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ASYMPTOTIC BOUNDS FOR THE SIZE OF Hom(A,GLn(q)).

MICHAEL BATE AND ALEC GULLON

Abstract. Fix an arbitrary finite group A of order a, and let X(n, q) denote the set of
homomorphisms from A to the finite general linear group GLn(q). The size of X(n, q) is
a polynomial in q. In this note it is shown that generically this polynomial has degree
n2(1− a−1)− ǫr and leading coefficient mr, where ǫr and mr are constants depending only
on r := n mod a. We also present an algorithm for explicitly determining these constants.

1. Introduction

Let A be a finite group of order a and let X(n, q) = Hom(A,GLn(q)) denote the set of all
homomorphisms from A to the general linear group of n× n invertible matrices with entries
in the finite field Fq. Suppose that Fq is a splitting field for A. In [5], Liebeck and Shalev
provide upper and lower bounds for the size of this set, which is a polynomial in q [2, Prop.
4.1]; see also [1]. The bound presented in [5, Theorem] has the following form:

cq(n
2
−r2)(1−a−1) ≤ |X(n, q)| ≤ dqn

2(1−a−1),

where c is an absolute constant, d is a constant depending only on a, and r is the value of
n modulo a. Note that, as is pointed out in [5] and [1], there is an absolute constant β > 0

such that βqn
2

≤ |GLn(q)| ≤ qn
2

for all n and q, so these bounds can be rewritten in terms
of the order of GLn(q). The aim of this note is to show that there exists N such that for all
n ≥ N the leading term of the polynomial |X(n, q)| has the form

mrq
n2(1−a−1)−ǫr ,

where (given a fixed group A) mr and ǫr are constants only depending on r, and N = a(a−1)
will definitely suffice. In particular, this leading coefficient and degree are independent of
q. We also present an algorithm for explicitly determining the values of mr, ǫr and N
for any choice of A. The input needed for the algorithm is the degrees of the irreducible
representations for A over a splitting field for A.
The paper is laid out as follows. We begin in Section 2 by setting up some basic notation

and recalling some of the analysis from [5] and [1], before moving on to the main results in
Section 3. After giving some examples to illustrate various points of the paper in Section 4,
in the final section of the paper we indicate how to relax some of the assumptions in force
for the rest of the paper, and also make some further remarks.

2. Preliminaries

Throughout, A denotes a finite group with a elements. We use q to denote the order of a
finite field Fq, so q = pd for some prime p and positive integer d. Our standing assumption
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on q for most of this note (except in Section 5) is that Fq is a splitting field for A, i.e., the
characteristic p of the field Fq does not divide a and all irreducible FqA-modules are absolutely
irreducible. By Schur’s Lemma, given a simple FqA-module M , we have EndFqA−mod(M) ≃
Fq.

For an n-dimensional Fq-vector space V , we have the finite general linear group GL(V )
which we freely identify with GLn(q), the group of invertible n × n matrices with entries
in Fq, when it is convenient to do so. We let X(n, q) = Hom(A,GLn(q)) denote the set of
homomorphisms from A to GLn(q) for each choice of n and q, and note that GLn(q) acts on
X(n, q) by conjugation: given ρ : A → GLn(q) and g ∈ GLn(q), set (g · ρ)(a) = gρ(a)g−1

for all a ∈ A. This breaks the set X(n, q) up into GLn(q)-orbits, and one key part of the
analysis in [5] and [1] is to bound the size of each of these orbits. This involves some basic
representation theory, which we now recap.

