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Player Preference and Style in a Leading Mobile
Card Game

Peter I. Cowling, Member, IEEE, Sam Devlin, Edward J. Powley, Daniel Whitehouse, Member, IEEE,
and Jeff Rollason

Abstract—Tuning game difficulty prior to release requires
careful consideration. Players can quickly lose interest in a game
if it is too hard or too easy. Assessing how players will cope
prior to release is often inaccurate. However, modern games can
now collect sufficient data to perform large scale analysis post-
deployment and update the product based on these insights.

AI Factory Spades is currently the top rated Spades game in
the Google Play store. In collaboration with the developers, we
have collected gameplay data from 27 592 games and statistics
regarding wins/losses for 99 866 games using Google Analytics.
Using the data collected, this study analyses the difficulty and
behaviour of an Information Set Monte Carlo Tree Search player
we developed and deployed in the game previously [1].

The methods of data collection and analysis presented in this
study are generally applicable. The same workflow could be used
to analyse the difficulty and typical player or opponent behaviour
in any game. Furthermore, addressing issues of difficulty or
non-human-like opponents post-deployment can positively affect
player retention.

Index Terms—Game Analytics, Data Mining, Artificial Intelli-
gence, Monte Carlo Tree Search

I. INTRODUCTION

When deploying an Artificial Intelligence (AI) in a game, it
is challenging to balance the difficulty and the fun suitably
to maximise players’ enjoyment. If the AI is too difficult
players will give up and leave the game, too easy and the
players will become bored and quit the game. Somewhere
between these two extremes is a compromise that is essential
for successful games [2]. Player enjoyment is particularly
important in mobile games, where player acquisition is driven
largely by user-submitted ratings and word-of-mouth: a few
negative reviews can significantly damage a mobile game’s
download figures.

Play testing before deployment can reduce the chances of
either of the extreme cases occurring, but cannot guarantee
they will not occur. Therefore, analysing player data from
games after the AI was deployed is essential to understand
how the game’s users are coping. Subsequently tweaking the
settings and parameters of the AI with regard to this analysis
can positively impact player retention.
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Furthermore, if an AI player performs behaviours distinc-
tively uncharacteristic of human players, gamers will notice
and their enjoyment of the game will be affected. This occurs
often when AI players believe a number of actions have
the same value and, therefore, see no reason to perform a
specific one despite tendencies that are expected by humans.
For example, if an AI can assess far earlier than a player that
it has lost the game, it may behave randomly as it knows
all moves lead to a loss. To the human player, however, this
appears irrational as they are not aware they have already won
the game. Therefore, collecting data from real users of a game
and using this to influence the design and behaviour of the
AI can increase players’ enjoyment by making AI-controlled
opponents and partners more engaging and more human-like.

Previously, we deployed an AI in the game AI Factory
Spades [1]. The AI has been very popular but questions
have been raised at times regarding occasional non-human-
like behaviour. AI Factory have addressed these complaints
with some success by adding hand-designed and hand-tuned
heuristic knowledge to the AI. However this approach is ad-
hoc and relies on expert knowledge of Spades. To investigate
whether a more systematic approach is possible, we collected
a significant amount of game data to explore the differences in
strategies employed by real users of the game and the AI we
had implemented. This data also highlighted potential issues
regarding the default difficulty of the game.

The contributions of this paper include specific recommen-
dations for future revisions of AI Factory Spades and insights
into good strategies of play for any instance of the classic
card game Spades. More generally, our intention is to present
a detailed analysis of game data from an active and popular
commercial product so that others may be able to recreate this
study for their own games. The methods of data collection we
have used can be used with any other mobile games and the
analysis techniques could be used more widely on any game
given access to similar data.

The remainder of this paper is organised as follows. In
Section II, we detail the relevant background material. Then
in Section III, we discuss the implementation details of col-
lecting data from the game. Section IV covers the analysis
of AI difficulty and human/AI play styles. Finally the paper
concludes in Section V.

II. BACKGROUND

This section covers all necessary background material, start-
ing with details of the algorithm Information Set Monte Carlo
Tree Search used in the AI we have deployed in Section II-A.
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Section II-B explains the rules and details of Spades. Sec-
tion II-C discusses the AI Factory Spades implementation and
our previous collaboration. Finally, Section II-D discusses the
emerging area of game analytics and work related to this study.

