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Abstract Local search based meta-heuristics such as variable neighbourhood
search have achieved remarkable success in solving complex combinatorial
problems. Local search techniques are becoming increasingly popular and are
used in a wide variety of meta-heuristics, such as genetic algorithms. Typically,
local search iteratively improves a solution by making a series of small moves.
Traditionally these methods do not employ any learning mechanism.

We treat the selection of a local search neighbourhood as a dynamic multi-
armed bandit (D-MAB) problem where learning techniques for solving the
D-MAB can be used to guide the local search process. We present a D-MAB
neighbourhood search (D-MABNS) which can be embedded within any meta-
heuristic or hyperheuristic framework. Given a set of neighbourhoods, the aim
of D-MABNS is to adapt the search sequence, testing promising solutions
first. We demonstrate the effectiveness of D-MABNS on two vehicle routing
and scheduling problems, the real-world geographically distributed mainte-
nance problem (GDMP) and the periodic vehicle routing problem (PVRP).
We present comparisons to benchmark instances and give a detailed analysis
of parameters, performance and behaviour.
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1 Introduction

Complex combinatorial problems are often too time consuming to solve with
exact methods; heuristic approaches that find acceptable solutions in reason-
able time are often preferred. Meta-heuristics are popular, as they are capable
of producing good solutions to a wide range of problems. Meta-heuristics em-
ploy many different algorithmic schemes for exploration of the search space.
Variable neighbourhood search (VNS) [20], tabu search [10], and hybrid ge-
netic algorithm [35] all have different exploration behaviours.

However, there is little work targeting the exploitation technique of search.
Most approaches apply simple local search (LS) methods: starting from a
feasible solution, iteratively move to a better solution by selecting it from a
neighbourhood of the current solution.

The neighbourhood of a solution is the set of other solutions that can be
obtained from it using small modifications. The process of modification is
called a move and the size of a neighbourhood is defined by the number of
moves that can operate on the current solution.

Fig. 1: Search strategies on an optimisation problem with two variables,
x1, x2 ∈ Z

In this paper, we introduce a machine learning-based local search, re-
ferred to as the dynamic multi-arm bandit neighbourhood search (D-MABNS).
D-MABNS is inspired by well-known decision making models for the multi-
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armed-bandit (MAB) problem. The major difference to existing approaches is
that, instead of pre-specifying the examining order of neighbour solutions (e.g.
lexicographic search [15]) at each iteration of local search, D-MABNS dynam-
ically adapts the search sequence to test promising solution first. D-MABNS
can be embedded in any meta-heuristic or hyperheuristic framework.

Figure 1 illustrates three approaches to searching through the neighbour-
hood of the current solution, on the search space of a simple discrete opti-
misation problem that has two variables. The purple ball shows the current
solution, and we define four types of move that generate eight neighbours of
the current solution. The aim is to find an improved solution (light green ball)
as efficiently as possible. In Figure 1, we see that checking potential moves
in a random order finds the improved move after 8 checks; checking in a pre-
specified order, such as variable neighbourhood decent (VND) [20], finds the
improved move after 7 checks, whilst following a statistically-based sequence
as in MAB, the improved solution is found after 6 checks.

The remainder of this paper is organized as follows. Section 2 reviews effi-
cient search strategies for combinatorial problems and introduces MAB prob-
lems. We introduce D-MABNS in Section 3, and demonstrate its use on risk-
driven geographical distributed maintenance scheduling problems (GDMPs)
from real-world scenarios in Section 4. Section 5 analyses the performance of
D-MABNS on periodic vehicle routing problems (PVRPs) using benchmark
instances. The findings are summarised in Section 6.

2 Related Work

For simple combinatorial problems, a number of approaches have been pro-
posed to reduce the computational time required to search a neighbourhood.

Sequential search (SS) decomposes the moves of a neighbourhood into par-
tial moves that are cost-independent. A decomposition is cost-independent if
the fitness change for the complete move is equal to the sum of fitness changes
of all the partial moves. To avoid checking moves that are unable to produce
improvement, SS constructs a complete move by first sequentially determining
good partial moves. SS has been applied to the travelling salesman problem
[23] and the capacitated vehicle routing problem (CVRP) [15]. Experimental
results show that SS uses significantly less computation time than conventional
neighbourhood search [15].