Let (M1, . . . ,Ms) be a complete ordered tuple of pairwise non-isomorphic irreducible
(hence absolutely irreducible by our assumptions on the field) FqA-modules, and let di =
dim(Mi) for each i. Choose the labelling so that M1 is the trivial module. The degrees di
are the same for any splitting field for A, and a =

∑s

i=1 d
2
i . Given any FqA-module V , we

have an isomorphism
V ≃ n1M1 ⊕ · · · ⊕ nsMs,

where niMi denotes the direct sum of the module Mi with itself ni times (we allow ni = 0
here). For a given FqA-module V , we therefore have an ordered s-tuple (n1, . . . , ns) of non-
negative integers and two FqA-modules are isomorphic if and only if they have the same
ordered s-tuple attached. Moreover, if we restrict attention to n-dimensional modules for
some fixed n, then the relevant s-tuples (n1, . . . , ns) for which

∑s

i=1 nidi = n also parametrise
the GLn(q)-orbits in X(n, q). It follows from the analysis in [5] and [1] that, given a tuple
(n1, . . . , ns), the stabilizer associated to the corresponding orbit in X(n, q) is isomorphic
to a product

∏s

i=1 GLni
(q), which allows us to write down the size of the orbit by the

Orbit-Stabilizer Theorem. The key to the approach presented in this note is to give a better
estimate of the largest possible size for such an orbit, and to show that such a size is attained,
which improves on the upper and lower bounds presented in [5].

3. Results

Keep the notation from the previous section, and remember our standing assumption that
Fq is a splitting field for A. Before stating and proving the main technical results needed for
our algorithm, we introduce some more terminology. Let n ∈ N. We say that an ordered tuple
(n1, . . . , ns) of integers (not necessarily non-negative) is admissible for n if

∑s

i=1 nidi = n; if
the context is clear, then we simply say the tuple is admissible. We call such an admissible
tuple eligible if, in addition, ni ≥ 0 for all i. Finally, we call a tuple (n1, . . . , ns) which is
admissible for n ∈ N a minimal tuple for n if

∑s

i=1 n
2
i is minimal amongst all admissible

tuples for n.

Lemma 3.1. Fix n ∈ N. Then:

(i) the parametrisation of the orbits in X(n, q) by eligible tuples is independent of q;
(ii) for each eligible tuple t = (n1, . . . , ns), there is a polynomial ft(x) ∈ Z[x] such that

the size of the corresponding orbit in X(n, q) is ft(q).
(iii) the polynomials of maximal degree from (ii) are precisely those corresponding to min-

imal tuples.
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Proof. Part (i) follows from the fact that the dimensions and number of isomorphism classes
of absolutely irreducible FqA-modules over a splitting field are independent of that field.
Then (ii) follows because the shape of the stabilizer of a given orbit, as given at the end of
the previous section, is independent of q. Specifically, given any eligible tuple (n1, . . . , ns),
the size of the associated orbit in X(n, q) is |GLn(q)|/

∏s

i=1 |GLni
(q)|, which is a polynomial

in q [2, Prop. 4.1] with leading term qn
2
−

∑s
i=1

n2
i . Therefore, the largest degree amongst

all these polynomials is attained by those polynomials corresponding to tuples for which
∑s

i=1 n
2
i is minimal. These are precisely the polynomials corresponding to minimal eligible

tuples, which proves (iii). �

Lemma 3.2. Given n ∈ N, there are finitely many minimal tuples for n.

Proof. Since d1 = 1, the tuple (n, 0, 0, . . . , 0) is admissible for n, and hence for a minimal
tuple (n1, . . . , ns) we have

∑s

i=1 n
2
i ≤ n2. In particular, for each i we have −n ≤ ni ≤ n.

This gives rise to finitely many tuples, and all the minimal tuples lie amongst these. �

The above lemma shows that for each n we have finitely many minimal tuples to worry
about. In fact, we can do much better than that, as the following results show.

Lemma 3.3. Given n ∈ N, write n = ka+ r where k ∈ N ∪ {0} and 0 ≤ r < a.

(i) Suppose (r1, . . . , rs) is a minimal tuple for r. Then (kd1 + r1, . . . , kds + rs) is a
minimal tuple for n.

(ii) Suppose (n1, . . . , ns) is a minimal tuple for n. Then (n1 − kd1, . . . , ns − kds) is a
minimal tuple for r.

Hence minimal tuples for n are in 1-1 correspondence with minimal tuples for r.

