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Correlation and Scale in Mixed Logit Models

Stephane Hess∗and Kenneth Train†

March 4, 2017

Abstract

This paper examines sources of correlation among utility coefficients in models al-

lowing for random heterogeneity, including correlation that is induced by random scale

heterogeneity. We distinguish the capabilities and limitations of various models, includ-

ing mixed logit, generalized multinomial logit (G-MNL), latent class, and scale-adjusted

latent class. We demonstrate that (i) mixed logit allows for all forms of correlation, in-

cluding scale heterogeneity, (ii) G-MNL is a restricted form of mixed logit that, with an

appropriate implementation, can allow for scale heterogeneity but (in its typical form)

not other sources of correlation, (iii) none of the models disentangles scale heterogeneity

from other sources of correlation, and (iv) models that assume that the only source of

correlation is scale heterogeneity necessarily capture, in the estimated scale parameter,

whatever other sources of correlation exist.

Keywords: mixed logit; correlation; scale heterogeneity

1 Introduction

Scale heterogeneity has become a widely discussed topic in recent years (see e.g. Fiebig et al.,

2010; Swait and Bernardino, 2000). It is defined as variation across individual decision-makers

in the impact of factors that are not included in the model, relative to the impact of factors

that are included. Decision-makers whose choices are greatly affected by factors that are

outside of the model have relatively small coefficients, in magnitude, for the variables that are

in the model; while people who are little affected by unincluded factors have larger coefficients,
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in magnitude, for included factors. Scale heterogeneity is a form of correlation among utility

coefficients, by which the coefficients of all included variables (including alternative specific

constants) are larger in magnitude for some people than others.

Several model specifications have recently been proposed with the goal of estimating scale

heterogeneity, and numerous published papers claim to have done so in empirical applica-

tions.1 However, as highlighted by Hess and Rose (2012), scale heterogeneity is not identified

separately from other sources of heterogeneity, which means unfortunately that these claims

are incorrect and the goal itself is misguided. The current paper clarifies the issue of scale

within mixed logit models and distinguishes the capabilities and limitations of different spec-

ifications. These concepts can be used by researchers to specify and interpret their models

within the necessary constraint of identification.

Random coefficients models allow for variation in parameters across individual decision-

makers, which raises the possibility of correlation among the individual parameters. Different

models handle this correlation in different ways, and we use this distinction to explain the

role of scale heterogeneity in each model. We start by discussing the various sources of cor-

relation in mixed logit models, including scale heterogeneity as one of these sources. We

differentiate several models that have been introduced to address heterogeneity with respect

to how they handle correlations. We point out that mixed logit models with full correlation

among utility coefficients allow for all sources of correlation, including scale heterogeneity.

However, models that are designed for scale heterogeneity alone, such as most implementa-

tions of the “generalized multinomial logit” model, are restricted forms of mixed logit that

contain only one correlation parameter. The estimate of the correlation parameter in these

models (also called the scale parameter) captures whatever sources of correlation exist in the

data, and cannot be interpreted as representing only scale heterogeneity.

We expand on these concepts below. We first give notation for the mixed logit model. We

then discuss the role of correlation in general, and scale heterogeneity as a form of correlation.

Several models are compared next, including scaled multinomial logit (S-MNL), generalized

multinomial logit (G-MNL), models in willingness-to-pay (WTP) space, latent class, and

scale-adjusted latent class (SALC) models. In addition to interpreting these models, we

provide practical guidance for model specification in applied work.

1We discuss these models in the sections below and give examples of the claims in the appendix.
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2 Mixed Logit

Let the utility that person n obtains from alternative j in choice situation t be denoted in

the usual way as

Unjt = β′
nxnjt + εnjt (1)

where xnjt is a vector of observed attributes, βn is a corresponding vector of utility coefficients

that vary randomly over people, and εnjt is a random term that represents the unobserved

component of utility. The vector xnjt can include 0/1 terms to allow for alternative-specific

constants and for individual attribute levels, as well as continuous attributes.