A. Information Set Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a family of game tree
search algorithms invented in 2006 [3], [4], [5] and notable
for successes in Go [6], [7], General Game Playing [8] and
many other domains [9]. MCTS combines the precision of tree
search with the generality of random simulation, providing
reasonable play in the absence of game-specific heuristics
and strong (in some cases world champion level) play when
enhanced with some domain knowledge.

A game has imperfect information if the state is only
partially observable, i.e. if there is some aspect of hidden
information. Many games of imperfect information have in-
formation asymmetry: different players can observe different
parts of the state. For example in a card game such as Spades,
a player can observe her own cards in hand but not the cards
held by the other players. Games of imperfect information are
particularly challenging targets for AI: the inability to predict
the exact outcome of a sequence of moves is a problem for
many tree search methods.

Information Set Monte Carlo Tree Search (ISMCTS) is a
variant of MCTS for games of imperfect information [10].
ISMCTS is based on the idea of determinization: sampling
from the set of possible game states that are consistent with
current observations. In ISMCTS, each iteration uses a differ-
ent determinization, with the result that the statistics collected
in the search tree are averaged over many determinizations.
ISMCTS performs well in several games of imperfect infor-
mation [10], [11], [12], [1].

B. Spades

Spades is a four-player trick-taking card game, especially
popular in the USA but played worldwide [13]. Spades is a
partnership game, with North and South in coalition against
East and West. (It is common to name the four players after
the compass points.) Spades has some similarities with, but
somewhat simpler rules than, the game of Bridge.

A game of Spades consists of several rounds. A round
begins with each player being dealt a hand of 13 cards from a
standard deck. The players must then bid on how many tricks
they expect to take. A trick consists of each player in turn
playing a single card from their hand. The leader plays first,
and the other players must follow suit if they are able, i.e.
they must play cards of the same suit as the leader’s card.
If the player has a void suit, i.e. no cards of the required
suit, then they may play any other card from their hand. Once
every player has played a card, the trick is won by the player
who played the highest ranking card of the same suit as the
leader’s card. The exception are ♠ cards, which are trumps: if
any ♠ cards are played in a trick, then the highest ranked ♠
card wins the trick regardless of the suit of the leader’s card.
Furthermore, the leader cannot lead with a ♠ until they have

been broken by a player in an earlier trick within the same
round playing one due to having a void suit.

Each partnership’s goal is to win a total number of tricks
equalling their total bid. If the partnership wins at least that
many tricks, they receive 10 times their total bid in points; if
not, they lose that many points. For each trick over their total
bid, the partnership receives a single point and a bag: for every
10 bags the partnership accumulates, they lose 100 points. A
bid of 0, or nil, is treated differently: in this case the player
himself is aiming to win no tricks, and his partnership gains or
loses 100 points depending on whether he is successful or not.
The game ends when either partnership exceeds 500 points, at
which point the highest-scoring partners win.

C. AI Factory Spades
AI Factory1 is a UK-based independent game developer,

currently specialising in implementations of classic board
and card games for Android mobile devices. AI Factory’s
implementation of Spades has been downloaded more than
2.5 million times, with an average review score of 4.5/5 from
more than 90 000 ratings on the Google Play store2.

AI Factory Spades is a single-player game, in which the user
plays with an AI partner against two AI opponents. The user
always plays as South. The user may choose the partner and
opponents from several AI characters. Some of the parameters
in the AI’s heuristics are influenced by the choice of character
(for example some characters are “cautious” while others are
“aggressive”), but the main feature of the character profile is
a level rating from 1 to 5 stars which determines the number
of simulations used by the AI player.

There are many variations on the rules of Spades: for
example a target score other than 500 can be used, or players
may be allowed to pass cards to their partners after bidding
nil. AI Factory Spades supports these and other variations.

In previous work [1] we collaborated with AI Factory
to implement ISMCTS-based AI players for Spades. We
found that our knowledge-free ISMCTS player was objectively
stronger than AI Factory’s knowledge-based player, but the
non-human-like and sometimes counterintuitive playing style
of the ISMCTS player caused beta testers to perceive the
player as weak. It was necessary to inject heuristic knowledge
into the ISMCTS player to produce play that was perceived as
strong, even though this knowledge had no measurable impact
on win rate. However subsequent refinement of the heuristics
has produced an increase in playing strength, resulting in an
ISMCTS player that is objectively and subjectively stronger
than the previous AI.