Proof. First note that if (r1, . . . , rs) is an admissible tuple for r then
∑s

i=1 ridi = r, so

s
∑

i=1

(kdi + ri)di = k
s
∑

i=1

d2i +
s
∑

i=1

ridi = ka+ r = n,

and hence (kd1+r1, . . . , kds+rs) is admissible for n. Conversely, if (n1, . . . , nr) is admissible
for n, then

s
∑

i=1

(ni − kdi)di =
s
∑

i=1

nidi − k

s
∑

i=1

d2i = n− ka = r,

so (n1 − kd1, . . . , ns − kds) is admissible for r.
3



Now suppose (r1, . . . , rs) is minimal for r and (n1, . . . , ns) is minimal for n. Since (r1, . . . , rs)
is minimal for r and (n1 − kd1, . . . , ns − kds) is admissible for r, we have

s
∑

i=1

(kdi + ri)
2 = k2

s
∑

i=1

d2i + 2k
s
∑

i=1

ridi +
s
∑

i=1

r2i

= k2a+ 2kr +
s
∑

i=1

r2i

≤ k2a+ 2kr +
s
∑

i=1

(ni − kdi)
2

= k2a+ 2kr +
s
∑

i=1

n2
i − 2k

s
∑

i=1

nidi + k2

s
∑

i=1

d2i

=
s
∑

i=1

n2
i + 2k2a+ 2kr − 2kn

=
s
∑

i=1

n2
i .

But (n1, . . . , nr) is minimal for n, so we must actually have equality here and hence (kd1 +
r1, . . . , kds + rs) is also minimal for n. Using this equality, we now also have

s
∑

i=1

(ni − kdi)
2 =

s
∑

i=1

n2
i − 2k

s
∑

i=1

nidi + k2

s
∑

i=1

d2i

=
s
∑

i=1

(kdi + ri)
2 − 2kn+ k2a

= 2k2a+ 2kr +
s
∑

i=1

r2i − 2k(ka+ r)

=
s
∑

i=1

r2i ,

so (n1 − kd1, . . . , ns − kds) is a minimal tuple for r. �

Remark 3.4. Lemma 3.3 is really at the heart of this note. It shows that, despite the fact
that the whole set X(n, q) gets more and more complicated as n grows, we can still exert
some control over the orbits which are largest in the sense of Lemma 3.1(iii). One cannot
hope for this to be true for smaller orbits, because as n grows, so does the number of eligible
tuples and hence the total number of orbits.

Lemma 3.5. There exists N ∈ N such that for all n ≥ N , all minimal tuples for n are
eligible and the number of minimal tuples only depends on the value of n modulo a.

Proof. For any n ∈ N, the number of minimal tuples for n is the same as the number of
minimal tuples for r, where n = ka + r with k ∈ N ∪ {0} and 0 ≤ r < a, by Lemma 3.3, so
this number only depends on the value of n modulo a. Moreover, the minimal tuples for n
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all have the form (kd1+ r1, . . . , kds+ rs) where (r1, . . . , rs) is a minimal tuple for r, again by
Lemma 3.3. There are finitely many values ri as r runs over all integers between 0 and a− 1
by the argument in the proof of Lemma 3.2, and we just need to choose N large enough so
that for all n ≥ N , all possible values kdi + ri ≥ 0, which can clearly be done. After this
point, all the minimal tuples are also eligible. �

Remark 3.6. By the argument in the proof of Lemma 3.2, if (r1, . . . , rs) is a minimal tuple
for 0 ≤ r < a, the minimal possible value for any ri is −r. Since each di ≥ 1 this means that
kdi+ri ≥ 0 as long as k > a−1 for any choice of 0 ≤ r < a, so we could choose N = a(a−1)
in Lemma 3.5 if we wanted a concrete bound. However, in practice, as we shall see, the best
value for N is often much less than this.