The unobserved term εnjt is assumed to be iid extreme value. Under this assumption,

the probability that person n chooses alternative i in choice situation t, conditional on βn, is

the logit formula:

Lnit(βn) =
eβ

′
nxnit∑

j e
β′
nxnjt

(2)

The researcher does not observe the utility coefficients of each person and knows that the

coefficients vary over people. The cumulative distribution function of βn in the population

is F (β|θ) which depends on parameters θ. The distribution can be continuous or discrete,

different elements in β may follow different distributions (including some being fixed), and

the elements of β may be correlated with each other.

With continuous F , the choice probability for the person’s sequence of choices, given the

researcher’s information, is:

Pnit =

∫
Lnit(β)f(β|θ)dβ (3)

where f is the density associated with F .

If F is discrete, then the mixed logit formula is

Pnit =
∑
r∈S

Lnit(βr)πr(βr|θ) (4)

where π is the probability mass function associated with F , and S is its support set with

elements indexed by r. The goal of the researcher is to specify F and estimate its parameters

θ.

McFadden and Train (2000) have shown that any choice model, with any distribution of

preferences, can be approximated to any degree of accuracy by a mixed logit. This result
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implies that the mixed logit model does not embody any theoretical restrictions on the choice

model or distribution of preferences. In any application, the researcher needs to specify F ,

and the researcher’s choice for F might, and usually does, embody restrictions. This paper

focuses on the restrictions on correlations that are implied by the researcher’s specification

of F .

3 Correlation

Correlations among utility coefficients can arise for many reasons, depending on the applica-

tion. For example:

1. Energy-efficiency programs offer incentives, such as rebates and financing, for purchases

of high-efficiency appliances. Consumers who respond greatly to rebates tend also to

respond greatly to attractive financing, such that the rebate and financing coefficients

are positively correlated (Revelt and Train, 1998).

2. In choice of fishing site, anglers who place a higher-than-average value on the fish stock

at the site also tend to place a higher-than-average value on the aesthetic quality of the

site, such that the coefficients of these two measures of quality are positively correlated

(Train, 1998).

3. In choice among Alpine hiking sites, recreators who value warming huts at the site tend

also to prefer sites with easier trails; and people who prefer difficult trails also tend to

like having rope assists on the trails (Scarpa et al., 2008).

4. In travellers choices of route by car and public transport, Hess et al. (2017) find complex

correlation patterns between the sensitivities to the different time, cost, quality of

service and safety attributes. Some correlations are positive while others are negative.

Correlations such as these can be expected in any setting: they simply reflect that a con-

sumers’ preferences for one attribute are related to their preferences for another attribute.

Scale heterogeneity constitutes a specific type of correlation among utility coefficients. In

empirical analysis, there are some factors that affect people’s choices but are not included

in the researcher’s model, perhaps because the researcher is unable to observe or measure

them. The impact of these unincluded factors on people’s choices can differ over people:
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some people might be more affected by the unincluded factors than other people, such that

their choices appear more random from the perspective of the researcher.

This difference in people’s reaction to unincluded factors creates correlation among the

coefficients of the included variables. In particular, if a person’s choices are determined

primarily by unincluded factors, then their choices are not affected so much by included

factors. These people have utility coefficients that are small in magnitude, reflecting the small

impact of the included factors relative to unincluded factors. Conversely, if a person’s choices

are mainly determined by included factors, with unincluded factors having little influence,

then their utility coefficients are large in magnitude, reflecting the relatively large impact of

the included factors. The coefficients become correlated, with all of the coefficients being

larger (in magnitude) for some people and smaller (in magnitude) for other people. This

phenomenon is called “scale heterogeneity” because the scale of utility (i.e., the magnitude

of all utility coefficients) differs over people, which constitutes a form of correlation among

all of the coefficients.

The role of scale in utility can be examined more formally by writing utility as:

Unjt = α′
nxnjt +

1

σn
εnjt (5)

where σn is inversely proportional to the standard deviation of the error term, and αn is a

random vector. Since utility has no units, Equation 5 can be written equivalently as:

Unjt = (αnσn)
′xnjt + εnjt (6)

Suppose now that σn varies over people. This variation causes all of the utility coefficients

to be correlated with each other, since all the utility coefficients depend on σn. Scale hetero-

geneity creates correlation among all utility coefficients, with the correlation taking a very

specific pattern.