D. Game Analytics
The emerging field of game analytics has been growing

rapidly as evident from its coverage in Science [14] and the
publication of the first textbook specifically on this topic [15].
There have also recently been multiple startups dedicated to

1http://www.aifactory.co.uk
2https://play.google.com/store/apps/details?id=uk.co.aifactory.

spadesfree&hl=en
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providing game analytics as a service and a wealth of job
advertisements requesting data scientists at large AAA games
companies. Futhermore, a recent review of game AI [16]
identified large scale game data mining and gameplay-based
player experience modelling as key areas for ongoing research.

In particular, a previous study of Starcraft [17] also consid-
ered game data to advise the design of AI players by modelling
human strategies. This work supports our argument that after
the release of a game, it is beneficial to collect player data to
create better AI. However, the authors of this previous study
intended to use the derived model to make harder opponents
whilst our aim is to balance an already deployed AI, making
the game more enjoyable and the opponents more human-like.

Another study [18] used video replays to learn an AI that
imitates human-like behaviour in Quake 2 by combining neural
networks and self organizing maps. Our approach differs from
this, as we are interested in tweaking an existing AI not devel-
oping a new one. Neural networks and self organizing maps
can create sophisticated AI, as demonstrated by this previous
study, but the resultant model is not easily human readable.
The analysis and workflow presented here is focussed on
giving insight into how humans play the game and where the
AI conforms to or deviates from these patterns.

Data collected from Madden NFL 2011 [19] was mined
previously to predict features of a game that would maximise
player retention. This study made various conclusions related
to alterations of game mechanics such as reducing the number
of options available to players in game and presenting the
controls more clearly. Unlike our study, they did not explore
the effect of AI behaviour and difficulty as a method of
increasing player retention.

The Madden NFL 2011 study also concluded that, whilst
the recommendations they presented were specific to the game
analysed, their workflow of analysis was domain independent
and, therefore, generally applicable to other games. We share
this motivation and believe that the methods of data collection
and analysis presented in the following sections could be used
to increase player retention in many other games.

III. DATA COLLECTION

AI Factory Spades was already a mature released product
before data collection was implemented, so it was essential
that the new functionality did not disrupt the existing game
experience or require too much re-engineering. In particular,
AI Factory were keen only to report information that the game
already tracked and stored locally. Additionally, the data is
collected via Google Analytics, which places restrictions on
the amount of data that can be reported both in terms of the
number of bytes in an individual “event” and the number
of events per day. Thus it was important both to find a
compact data representation and to limit the volume of data
collected. The data is exported from Google Analytics as a
CSV (comma-separated values) file, so the data representation
is limited to printable ASCII characters.

The first time the game is run, it generates a random 32-bit
identifier. This provides a way to identify the player while still
retaining anonymity. To reduce the volume of data collected,

games are only reported from player identifiers where the
lowest five bits are all zero, thus for only 1

32 of players.
AI Factory have the ability to tune this proportion at will by
altering the bit-mask applied to the identifier. The only piece
of demographic information collected for the player is their
country, which is not used in the present study.

The game keeps track of statistics about the player’s past
performance, namely the number of games they have won and
lost with each AI character as a partner and against each as an
opponent. The combination of AI characters for a game gives
a level between 2 and 14: if the star ratings for the opponents
are rw and re and for the partner is rn, then the level is rw +
re + (5 − rn). The default setting is rw = re = rn = 5, which
corresponds to level 10. It is possible to achieve the same level
with different choices of characters, however the level gives
us a single number to describe the game difficulty that arises
from the strength of the opponents and/or the weakness of
the partner. The game tracks the player’s wins and losses at
each level. This information was already tracked locally and
accessible for the player to view from the game’s main menu.