Remark 3.7. When n = ka is a multiple of a, the tuple (kd1, . . . , kdr) is the unique minimal
eligible tuple for n. This is because this tuple gives a global minimum for the value

∑s

i=1 x
2
i

amongst all tuples of real numbers (x1, . . . , xs) satisfying the constraint
∑s

i=1 xidi = n, as
can be verified using some basic calculus.

Proposition 3.8. Suppose 0 ≤ r < a. Let mr be the number of minimal tuples for r, and
let (r1, . . . , rs) be one of the minimal tuples for r. Let ǫr =

∑s

i=1 r
2
i − r2a−1. Given n ∈ N

with n ≥ N , where N is as in Lemma 3.5, write n = ka + r, where k ∈ Z and 0 ≤ r < a.
Then

(i) ǫr ≥ 0 (with equality if and only if r = 0);
(ii) there exists a polynomial fn(x) ∈ Z[x], independent of q, whose leading term is

mrx
n2(1−a−1)−ǫr such that |X(n, q)| = fn(q).

Proof. (i). The global minimum value for
∑s

i=1 x
2
i amongst all real s-tuples (x1, . . . , xs)

satisfying
∑s

i=1 xidi = r is given by the tuple (a−1rd1, . . . , a
−1rds), and hence

∑s

i=1 r
2
i ≥

∑s

i=1 a
−2r2d2i = a−1r2, as required. It is clear that if r = 0, then ǫr = 0. For the converse

note that we get ǫr = 0 if and only if the global minimum tuple is an integer tuple, that
is if and only if a−1rdi ∈ Z for all i. But since d1 = 1 (the degree of the trivial irreducible
representation), this means that a−1r ∈ Z. Since r < a, this is only possible if r = 0.

(ii). By the definition of N from Lemma 3.5, all minimal tuples for n are eligible and
there are precisely mr of them. Moreover, each minimal tuple for n has the form (kd1 +
r′1, . . . , kds + r′s), where (r′1, . . . , r

′

s) is a minimal tuple for r. Now note that for any minimal
tuple (r′1, . . . , r

′

s) for r we have
∑s

i=1(r
′

i)
2 =

∑s

i=1 r
2
i , where (r1, . . . , rs) is the fixed minimal

tuple picked in the statement of the result. Then
s
∑

i=1

(kdi + r′i)
2 = k2

s
∑

i=1

d2i + 2k
s
∑

i=1

r′idi +
s
∑

i=1

(r′i)
2

= k2a+ 2kr +
s
∑

i=1

r2i

= a−1(k2a2 + 2akr + r2)− r2a−1 +
s
∑

i=1

r2i

= a−1n2 + ǫr.

By Lemma 3.1(iii), the minimal tuples for n give rise to the orbits whose orders are polyno-
mials of maximal degree amongst the orders of all orbits in X(n, q), and the order of each of
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these orbits is a polynomial in q with leading term qn
2
−a−1n2

−ǫr . Since X(n, q) is the disjoint
union of all of the orbits it contains, the order of X(n, q) is a polynomial in q with leading

term mrq
n2(1−a−1)−ǫr . None of the arguments used to derive this result rely on the actual

value of q, only that Fq is a splitting field for A. Since the degrees di are all the same for
any splitting field, we get the result. �

We summarise the results obtained in the form of an algorithm:

Algorithm. The following steps will allow one to find the numbers mr, ǫr and N from
Proposition 3.8, and hence calculate the highest degree term of the polynomial |X(n, q)| for
any n ≥ N .

Step 1. For each 0 ≤ r < a find all minimal tuples of integers for r; that is, find all tuples
(r1, . . . , rs) satisfying

∑s

i=1 ridi = r and minimising the value of
∑s

i=1 r
2
i . For each r, record

the number mr of minimal tuples found, and the number ǫr :=
∑s

i=1 r
2
i − r2a−1, where

(r1, . . . , rs) is one of the minimal tuples.

Step 2. Find the smallest b ∈ N ∪ {0} such that bdi + ri ≥ 0 for all ri from step 1. Then set
N = ba.