A mixed logit model with full covariance among coefficients includes all sources of corre-

lation, including the correlation that is induced by scale heterogeneity. However, the various

sources of heterogeneity cannot be distinguished empirically. For example, suppose that two

sources of correlation exist for people’s choices among appliances: (i) people who are greatly

affected by rebates are also greatly affected by attractive financing, creating a positive cor-

relation between the rebate and financing coefficients; and (ii) people who don’t want to

borrow money tend to want rebates, creating a negative correlation. The researcher esti-

mates the correlation between the two coefficients, and, suppose the estimate is 0.3. This
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estimate captures the combined effect of the two phenomena. The estimate being positive

does not mean that the second source does not exist; it simply means that the combined

effect of both phenomena is a positive correlation. Similarly, suppose that scale heterogene-

ity exists as a third source of correlation. Scale heterogeneity creates positive correlation in

the coefficients (assuming, as reasonable, that both have positive means). The correlation

of 0.3 then includes the impact of scale heterogeneity in addition to the impact of the other

two behavioral phenomena. It is not possible to determine what portion of the 0.3 is due

to scale heterogeneity, what portion is due to people liking both financing and rebates, and

what portion constitutes the negative correlation induced by the people who do not want to

borrow but like rebates.

4 Model comparisons

A mixed logit model that allows all utility coefficients to be randomly distributed and esti-

mates a full covariance matrix among them is the most general form possible. Such a model

allows for the type of correlation that would result from scale heterogeneity as well as other

behavioral sources that can affect the overall level of correlation between utility coefficients.

Such models are computationally feasible in many, if not most, settings; see e.g. the large

scale application by Hess et al. (2017). In some situations, however, the researcher might

choose to restrict the model, either to avoid the computational burden of a full covariance

matrix, or to focus on behavioral factors for which correlations are not necessarily relevant.

Such restriction might be not be unreasonable (as we discuss below); however, interpretation

of the estimates needs to recognize the implications of the restrictions. In the subsections

below, we discuss various types of mixed logit models, including those that were developed

to focus on scale heterogeneity.

4.1 S-MNL

A scaled multinomial logit (S-MNL model) is a version of mixed logit where, in Equation

6, σn varies across people while αn is kept fixed. The utility coefficients are then βn = ασn

where α is a fixed (non-random) vector and σn is a random scalar. This model allows for scale

heterogeneity, which induces the utility coefficients to vary together through their common

dependence on σn. The scale parameter is the standard deviation of σn: greater variation

in σn leads to greater variation in utility coefficients and greater covariance among utility
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coefficients. However, the model restricts the utility coefficients to vary only because of scale

heterogeneity, i.e. imposing homogeneity in relative sensitivities, such as WTP.

If utility coefficients vary for reasons other than scale heterogeneity, as one would generally

expect in any real world setting, then the estimate of the scale parameter will capture at

least some of this variation. As a result, the researcher cannot interpret the estimated scale

parameter as measuring the extent of scale heterogeneity. The scale parameter necessarily

captures whatever source of variation exists for the utility coefficients. Similarly, if the S-

MNL model is found to fit better than a logit with fixed utility coefficients, the improvement

does not necessarily indicate that scale heterogeneity exists. It simply means that some form

of variation in utility coefficients exists that is captured by the scale parameter. In order

to conclude that scale heterogeneity exists, the researcher would need to test the hypothesis

that no other forms of variation exist, which requires estimating a more general model. We

discuss this testing more directly in the next subsection.

4.2 G-MNL

The most prominent model seeking to capture scale heterogeneity is the “generalized multino-

mial logit model”, or G-MNL, introduced by (Fiebig et al., 2010; Greene and Hensher, 2010;

Keane, 2006). Starting with utility expressed in 6, the authors decompose each element of

αn into its a mean and a person-specific deviation: for the l-th element, αnl = al+ α̃nl. Then

the utility coefficient for the element, βnl, is expressed as:

βnl = σnal + (γ + σn (1− γ))α̃nl (7)

where γ (bounded between 0 and 1) determines the differential influence of scale σn upon

the person-specific deviations α̃nl. The scale σn is assumed to be log-normally distributed

with its mean normalised to 1 for identification purposes. Greater variation in σn represents

greater correlation among utility coefficients.