The events reported to the analytics server are completed
games. A game of Spades consists of several rounds and
generally takes between 10 and 60 minutes to play. Reporting
only completed games helps to reduce noise in the data; for
example, users who try the game once and decide they do
not like it (or do not know how to play) are unlikely to
play a game to completion because a full game of Spades
takes a significant amount of time. However, reporting only
completed games may introduce some selection bias towards
games where the human player wins or loses by only a narrow
margin, as players may decide to abandon the current game
and start a new one if they begin to fall behind.

Upon completion of a game, the following information is
sent to the analytics server:

• The player’s anonymised identifier and country;
• Historical win and loss counts for each game level and

for each AI character;
• The version number of the game;
• The random seed used for this game (the same pseudo-

random number generator is used for card deals and for
ISMCTS simulations);

• Parameters for the chosen AI players;
• Rule settings for this game;
• The final score;
• The sequence of bidding and trick play moves.

An example of a game record is shown in Figure 1. Note that
the historical statistics are sent along with every game. This
increases the size of a game record, but has the advantage that
player statistics do not need to be reported separately from
game records.

For the sequence of moves in the game, each of the 52
cards is represented by a single alphanumeric character. It
would be possible to devise a more compact encoding than
this, but the game records currently are typically smaller than
2kb (well within the limits of Google Analytics event data)
and so there is nothing to gain from making the representation
more compact and thus harder to parse.
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U:-1498973648# Player ID −1498973648
C:US# Player country (USA)
L8:20-8 Player has won 20 games and lost 8 at level 8
L10:55-50# Player has won 55 games and lost 50 at level 10
Don:26-40-0-0 Player has won 26 games and lost 40 against AI character Don,

but never played with Don as a partner
Mary:24-15-1-2 Player has won 24 games and lost 15 against AI character Mary,

and won 1 and lost 2 with Mary as a partner
· · · More AI character statistics
V:0H9# AI Factory Spades version number
M:15265014# Random seed
L:NA,28,28,28#Y:NA,0,0,0#T:NA,1,1,1# AI settings(Internal Difficulty Rating, Style, Algorithm)
PT:500#TB:100# · · · Game rule settings (score limit, ten bag penalty, etc.)
S1:517#S2:367# North/South won with 517 points to 367
WB:5NB:2EB:3SB:2# Bids for the first round: West=5, North=2, East=3, South=2
W:d148c2wa · · · Sqgp# Card play for the first round, with West leading the first trick

(d = A♥, 1 = 2♥, 4 = 5♥, etc.)
NB:2EB:3SB:6WB:2# Bids for the second round
N:nflprhgk · · · xm9N# Card play for the second round, with North leading the first trick

(n = 10♦, f = 2♦, l = 8♦, etc.)
· · · More rounds

Fig. 1. Example of a game record, with explanation of each field. Line breaks and ellipses have been added for readability; in the actual data, the text in the
left column forms one continuous string.

The results reported in this paper are based on data collected
between 1st April 2013 and 12th November 2013. The data
contains 27 592 complete games, and win/loss statistics for
99 866 historical games, played by 690 unique players.

IV. DATA ANALYSIS

Using the data collected, we present two analytical studies.
The first explores the difficulty of the game and the difficulty
settings chosen by players, whilst the second looks into under-
standing how people play the game at the level of individual
moves. Both of these studies give insight into the design of
the game and provide important feedback for possible future
AI card game improvements.

A. Difficulty and Play Level
Figure 2 shows, for each AI level, the number of players

who played at least one game at that level. By default, the
game offers an assignment of partner and opponents equal
to an AI level of 10. We note that 45.5% of players always
changed from the default and completed no games at this level.
The slight majority, however, are content to try this difficulty
for at least the duration of a full game. Therefore, careful
consideration should be taken when implementing the default
difficulty to ensure first time players are not immediately
thrown into a game they cannot compete in, but also that more
experienced Spades players do not get the initial impression
that the AI is weak.

Figure 3 shows the total number of games played at each AI
level. We see that 59.8% of all games are played at the default
level. More games are played at the default level than at all
other levels combined, which again emphasises the importance
of carefully tuning the default difficulty.
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Fig. 2. Number of players with at least one game at each AI level.

We also see a disproportionately large number of games
played at the easiest difficulty level. Five of the 690 players
have played more than 180 games each at this level, with one
player having logged 1360 games at level 2 and only two
games at any other level. Presumably these players enjoy the
satisfaction of crushing the weakest AI opponents. However
these players are the minority, with most players opting for a
more challenging game.