4. Examples

We now present some examples of our algorithm and its results when applied to some
groups which are relatively easy to handle. For a given minimal tuple (r1, . . . , rs), we denote
∑s

i=1 r
2
i by Sr.

4.1. Abelian groups. IfA is abelian and Fq is a splitting field forA, then there are a distinct
classes of irreducible representations of A and they are all one-dimensional. Therefore, for
0 ≤ r < a, a minimal tuple is just found by filling r spaces with a 1 and a− r with a zero.
This means that all minimal tuples are eligible, so N = 0, mr is the binomial coefficient

(

a

r

)

,
and Sr = r. Therefore ǫr = r − r2a−1 and the leading term of the polynomial |X(n, q)| is
(

a

r

)

qn
2(1−a−1)−r+r2a−1

.

4.2. Dihedral groups Dm. Let A = Dm be the dihedral group of order a = 2m. For Fq

to be a splitting field for A, it is enough that Fq contains all elements of the form ζ + ζ−1,
where ζ is a root of the mth cyclotomic polynomial. Over a splitting field, if m is odd, then
A has two irreducible representations of degree 1 and m−1

2
of degree 2, and if m is even we

get four irreducible representations of degree 1 and m−2
2

of degree 2. Hence, we split into
two cases:

m = 2l + 1 is odd. In this case for any even r = 2k with 0 ≤ r < 2n, we choose k of the m
representations of degree 2 to come up with a minimal tuple; there are

(

m

k

)

ways to do this,
so that is the value of mr, and Sr = k = r

2
. For an odd r = 2k + 1, we again choose k of

the degree 2 representations, and then one of degree 1; there are therefore mr = 2
(

m

k

)

ways

to do this, each one with Sr = k + 1 = r+1
2
. Hence we have that the leading term of the

polynomial |X(n, q)| is
(

m

k

)

qn
2(1−a−1)− r

2
+r2a−1

if r = 2k is even and 2
(

m

k

)

qn
2(1−a−1)− r+1

2
+r2a−1

if r = 2k + 1 is odd.

m = 2l is even. In this case for any even r = 2k with 0 ≤ r < 2n, we choose k of the m
representations of degree 2 to come up with a minimal tuple; there are

(

m

k

)

ways to do this,
6



so that is the value of mr, and Sr = k = r
2
. For an odd r = 2k + 1, we again choose k of

the degree 2 representations, and then one of degree 1; there are therefore mr = 4
(

m

k

)

ways

to do this, each one with Sr = k + 1 = r+1
2
. Hence we have that the leading term of the

polynomial |X(n, q)| is
(

m

k

)

qn
2(1−a−1)− r

2
+r2a−1

if r = 2k is even and 4
(

m

k

)

qn
2(1−a−1)− r+1

2
+r2a−1

if r = 2k + 1 is odd.

4.3. The symmetric group S4. If A = S4, which has order a = 24, then any field
of characteristic not 2 or 3 is a splitting field for A, and the degrees of the irreducible
representations over such a field are 1, 1, 2, 3 and 3. According to our algorithm we need
to determine the minimal tuples for all 0 ≤ r < 24. The relevant data is summarised in the
following table.