The estimation of γ is difficult, and many applications set it to 0. The utility coefficients

then take the simpler form:

βnl = σnal + σnα̃nl = σn αnl (8)

meaning that the impact of σn is the same on the means and deviations. The resulting utility

thus takes the form of Equation 6 with both σn and αn being random. The issues regard-
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ing correlation and interpretation are the same conceptually whether the G-MNL utilizes

Equation 7 or Equation 8.

In the theoretical descriptions of the model and in the vast majority of applications,

αn is specified to be a vector of uncorrelated random terms. We will discuss the case of

correlation in αn at the end of this subsection; we assume until then that the elements of αn

are uncorrelated, which is the case in nearly all applications of G-MNL.

When the elements of αn are uncorrelated, G-MNL is a mixed logit with a highly restricted

form of correlation among utility coefficients. For K coefficients, a mixed logit with full

correlation contains K(K − 1)/2 correlation parameters. The G-MNL model reduces the

number of correlation parameters to 1, namely, the parameter for scale heterogeneity. While,

unlike the S-MNL model in Section 4.1, the G-MNL model does not assume that scale

heterogeneity is the only sources of variation in utility coefficients, the model nevertheless

assumes that scale heterogeneity is the only source of correlation among utility coefficients.

The parameter for scale heterogeneity is often called the scale parameter, but it can also be

considered the G-MNL model’s correlation parameter, since it is the only parameter that

represents correlation.

A G-MNL model is appropriate if scale heterogeneity is indeed the only source of corre-

lation. However, estimation of a G-MNL does not identify whether this supposition is true.

The correlation parameter is usually found to be statistically significant. However, this result

does not mean that scale heterogeneity exists: any source of correlation among coefficients is

picked up by this one correlation parameter. In particular, the correlation parameter in the

G-MNL captures, to the extent possible, whatever sources of correlation exist in the data.

The model does not estimate scale heterogeneity; it estimates the combined impact of all

sources of correlation on the model’s one correlation parameter.

Researchers who use G-MNL often claim that it disentangles preference heterogeneity

from scale heterogeneity. This is not true. As we discussed above, when multiple sources

of correlation are present in the real world, the estimated correlation captures the combined

effect of all of them. G-MNL assumes that sources other than scale heterogeneity do not

exist, and estimates one correlation parameter under this assumption. But the estimate of

this one correlation parameter necessarily captures whatever sources of correlation exist in

the real-world.

The question arises then: is it possible to conclude from a G-MNL model that scale

heterogeneity exists? The answer is, no, at least not stated in that way. The estimate of the
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model’s one correlation parameter can be statistically significant when scale heterogeneity

does not exist in a given setting and yet other sources create correlation that is, in part,

similar to that created by scale heterogeneity. There is a statement about scale that can

perhaps be made, but it is a very weak one. The researcher can estimate two models: (1)

an unrestricted mixed logit with full covariance and (2) the G-MNL model, which restricts

the covariance matrix to the one-parameter form that arises when only scale heterogeneity

exists.2 The researcher then tests the hypothesis that the restrictions implied by the G-MNL

model are true. If the hypothesis cannot be rejected, then the researcher can conclude: “the

hypothesis cannot be rejected that the correlation pattern among coefficients takes the form

that would arise if scale heterogeneity were the only source of correlation.”

The work in Keane and Wasi (2013) goes in that direction. However, once a standard

mixed logit with full correlations has been estimated, the researcher might not see the need

to estimate a G-MNL. Most researchers would probably not think that the only source of

correlation in their data is scale heterogeneity. And if the researcher estimates the G-MNL

and finds that the restrictions cannot be rejected, the researcher still needs to decide whether

the failure means that no other sources of correlation exist, or that the power of the test is

low because the data are insufficient to capture the impacts of other sources of correlation.

This brings us to the issue of the name G-MNL. The name states that it is a generalization

of a “multinomial logit” model, i.e., a logit model whose coefficients are fixed. However, the

name has often been misinterpreted to mean that it is a generalization of mixed logit, which

is it not. G-MNL is a highly restricted form of mixed logit, where the full covariance matrix

is reduced to one parameter.