To explore whether the default level for this game was
too high, we did a significance test for each player using
their games at each level to determine whether they were
significantly better, worse or no different on average than the
AI. We consider a game at a particular level to be a Bernoulli
trial, and take the player’s number of wins and total number
of games at that level as numbers of successes and trials. We
use these to compute a Clopper-Pearson interval [20] at the
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95% confidence level. If the lower bound is greater than 0.5,
we categorise the player as better than the opponents at that
level; if the upper bound is lower than 0.5 we say the player is
worse; otherwise we conclude there is no difference. Figure 4
shows the proportion of players who fall into each category
for each level. This approach assumes that the skill of a player
in a specific level does not change over time. By averaging
across all players in a short time window, the effects of player
learning are unlikely to be significant.

At level 10, 25.2% of players are worse than the AI.
Therefore, the vast majority of players will have either a
competitive or easy game with the default AI. Provided it is
obvious that the game can be made harder by reducing the
ability of your partner, this should not cause players to think
the game is too easy. However, for those players that are worse
than the default AI, losing their first few games could put
them off. Figure 5 suggests this occurs often, as there is a
positive correlation between win rate and average games per
player and a high number of players in the low win rate bin.
Given this data, perhaps reducing the default AI level may be
a worthwhile update. Aternatively, the game could assess the
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Fig. 5. Comparing win rate of players.

skill level of the player and dynamically adjust the “default”
difficulty accordingly. Further work on player modelling and
difficulty adjustment is surveyed in [21].

Furthermore, with due consideration for noise in the data,
it appears that the correspondence between level and win rate
(i.e. difficulty) is somewhat linear. There is probably some bias
given that better/worse players might select easier/hard diffi-
culties and skew the results, but that would have a “flattening”
effect if the bias occurred in the logical direction. Therefore,
we conclude the harder difficulty levels are legitimately harder,
even for better players. This also validates the use of level as a
single number to estimate the difficulty of the game, since the
difficulty scales linearly with level despite there being many
different AI character combinations possible at each level. It
is still possible that the difficulty of different choices of AI
characters at the same level is not the same, but the level
provides a good indicator of the relative difficulty of two set-
ups provide the difference is sufficiently large.

Next, we filtered the players to those who have played at
more than one level, are in the “no difference” category for
at least one level, and either “better” or “worse” for at least
one other level. That is, we consider only players who are
able to make a free choice whether or not they play at a “no
difference” level. For each of these 72 players we looked at the
level of their most recently played game. The majority (47, or
65.3%) chose a level at which they were in the “no difference”
category, with 18 and 7 players choosing “better” or “worse”
respectively. This suggests that most players, given the choice,
prefer to play at a level where they are evenly matched with
the AI. The remainder of players tend to select a level where
they can comfortably win, although a small number of players
opt instead for a challenge beyond their current abilities.

Figure 5 shows a histogram of win rates for all players, as
well as the average number of games played by the players in
each bin of the histogram. The histogram suggests a “normal-
like” distribution with mean around 40–50%, although spikes
at both ends of the distribution show a large number of players
with win rate less than 5% or greater than 95%. The average
number of games played by the players in the less than 5%
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Fig. 6. Change in game level (y-axis) over games played (x-axis) for
individual players.

category is low, indicating that retention of these players is
particularly poor. This may be due to players losing their first
few games and then quitting due to frustration, or it may be
due to players unfamiliar with Spades downloading the game,
trying it once and then deleting it.

The average number of games is much higher, although still
relatively low, for players with greater than 95% win rate.
These players are firmly in the “better” category of Figure 4,
but the average number of games suggests that winning almost
every game is not a source of frustration (at least for some
players). We see a general upward trend of average number
of games with respect to win rate. This has three possible
explanations: players who consistently lose games are more
likely to get frustrated and stop playing; players become more
skilled the more they play; or players choose AI opponents
where they win more than they lose. The real situation is likely
to be a combination of all these reasons.