r mr sample tuple Sr ǫr r mr sample tuple Sr ǫr

0 1 (0, 0, 0, 0, 0) 0 0 12 4 (1, 0, 1, 2, 1) 7 1

1 2 (1, 0, 0, 0, 0) 1 23
24

13 2 (1, 1, 1, 2, 1) 8 23
24

2 1 (0, 1, 0, 0, 0) 1 5
6

14 1 (0, 0, 1, 2, 2) 9 5
6

3 2 (0, 0, 0, 1, 0) 1 5
8

15 2 (1, 0, 1, 2, 2) 10 5
8

4 4 (1, 0, 0, 1, 0) 2 4
3

16 1 (1, 1, 1, 2, 2) 11 1
3

5 2 (0, 0, 1, 1, 0) 2 23
24

17 2 (1, 0, 2, 2, 2) 13 23
24

6 1 (0, 0, 0, 1, 1) 2 1
2

18 1 (1, 1, 2, 2, 2) 14 1
2

7 2 (1, 0, 0, 1, 1) 3 23
24

19 2 (1, 1, 1, 3, 2) 16 23
24

8 1 (0, 0, 1, 1, 1) 3 1
3

20 4 (1, 0, 2, 3, 2) 18 4
3

9 2 (1, 0, 1, 1, 1) 4 5
8

21 2 (1, 1, 2, 3, 2) 19 5
8

10 1 (1, 1, 1, 1, 1) 5 5
6

22 1 (1, 1, 1, 3, 3) 21 5
6

11 2 (0, 0, 1, 2, 1) 6 23
24

23 2 (1, 0, 2, 3, 3) 23 23
24

Of note here is the fact that in this case for every r all the minimal tuples are eligible tuples,
and hence for this example the value of N = 0 (so our result is valid for all n). It is relatively
straightforward to show that this is a general phenomenon which occurs when the degrees of
the irreducible representations for A can be put into an ordered list 1 = d1 ≤ d2 ≤ · · · ≤ ds
with di − di−1 ≤ 1 for 1 < i ≤ s.

It is also worth noting that this small example already shows that the value of the “error
term” ǫr can be greater than 1, so finding the degree of the polynomial |X(n, q)| is more
complicated than simply taking the integer part of n2(1− a−1).

4.4. Further Examples. Let A = S5, so a = 120. Any field of characteristic larger than
5 is a splitting field for S5, and the degrees of the irreducible representations over such a
field are 1, 1, 4, 4, 5, 5 and 6. When r = 3, the tuple (0,−1, 1, 0, 0, 0, 0) is one of four minimal
tuples (the others being those naturally obtained from this one by permuting amongst entries
of equal degree). Hence we cannot take N = 0 as we have negative entries for at least one
value of r. In this case, the value of N provided by our algorithm is N = a = 120. For similar

7



reasons, when A = S6, we also need to go up to N = a = 720. We have also calculated
directly that value of N for all groups of order a ≤ 80 is either 0 or a.

5. Extensions and Further Remarks

In this section we outline various ways to extend the work presented, either by relaxing
some of the standing assumptions made in Section 2 or by changing the groups involved. We
also point out an application of this work to the study of representation varieties. We begin
by discussing the restrictions we have placed on the field Fq.

5.1. The assumption that Fq is a splitting field. We have had the standing assumption
that Fq is a splitting field for A. This means, in particular, that the characteristic p of Fq

is coprime to the size a of the group A and that every irreducible FqA-module is absolutely
irreducible. This assumption allows us to assume that all modules encountered are semisim-
ple and that the irreducible summands encountered do not really depend on the field in any
essential way.

Suppose we relax the assumption that all irreducible modules are absolutely irreducible,
but retain for now the assumption that q and a are coprime (this is the situation in [5], for
example). Then we can still write down a basic set (N1, . . . , Nt), say, of irreducible FqA-
modules. It follows from Schur’s Lemma that EndFqA−mod(Ni) is a division ring for each i, and
since any finite division ring is a field it is not hard to see that we have EndFqA−mod(Ni) ≃ Fqei

for some ei ≥ 1. Moreover, if we extend scalars to Fqei , then the module Ni splits into a direct
sum of ei absolutely irreducible FqeiA-modules, (Mi1, . . . ,Miei) say, which form a single orbit
under the action of the Galois group Gal(Fqei/Fq) ≃ Zei . Denote the dimension of each Mij

over Fqei by dij, and note that dij = di1 for all 1 ≤ j ≤ ei. Note also that the Fq-dimension
of Ni must be di1ei. Conversely, given an absolutely irreducible FqeA-module M over some
extension Fqe of Fq, taking the direct sum of the distinct Gal(Fqe/Fq)- conjugates of M forms
a module which arises from precisely one of the Ni by extension of scalars from Fq to Fqe .
For justification of the claims above, see results in [3, Sec. 7], in particular Cor. 7.11 and
Prop. 7.18.