Compared to a mixed logit with uncorrelated coefficients, G-MNL can be considered a

generalization, since G-MNL contains one correlation coefficient. This comparison is perhaps

the origin for the misstatements about G-MNL: that some researchers think that a mixed logit

always has uncorrelated coefficients. However, the term “mixed logit” has never been defined

as only models with uncorrelated coefficients. The McFadden and Train (2000) theorem that

2The marginal distribution of utility coefficients would need to be the same in both models, such that

the only differences arise in the the presence or absence of correlations. A G-MNL model with uncorrelated

elements αn has utility coefficients that, typically, are distributed as the product of a log-normally distributed

term and a normally distributed term. The mixed logit with full covariance would need to be specified with

the same product of a lognormal times a normal, appropriately normalized for identification, but allow full

covariance among the utility coefficients. Otherwise, differences in the log-likelihood function would arise due

to the different specifications of marginal distributions rather than only from the restriction on correlations.
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mixed logit can approximate any choice model, which is widely cited as justification for using

the model, holds only when the definition of mixed logit is not restricted to models with

uncorrelated coefficients. And software to estimate mixed logits with no, partial, and full

covariance, by both classical and Bayesian methods, have been available for decades.

A further issue arises in that, in many applications of G-MNL, the multiplication by

scale σn is restricted to attributes that vary over decision-makers and is not applied to

the alternative specific constants (ASCs). This practice follows the suggestion by Fiebig

et al. (2010) not to scale ASCs because they are “fundamentally different” from other model

components. It is important to recognize, however, that this practice is inconsistent with the

definition of scale in a random utility model and means that the model, if specified in this

way, does not in fact allow for scale heterogeneity. The model allows for a one-parameter form

of correlation among the coefficients of some of the variables, which might be useful if these

variables are viewed as fundamentally different, but it does not allow for scale heterogeneity.

As stated earlier, it is possible to specify the G-MNL model in such a way as to allow for

correlation in αn; one example is Czajkowski et al. (2014a). However, then the G-MNL model

simply becomes a mixed logit in the form of Equation 1. It does not generalize mixed logit,

nor does it separately identify the various sources of correlation. The parameters associated

with αn and σn are identified empirically by their assumed distributional forms. For example,

if σn is specified to be log-normal and αn is joint normal, then the estimated scale parameter

captures whatever variation exists that is closer to log-normal than normal.3

4.3 Models in WTP-space

In the mixed logit specification of Equation 1, the willingness to pay (WTP) for an attribute

is calculated as wtpn = −βa
n/β

p
n, where βa

n is the coefficient of the attribute and βp
n is the

price coefficient. The distribution of WTP is derived from the estimated distribution of βa
n

and βp
n.

3Several papers published after Hess and Rose (2012) use the G-MNL model to identify demographic

variables that relate to scale. Examples include Boerger (2015); Czajkowski et al. (2014b). The scale parameter

σn is expressed as a function of demographic variables, as in a heteroscedastic mixed logit model. However,

as the scale term still includes a random disturbance, and, as with a log-normal distribution, the mean and

variance are both a function of the mean of the log of σ, the estimated coefficient of each demographic variable

on scale necessarily still captures whatever other sources of variation in utility coefficients is related to that

demographic variable.
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Models in WTP-space reparameterize utility such that the distribution of WTP is es-

timated directly (e.g. Scarpa et al., 2008; Train and Weeks, 2005). Utility takes the form:

Unjt = −βp
npnjt + βp

nwtp
′
nx

a
njt + εnjt (9)

where pnjt is price, x
a
njt is a vector of non-price attributes, and wtpn is a corresponding vector

of the consumer’s WTP for the non-price attributes. The researcher specifies and estimates

the distribution of < βp
n, wtpn >. This model is the same as Equation 1 in the sense that

any distribution of utility coefficients in Equation 1 can be represented by a distribution

of < βp
n, wtpn > in Equation 9, and vice versa. Models that utilize the parameterization

in Equation 1 are called models in preference-space, and those using Equation 9 are called

models in WTP-space.4 As stated, the reason for implementing models in WTP-space is to

estimate the distribution of WTP directly, rather than estimate the distribution of utility

coefficients and then derive the implied distribution of WTP, which may be difficult or im-

possible with some choices of distributions (Daly et al., 2012). Note that this specification is

not useful when the price does not enter utility linearly, since, with nonlinear price effects,

WTP is not simply the ratio of the attribute coefficient to the coefficient of the price variable.