Figure 6 shows the levels of games played by individual
players. The players in question are the top 25 with respect
to number of games played over the data collection period.
We see that 10 of these players only ever play at the default
level 10, with a further two (players 1992713392, fifth row
second column, and 1642497472, fifth row fourth column)
playing at a constant level other than the default (levels 11

and 2 respectively). Of the remaining players, only three
(players 2043557440, first row third column, −995744224,
third row first column, and 1880174080, fourth row fifth
column) show a clear upward trend in level over the data
collection period, with the other players seeming to switch
between levels more freely.

The analysis in this section shows that a high proportion
of players play at the default level. There is evidence that
the default level is too challenging for some players, causing
them to stop playing after losing their first few games. This
suggests that adjusting the default level may improve player
retention. Amongst players who play the game over a longer
period of time, some are content to stick with the default level
whilst others switch frequently between levels. Those who try
different AI characters generally settle on a level at which they
are equal to or slightly better than the AI opponents.

B. Understanding Human Play Style

To understand human play from the data, it was important to
group moves based on the effect they have in a trick. Playing
10♠ has a significantly different effect in a trick where it is
the highest ♠ still in play than in a trick where A♠ is in play.

Therefore, we assigned all moves into the following, mutu-
ally exclusive and exhaustive, categories of abstract moves:

• Follow Steal: follow suit, and play a card of higher rank
than the current highest card in the trick;

• Follow Duck: follow suit, and play a card of lower rank
than the current highest card in the trick. If a trump card
has been played in this trick, all cards in the trick suit
are considered to be in this category;

• No Follow: fail to follow suit, instead playing a card of
a non-trump suit (♥, ♦ or ♣);

• Trump Steal: fail to follow suit, instead playing a trump
card (♠). The card is either the first trump to be played
in this trick, or is a higher rank than the current highest
trump card in the trick;

• Trump Duck: fail to follow suit, instead playing a trump
card (♠) that is lower than the current highest trump card;

• Lead ♠: begin a trick with a trump card;
• Lead ♥/♦/♣: begin a trick with a non-trump card.
Figure 7 show the frequency with which each category

is played, for the human player and for the partner AI
respectively. Each graph shows a total of 3 636 854 moves for
the human player and the same number for the AI partner, over
the 27 592 games (279 758 rounds) in our data set. Figure 7 (a)
shows the total number of moves played per category, while
Figures 7 (b)–(f) show, within each category, how frequently
the player or AI plays:

• The single card in a category of size = 1;
• The lowest card in a category of size > 1;
• The highest card in a category of size > 1 (if this card

is not a boss card as defined below);
• Some other card (i.e. none of the above) in a category

of size > 2;
• A boss card, i.e. a card where no other player can possibly

hold a card in the same suit of higher rank.
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Fig. 7. Comparison of human and AI usage of abstract moves: (a) shows the total number of moves played per category, (b)–(f) show,within each category,
how frequently the player or AI plays their (b) only, (c) lowest, (e) highest non-boss, (f) boss or (d) any other card in that category.

Figure 7 shows some interesting similarities and differences
between human and AI play. Specifically, Figure 7 (d) shows
that the AI plays “other” moves much more frequently than
humans. Common strategies for Spades often recommend
playing the highest or lowest card that achieves a particular
outcome, whereas the ISMCTS-based AI player has no such
bias. The AI player can also count cards perfectly, so may
be able to see in certain situations that playing the second
highest card is equivalent to playing the highest. Furthermore,
Figure 7 (e) shows that the AI player is less likely to duck

or no-follow with the highest card in situations where tricks
are not needed. This is a common strategy amongst human
players, on the principle that the highest card presents the
greatest risk of taking an unwanted trick later in the round
and so should be discarded as soon as the opportunity arises.
However the AI may see that the highest card can safely be
discarded later. From Figure 7 (f), human and AI players play
boss cards with approximately the same frequency, suggesting
that the AI can see the value of such plays. However it seems
that the AI plays boss cards slightly more often, possibly
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because the AI has a better understanding of which cards are
bosses due to its superior card counting ability.