In this way, one can retrieve all of the information necessary to mimic the proofs and
constructions in Section 3 over Fq. In particular, the degrees dij occurring above (with their
multiplicities ei) are precisely the degrees of the distinct representatives of the isomorphism
classes of absolutely irreducible KA-modules over some sufficiently large extension K of
Fq (it suffices to extend to a finite field containing all the Fqei ). We therefore have that
∑t

i=1

∑ei
j=1 d

2
ij = a. Within this set-up, one can still calculate stabilisers of representations

– we see direct products of GLn(q
ei)s – and one can analyse t-tuples of integers (m1, . . . ,mt)

such that
∑t

i=1 midi1ei = n. This amounts to the same thing as analysing those s-tuples of
integers (n11, . . . , ntet) such that

∑s

i=1

∑ei
j=1 nijdij = n subject to the additional constraint

that ni1 = nij for all 1 ≤ j ≤ ei. Presenting it in this way shows that, given the degrees
dij, we actually need to identify a subset of the eligible s-tuples for the number n from
Section 3 – those tuples satisfying the given additional constraint. The analysis in Section 3
now proceeds almost unchanged: certain of these tuples will be minimal, and after a certain
point, all minimal tuples will be eligible. After this point, the leading coefficient and power
of q in the polynomial |X(n, q)| will only depend on the value of n modulo a. Furthermore,
when n is divisible by a, the unique minimal tuple described in the proof of Proposition
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3.8(i) actually satisfies the additional constraint given, so we get a leading term qn
2(1−a−1) in

this case.
The preceding remarks are perhaps made more transparent with a couple of simple exam-

ples. We maintain notation from previous sections.

Example 5.1. Let d be an odd positive integer, let q = 2d, and let A be the cyclic group of
order 3, generated by the element x of order 3, say. We need three distinct cube roots of 1 to
realise all the absolutely irreducible representations of A; since d is odd, Fq does not contain
three distinct cube roots of 1, but Fq2 does. Over Fq, A has the trivial representation N1 and
another irreducible representation N2 of degree 2; N2 can be realised concretely by sending

x to the matrix

(

1 1

1 0

)

(note that this matrix does have order 3 when the characteristic

is 2, and it has characteristic polynomial X2+X+1, so is not diagonalisable unless the field
contains a nontrivial cube root of 1). If we extend scalars by adjoining a root of X2 +X +1
(i.e., move to the field Fq2), then N2 splits into two one-dimensional modules.

Now, we have only have one representation of A over Fq of degree 1 – the trivial repre-
sentation – so we have in this case that that |X(1, q)| = 1. On the other hand, if we extend
scalars to Fq2 , we get |X(1, q2)| = 3. In fact, for any n ∈ N, we have

|X(3n+ 1, q)| = q
2

3
(3n+1)2− 2

3 + lower order terms,

whereas

|X(3n+ 1, q2)| = 3(q2)
2

3
(3n+1)2− 2

3 + lower order terms.

This shows how the leading coefficient of |X(n, q)| can vary with q when we work with fields
which are not necessarily splitting fields.

Example 5.2. Let q = 3 and let A be the dihedral group of order 10. Over F3 there are
three irreducible representations of A: two of dimension 1, N1 and N2, say, and a single
4-dimensional representation, say N3. If we extend scalars to F9, then N4 splits into the two
familiar two-dimensional representations (those we see “generically” by considering dihedral
groups as groups of plane rotations and reflections); call these two-dimensional modules M3

and M ′

3, and denote the modules given by N1 and N2 after extension of scalars by M1 and
M2.

Over F3 there are four ways to build a representation of degree 3 – N1 ⊕ N1 ⊕ N1 or
N1 ⊕ N1 ⊕ N2 or N1 ⊕ N2 ⊕ N2 or N2 ⊕ N2 ⊕ N2 – and amongst these the middle two
correspond to minimal tuples. For these, the value of our error term ǫr = 12 + 22 − 9

10
= 21

10
.