The model allows for scale heterogeneity, since since each utility coefficient includes βp
n.

If < βp
n, wtpn > is specified to have full covariance, then the model in WTP-space allows for

all sources of correlation. If < βp
n, wtpn > is restricted to have uncorrelated WTP’s, then the

model in WTP space does not account for forms of correlation beyond scale heterogeneity;

as a result, the estimated variation in βp
n can reflect whatever other sources can be captured

by this variation.

When a goal of the analysis is to estimate consumers’ WTP, or to conduct welfare analysis,

it is important that the price coefficient in Equation 1 be negative for all consumers. That

is, the distribution of the price coefficient must have support only for negative values, as

occurs with a lognormal distribution on the negative of price. If the distribution overlaps

zero, as occurs with a normal distribution, then the mean WTP is undefined (infinite) for

all attributes, and the mean welfare gain or loss from any policy is undefined (infinite), as

discussed by Daly et al. (2012). The model is therefore unuseable for calculating mean WTPs

4This model is also called a numeraire model, because the parameters being estimated have been converted

to dollar equivalents, with the scale of unobserved terms entering as the price coefficient that is multiplied by

all terms. See Equation 10 below.
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and for welfare analysis.

This issue brings us back to G-MNL. The price coefficient in a G-MNL is specified as

the product of the scale parameter σn and the element of αn that corresponds to price. In

all applications to our knowledge, αn, when random, has been given a normal distribution.

As a result, the price coefficient overlaps zero, and mean WTP is undefined. A G-MNL

model specified in this standard way cannot be used to calculate mean WTPs or for welfare

analysis of any policies. This problem can be avoided by specifying the element of αn that

corresponds to price as having a distribution that does not overlap zero.

Two more notes are required. First, it has come to our attention (by a reviewer of an early

revision of this paper) that some researchers think that models in WTP-space are scale-free.

This is not true: variation in βp
n arises from variation in customers’ response to unincluded

factors (i.e., scale). Without loss of generality, utility can be normalized to be in dollar units:

Unjt = −pnjt + βp
nwtp

′
nx

a
njt + (1/βp

n)εnjt (10)

The standard deviation of the unobserved factors is the inverse of the random price coefficient,

which represents scale heterogeneity.

Secondly, some analysts seem to believe that models in WTP-space constitute a form

of G-MNL where the element of αn that correponds to price, labeled αp
n, is constrained to

equal 1. This is not true: βp
n in a model in WTP-space is simply rewritten as σnα

p
n for

a G-MNL. Any variation in σn and/or αn in the G-MNL is represented as variation in βp
n

in a model in WTP space. The model in WTP-space incorporates random scale (i.e., σn),

without attempting to separate terms that are not separately identified. If αn and σn are

specified in the G-MNL to have log-normal distributions (such that the G-MNL has finite

mean WTPs), then the price coefficient in the G-MNL, σnα
p
n, is itself log-normal (since the

product of two lognormals is lognormal) and the parameters of the two lognormals for αn

and σn are not identified: only the parameters of their product are identified. The price

coefficient in the G-MNL with this specification is the same as a log-normal price coefficient

in a model of WTP space. When the G-MNL is specified to have a normal distribution for αp
n

and a lognormal for σn (which is the standard form, with undefined mean WTPs), then the

equivalent distribution for the price coefficient in a model WTP-space is a lognormal-mixture

of normals.
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4.4 Latent Class Models

Latent class models are mixed logits in the form of Equation 4. Each element r of set S

represents a “class.” The utility coefficients βr are different in each class, and π(βr) is the

share of the population in class r. The goal of the researcher is to estimated βr and π(βr)

for all r ∈ S.

Latent class models, by their definition, allow for full correlation among utility coefficients.

The covariance matrix for utility coefficients is Cov(β) =
∑

r∈S π(βr)[(βr − β̄)(βr − β̄)′]/R

where R is the number of classes, and β̄ is the mean of βr over classes. As such, any form of

correlation is permitted, including the form of correlation that is induced by random scale.

