. Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM Trans.
Graph. 13(1) (January 1994) 43–72

11. Naylor, B., Bajaj, C., Edelsbrunner, H., Kaufman, A., Rossignac, J.: Computa-
tional representations of geometry. SIGGRAPH’96 course notes. (1996)

12. Paoluzzi, A., Bernardini, F., Cattani, C., Ferrucci, V.: Dimension-independent
modeling with simplicial complexes. ACM Trans. Graph. 12(1) (January 1993)
56–102

13. Qiu, H., Hancock, E.R.: Clustering and embedding using commute times. IEEE
Trans. Pattern Anal. Mach. Intell. 29(11) (2007) 1873–1890

14. Rudelson, M., Vershynin, R.: Sampling from large matrices: An approach through
geometric functional analysis. J. ACM 54(4) (July 2007)

15. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. SIAM
J. Comput. 40(6) (2011) 1913–1926

16. Spielman, D.A., Teng, S.: Spectral sparsification of graphs. SIAM J. Comput.
40(4) (2011) 981–1025