On the other hand, if we work over F9, then we can build a 3-dimensional representation
M1 ⊕M3, for example, for which the error term is 12 + 12 − 9

10
= 11

10
. Hence, whenever n is

congruent to 3 modulo 10,

deg(|X(n, 3)|) =
9

10
n2 −

21

10
,

whereas

deg(|X(n, 9)|) =
9

10
n2 −

11

10
.

This shows how the degree of the polynomial |X(n, q)| can vary with q when we work with
fields which are not necessarily splitting fields.
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Progress is even possible if we drop the assumption that q and a are coprime, so that
not all FqA-modules are semisimple. Some sort of semisimplicity assumption is necessary,
as is shown by [5, Example 1], but it is possible to make progress in the modular case
if one is willing to replace the set Hom(A,GLn(q)) with the set Homcr(A,GLn(q)) of all
homomorphisms from A to GLn(q) such that the associated representation is semisimple
(completely reducible); this is the standing assumption in the paper [1], for example. If one
does this, then similar results are possible to those in Section 3, but one has to work a bit
harder. For example, instead of results depending on a, one has to use the dimension of the
socle of the group algebra FqA (denote this dimension by b), and one cannot hope for the
results obtained to be independent of q. However, one should still expect that the leading
term of the polynomial |Homcr(A,GLn(q))| will have the form mrq

n2(1−b−1)−ǫr , where r is
the value of n modulo b, and mr and ǫr can be determined by procedures similar to those
laid out in Secion 3.

5.2. Changing the target group. The main point of the paper [1] is to produce bounds
similar to those in [5], replacing GLn(q) with a unitary, symplectic or orthogonal group,
see [1, Thm. B, Thm. C, Thm. D]. This is achieved at the expense of knowing a bit more
information about the simple modules for the group A; for example, one needs to know how
many of the simple modules are self-dual. However, armed with this knowledge, an approach
similar to that given in this note would produce similar results for these cases too.

5.3. Dimensions of representation varieties. Let K be an algebraically closed field, and
let G = GLn(K). The set X := Hom(A,G) of homomorpisms from A to G is an example of
a representation variety [4] (it can be realised as a closed subvariety of the a-fold cartesian
product Ga). The linear algebraic group G acts on X by restriction of the simultaneous
conjugation action on Ga and, as is observed in [5, Sec. 2], under the assumption that K has
characteristic zero or coprime to a, the G-orbits in X are the irreducible components of X.
The dimension of such an orbit is the dimension of G minus the dimension of the associated
stabilizer. The analysis in this paper shows that the maximal dimension arising is precisely
n2(1 − a−1) − ǫr, where the notation is that in Proposition 3.8, and this is therefore the
dimension of X. Moreover, the number mr is precisely the number of irreducible components
of maximal dimension in X.

References

[1] M.E. Bate, The number of homomorphisms from finite groups to classical groups, J. Algebra 308 (2007),
no. 2, 612-628.

[2] N. Chigira, Y. Takegahara, T. Yoshida, On the number of homomorphisms from a finite group to a

general linear group, J. Algebra 232 (2000), no. 1, 236–254.
[3] C.W. Curtis, I. Reiner, Methods of representation theory – with applications to finite groups and orders,

Vol. I, Wiley, New York, 1981.
[4] A. Lubotzky, A.R. Magid, Varieties of representations of finitely generated groups, Mem. Amer. Math.

Soc. 58 (1985), no. 336.
[5] M.W. Liebeck, A. Shalev, The Number of Homomorphisms from A Finite Group To a General Linear

Group, Communications in Algebra 32 (2004), 657–661.
10



Department of Mathematics, University of York, York YO10 5DD. United Kingdom

E-mail address: michael.bate@york.ac.uk

Department of Mathematics, Lancaster University, Lancaster, LA1 4YF, United Kingdom

E-mail address: a.gullon@lancaster.ac.uk

11