A model called “scale-adjusted latent class,” or SALC, was proposed by Magidson and

Vermunt (2005). This model has been said to generalize standard latent class models by

allowing for scale heterogeneity. However, standard latent class models already allow for scale

heterogeneity, as well as other forms of correlation. SALC allows for scale heterogeneity within

each class, which standard latent class models do not allow. That is, the SALC allows for the

one-parameter form of correlation within each class that is induced by random scale. As such,

the SALC model does not disentangle scale heterogeneity from preference heterogeneity: the

estimated scale parameter incorporates the impact of all sources of within-class correlation

that exist5.

5 Conclusions & guidance

In conclusion: Researchers have many options for representing heterogeneity. Allowing for

scale heterogeneity is possible using numerous different approaches, and allowing for all

sources of correlation is also possible and more general. However, researchers need not feel

that representation of any source of correlation is an absolute requirement, or that accommo-

dating scale heterogeneity is somehow more important than other patterns of heterogeneity

and correlation.

Given the discussion in this paper, the question arises of how an analyst can, or should,

5With S
∗ classes in the scale layer and S classes in the lower layer, the SALC model will likely offer

improvements in fit over a standard latent class model using S classes. This is however simply a result of

increasing the distributional flexibility as the new model now uses S
∗
S classes, and the specific structure

imposed by the two layer approach in turn means that a single layer model with S
∗
S freely estimated classes

will offer greater flexibility still.

13



approach the task of specifying his/her model in any given application. We have a few

suggestions that we think would help without preventing researchers from pursuing their

own objectives in the way that they think is best.

• If you want to allow all forms of correlation among utility coefficients, then estimate a

mixed logit model with full covariance. Software to do this is widely available, using

classical and Bayesian methods. With classical estimation, it is useful to have good

starting values. One practice that we often use is to estimate the model with uncorre-

lated coefficients first and then enter those estimates as starting values for the model

with full covariance. Also, Bayesian estimation procedures are effective for mixed logit

models with many parameters, as demonstrated in a recent large scale application by

Hess et al. (2017). They are as fast with full covariance as with uncorrelated coefficients,

and provide estimates even when the log-likelihood is highly non-quadratic (Huber and

Train, 2001). Under fairly benign conditions, the Bayesian estimator is asymptotically

equivalent to the maximum likelihood estimator (see e.g. Train, 2009), and so a clas-

sicist can treat the Bayesian estimates the same as if they were maximum likelihood.

Or the Bayesian estimates can be used as starting values in classical estimation; we

have found this procedure to be very effective. Stata contains commands for mixed

logit estimation with full or no covariance by both classical and Bayesian procedures.

Packages for both types of estimation are also available in R, Matlab, and other pro-

gramming languages. Models with hundreds of parameters can be readily estimated on

these widely-available codes.

• If you want to estimate WTPs and/or do welfare analysis, then be sure to specify a

distribution for the price coefficient that does not overlap zero. Also, you might find

that using a model in WTP-space is more convenient than models in preference space,

because it allows you to estimate the distribution of WTPs directly. Avoid using the

standard G-MNL, which has a normal distribution for αp
n, because, as we discuss above,

its mean WTPs are undefined; if you want to use G-MNL, then respecify it to have,

e.g., a lognormal distribution for αp
n.

• You may want to restrict the covariance terms in your model, even after considering

our first point above. This can be an appropriate specification choice. Keane and Wasi

(2013) tested a variety of mixed logit models on ten different datasets and found that
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restrictions on the full covariance were accepted in many cases, which suggests that

full covariance is not needed in all situations. There is a caveat, however: they found

that different specifications (full covariance, covariance for scale-heterogeneity only, no

covariance) fit best on different datasets, which means that a researcher cannot know,

without testing, whether the restrictions they want to place are valid for their own

dataset.

• If you restrict your model to allow for scale heterogeneity but not other forms of correla-

tion, it is important that you do not interpret your results in a way that is inconsistent

with your specification. In particular, the estimated scale parameter captures whatever

correlation exists in the data that can be accommodated by this one parameter. The

estimated parameter being statistically significant does not mean that significant scale

heterogeneity exists, because the significance might arise from other sources of corre-

lation that are picked up by the scale parameter. You also cannot state that you have

disentangled scale from preference heterogeneity, because the two are not separately

identified.