Figure 7 (e) shows that the AI is more likely to steal with
its highest non-boss trump card. This is an aggressive style of
play: while human players seem to prefer playing their lowest
trump (Figure 7 (c)) in an attempt to steal the trick with a low
card, the AI plays higher to have a better chance of taking
the trick or forcing an opponent to play a higher trump card.
One of the problems with our ISMCTS player is that it often
cannot see more than one or two tricks into the future [1],
so may be failing to assess the value of holding onto a high
trump card until later in the round. Figure 7 (b) indicates that
human players are more likely to lead a trick with their only
card in a non-trump suit. Voiding suits is generally a good
idea as it produces opportunities to discard off-suit cards or
play trumps, and this shows that humans are more likely to
engineer situations where suits can be voided and more likely
to do so when the opportunity arises. It may be that the AI
sees voiding as less valuable than the human players.

To gain a deeper understanding of the differences between
human players and the AI, we generated a decision tree to
classify what abstract move humans typically make given the
following features representative of the current state of play:

• Tricks Needed: How many tricks the player needs (as-
suming the player is focussing solely on making her own
bid);

• Partner Tricks Needed: How many tricks the player’s
partner needs;

• Turn Number: Is the player playing 1st, 2nd, 3rd or 4th

in the current trick;
• Can Play Abstract Move: Multiple features,

one for each abstract move crossed with category
{single,lowest,highest,other} and {boss,no boss}.

For example, the feature “Can Play Follow Duck Single”
means the player has a single card lower than a card already
played of the suit that was led with. As a move that does
not steal or lead a round (i.e. all duck or no follow moves)
cannot be a boss that feature is excluded from this node. For
an example node that does, consider the last node on the far
right bottom of the tree; “Can Play Follow Steal Lowest No
Boss”. This node means the player has multiple cards from
the leading suit higher than those already played in the trick
but not the highest of the suit still in play.

The tree (illustrated in Figure 8) was generated using
version 2.15 of R [22] and version 4.1-3 of the package
rpart [23]. Rpart is open-source software based on the now
commercialised concept of Classification and Regression Trees
(CART) [24]. The parameters were set as minsplit = 20, min-
bucket = 7, complexity parameter = 0.01 and maxdepth = 30.
These parameters were set through preliminary experiments
on a subset of the data. The 10-fold cross-validated error rate
was 0.430. For comparison, the error rate of a dumb classifier
that always predicts the most common class is 0.816.

Some interesting and well advised strategies emerge from
the data when presented in this format. For example, if a player
has already won all the tricks they need this round, a good
strategy is to play their highest card in the current suit that
will not win the round. By doing so the player gets rid of cards

more likely to win tricks later in the round, which would incur
a higher penalty for having gone over the player’s bid.

Other strategies apparent from Figure 8 include leading with
boss cards when it is your turn to go first in a trick and have the
necessary card to do so. This strategy will cause a guaranteed
win if you are playing the boss ♠, or if all players have at
least one card of the suit you are leading with if playing the
boss ♥, ♦ or ♣.

Interestingly, there is a high preference to play the lowest
trump card a player has that will steal the trick when they
have higher valued trump cards that could do so. This strategy
is rational if you are the last player in a trick, as you are
guaranteed to then win the trick whilst simultaneously using
the lowest value card you have to do so. However, within the
data analysed, this move was typically played regardless of
the player’s turn in the trick. This may be representative of
players being cautious, unwilling to part with a high valued
♠ in case it gets trumped later in the trick. This strategy also
allows the player to force the remaining players to play higher
valued ♠ cards or lose the trick. Doing so can plausibly make
the initial player’s remaining ♠ card(s) the boss and, therefore,
a guaranteed trick win later in that round.

Another worthwhile observation is to note that the feature
“Partner Tricks Needed” is not used in the average strategy.
This implies that an average player assumes his partner will
meet their own bid. It also shows that average players typically
will not alter their play style in cases where they could assist.
Given that tricks won by the player and their partner are
summed at the end of a round to see if they match the sum
of their bids, failing to assist a struggling partner is a poor
strategy.

Figure 8 also includes some less expected strategies. In
particular, the high preference to duck in a trick without first
considering if you could steal and the absence of considering
to steal with a trump when the player has multiple ♠ cards.
This may be caused by flaws in the strategies played (the
players are human after all), more complex Spades strategies
incomprehensible to us, or simply the inaccuracies of the tree.