• If you estimate a model that allows for scale heterogeneity but do not scale some of

the coefficients (such as the alternative specific constants), then you cannot interpret

the model as allowing for scale heterogeneity. The model might be reasonable and

appropriate for its purposes (as in point 3 above), but it does not allow for scale

heterogeneity.

• If you restrict your model to have uncorrelated utility coefficients, then it does not allow

for scale heterogeneity or any other sources of correlation. Importantly, the distribution

of ratios of coefficients, which represent WTP and marginal rates of substitution, can be

over- or under-estimated because the correlations among coefficients are not captured.
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7 Appendix

We list below a few of the incorrect statements about scale that have been made in published

papers, in papers submitted to journals and conferences, and by reviewers of papers that

were submitted to journals. We simply reproduce the statements and trust that the reader

– maybe after having completed our paper, or maybe even before – will recognize the errors.

For readers who think that a statement sounds right to them, we refer to our on-line version

of this appendix6, where we discuss each statement more fully.

“Despite the importance of the MXL [mixed logit] in accounting for preference het-

erogeneity, there are other sources of heterogeneity (such as scale heterogeneity)

that the model fails to account for.”

“The data is analyzed using the generalized multinomial logit model, which is able

to simultaneously account for both the heterogeneity in taste and scale. This model

in essence extends the widely-used random parameter logit (or mixed logit) model

by adding the ability to capture un/observed scale heterogeneity.”

“Later advances in the DCM literature [have] led to the introduction of [the] gener-

alised multinomial logit model (GML) that accounts for both preference and scale

heterogeneity.”

“The structure of these [mixed logit] models can be further enriched [by using G-

MNL], allowing for scale heterogeneity and different distributional assumptions

for the parameters.”

“It is well known that for discrete choice models assuming homoscedastic vari-

ances (or homogenous scales) would lead to biased and inconsistent preference

parameter estimates when the assumption is not true. It is therefore not uncom-

mon for choice modelers to explicitly estimate the scale or variance functions (e.g.

heteroscedastic logit/probit, G-MNL).”

“There is an emerging literature on the confounding of preference and scale het-

erogeneity in mixed logit (and other) models.”7

6http://www.stephanehess.me.uk/papers/Hess_Train_2017_online_appendix.pdf
7As if the confounding is not inherent and could, with the right models, be avoided.
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“The generalized mixed logit model accommodates scale heterogeneity.”8

“Given that under some circumstances the MIXL [mixed logit] model can be seen

as a special case of the GMNL model, why not use only the GMNL approach?”

“[P]ublished papers that estimate mixed logit models and claim that preference

heterogeneity exists ... make the strong assumption of scale homogeneity.”

“GMNL can model preference heterogeneity over individuals – as RPL is nested

within it – and, unlike either RPL or latent class models, can also model scale

heterogeneity over individuals or choice tasks”

“This shows that, contrary to the assumption in the [mixed logit] model, [scale]

should not be normalised across individuals, and that the [G-MNL] specification

is the more appropriate model.”

“the improvement in statistical fit provided by allowing for scale heterogeneity is

substantial.”9

A paper compares a SALC model to a fixed-coefficients logit model for choices

among healthcare innovations, and finds a substantial improvement in fit by the

former. The authors state that “[t]his suggests that there are some people showing

different preferences with different error variances (or ‘choice uncertainty’)”.

“Unfortunately, in most choice models, including general latent class models, the

parameter estimates describing preferences are perfectly confounded with the in-

verse of the error variance... As such, the use of the [SALC] model in being able

to group individuals on the basis of holding similar preferences, whilst accounting

for potentially confounding differences in variability, is likely to be attractive to

researchers for future research in the field of education research particularly in

contexts where identification of distinctive segments is important.”

“As such, the use of the [SALC] model in being able to group individuals on the

basis of holding similar preferences, whilst accounting for potentially confounding

8As if mixed logit does not.
9The improvement in fit came from allowing one parameter for correlation rather than none; the one

parameter need not be picking up scale heterogeneity.
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differences in variability, is likely to be attractive to researchers for future research

in the field of education research particularly in contexts where identification of

distinctive segments is important.”
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