Overall, in our study we found a decision tree was a useful
representation of human behaviour. The ease of comparing
two trees generated from different subsets of the data greatly
simplified the process of determining typical behaviours. For
example, we also generated a decision tree for only good
strategies by reducing the data set based on all of the following
criteria being met:

• Only close games or games where the player wins
(F inalScore > 0.9 ∗ T argetScore);

• Only games against tough AI
(AI level >= 10);

• Only games by players that win more than average
(win rate > 0.5).

The resultant tree was very similar to the one illustrated
in Figure 8, but the error rate was significantly higher. This
suggests that better players use a wider variety of strategies.
Without a human readable model, such comparisons would be
significantly more complex.

It would be interesting, in further work, to learn different
decision trees for clusters of players found by unsupervised
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Fig. 8. Model of average Human Strategy.

learning algorithms. Previous work has found different player
types in many games using various methods of clustering [25],
[26], [27]. Decision trees, as demonstrated in this paper, are a
suitable representation of play style and could help with the
understanding of the differences between these player types
due to the ease of comparing their human readable model.
Clustering players may also give further insight into different
responses to difficulty.

V. CONCLUSION

In this study we have collected a large volume of data from
the commercial game AI Factory Spades via Google Analytics.
This data was a key resource for analysing the difficulty of
the game, the ISMCTS based AI players and the strategies of
human players.

Our analysis suggests that the default level of AI Factory
Spades is too high and that some players may have been
put off by this quickly. It is tempting to conclude from this

that the default level should be lowered. However, doing so
may cause stronger players to assess the AI as weak. This
may be even more harmful in the long run as, in contrast
to beginners, experienced Spades players are more likely to
play the game over a long period of time if they enjoy it
(resulting in increased advertising revenue) and are more likely
to be vocal about the product’s strengths or weaknesses in
reviews (impacting new players’ decision whether to download
the game). A balance must be struck to keep both groups of
players happy.

Adaptive opponents offer a potential solution, but care needs
to be taken that the player’s skill level is being assessed on
“fair” card deals. If the AI’s first few hands of cards happen
to be strong, causing a skilled human player to lose, then
the wrong adjustment may be made. Whatever measures are
taken to improve player satisfaction and retention, it will be
important to perform further data analysis to assess the true
effect of the changes.
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We have presented a number of approaches for analysing the
difficulty of a game that are generally applicable. In particular,
the idea of using binomial confidence intervals as in Figure 4
could be used in any game to provide a statistically sound
method for assessing player strength.

Furthermore, we have observed from the data that the
ISMCTS based AI players behave differently to humans.
In particular, the usages of their highest non-boss cards is
significantly different. The ISMCTS based AI player is aware
whether their highest card is the highest of that suit still in
play and can, therefore, make rational choices regarding this.
Human players, however, can get confused regarding this and
may think they have a boss card when a better card is still
in play. This suggests a novel method of possibly weakening
AI; causing them to forget or make mistakes when tracking
the cards that have been played before.

We have also modelled a typical human strategy as a
decision tree. The resultant model highlights a number of good
strategies for playing Spades, relevant both to the commercial
product used to obtain the data and any other Spades game
both digital and card based. In future work these strategies
could be used to influence the behaviour of the AI players,
perhaps making them appear more human. These strategies
also may contribute to playing strength as it demonstrates
where humans saw different strategies to those being exercised
by the AI.

As with most card games, Spades is a game of tactical
and strategic skill. Player feedback indicates that satisfaction
correlates with difficulty: the appeal of the game for the
majority of players is that the AI provides a competent partner
and challenging opponents. The methods and conclusions of
this paper are likely to hold for other similarly strategic games,
most notably digital versions of board and card games but
also turn-based and real-time strategy games. For competitive
games where dexterity is a factor (such as first-person shooters
and racing games) similar ideas could be applied, but the likely
result of this type of analysis would be the need to “dumb
down” the AI players to place the majority of players in the
“no difference” category. For games which are not competitive
in nature (such as story-driven action games or arcade-style
games) the “no difference” category tends to be frustrating
rather than fun; here the aim should instead be to ensure the
human player is firmly in the “better” category but feels that
getting there was an accomplishment.

This study demonstrates post-deployment analysis of player
behaviour for the fine tuning of AI difficulty and behaviour.
The methods presented here are directly applicable to any
strategic competitive game, potentially applicable with modifi-
cations to a much wider class of games, and have the potential
to significantly improve player retention.
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