Neighbourhood restriction approaches reduce the CPU time spent on each
iteration of LS. For example, Toth and Vigo [34] derive “granular neighbour-
hoods” from a neighbourhood by discarding moves that have none of the
“promising” elements that would be likely to belong to high quality solutions.
In [34], the elements are the arcs of a routing problem; an element is labelled
as promising based on characteristics such as arc length, incidence of the arc
to the depot, and whether the arc is used in one of the best solutions encoun-
tered so far. The “granular neighbourhoods” approach is embedded in a tabu
search, and the algorithm is tested on VRP instances with up to around 500
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customers [34]. The experimental results show that the method is efficient in
computational time.

Fast guided local search [36] also uses a neighbourhood restriction, in which
moves are only evaluated if they belong to an activated sub-neighbourhood.
Voudouris et al. [36] present examples from various problem domains, using
different measures to create and evaluate sub-neighbourhoods; effective solu-
tions depend on derivation of suitably small sub-neighbourhoods.

2.1 Solutions for complex combinatorial problems

Approaches that are efficient for simple combinatorial problems are rarely
appropriate for complex combinatorial problems, where there are additional
properties or constraints to consider. The design of efficient local search for
complex combinatorial problems is time-consuming and requires expert do-
main knowledge. Typically, solvers with multiple neighbourhood structure are
designed (e.g. [26]). The search framework then includes decision-making to
select a neighbourhood for each iteration. We consider three classes of search
algorithm, based on the nature of candidate selection.

The first group of algorithms use first improvement or best improvement
heuristics, referred to as low-level heuristics (LLHs). The LLHs need to further
define the search sequence within a selected neighbourhood (e.g. random, lex-
icographic, etc.). At a higher level, a decision-making process selects between
neighbourhoods in either a pre-defined or a random order. VNS, a typical
example of this class of algorithms, has been applied to various problem do-
mains [20]. The hyperheuristic literature presents similar structures with some
learning-based adaptive selection, for example, the tabu-search hyperheuristic
[3], and the reinforcement learning hyperheuristic [7]. These algorithms em-
ploy a relatively inflexible search, in which neighbourhoods are tested in turn
throughout.

The second group of algorithms typically use a random move from a se-
lected neighbourhood structure. The best-studied example uses adaptive op-
erator selection (AOS) [14], typically as part of an evolutionary algorithm. In
recent years, AOS has also been applied in hyperheuristic approaches [32,31].
Comparing these algorithms to the first group, the uncontrolled use of LLHs
(random moves rather than improvement heuristics) may result in unproduc-
tive revisiting of the same move, and thus to inefficient search.

The third approach, proposed by Ropke [30], is adaptive large neighbour-
hood search (ALNS). Here the LLHs are not specified in advance and are
instead created programmatically from a known set of destroy and construct
methods; the system learns which combinations work effectively and focuses
the search on these.
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2.2 Using machine learning to guide search

Self-adaptive approaches to guiding neighbourhood search combine machine
learning and classical heuristic search techniques. Many approaches use the
historical performance of operators to adjust future operator utilisation. In
the AOS literature, the key components are credit assignment and decision-
making [11].

Credit assignment describes a way to evaluate the quality of an operator.
Normally, the credit assigned to an operator is based on how often that op-
erator makes a contribution or an improvement [24], or on how much total
contribution the operator has made so far [32]. The latter measurement is
more sensitive to the fitness landscape of the problem instance, and is usu-
ally combined with a reward rescaling method. To evaluate each option, most
approaches consider either the instantaneous reward value after an operator
has been applied or the average reward over a sliding time window. An alter-
native is to consider an extreme value [12], on the basis that the generation
of rare but highly beneficial improvements matter more than frequent small
improvements.

Decision-making determines how to select the next operator, based on past
credits. Probability matching and adaptive pursuit methods are probably the
most widely applied mechanisms [33]. Both methods update the option selec-
tion probability according to its evaluation value; these probabilities are then
used for selection in a “weighted roulette wheel”-like process. An alternative
mechanism adds an exploration term to the quality evaluation function, and
the decision-making process is deterministic, based on the evaluation values
(e.g. using the UCB1 algorithm [1]).

2.3 Multi-arm bandit problems

The above decision making process can be considered as a multi-arm bandit
problem in which the goal is to maximise the total rewards collected over time.
Auer et al. [1] define a typical static MAB problem (S-MABP) in which the
K arms each have an independent reward probability pi, where pi ∈ [0, 1]. At
each time step t, the player should select an arm j; with probability pj the
arm receives a reward rt = 1, otherwise rt = 0.

To solve a similar problem in a changing environment, Da Costa et al. [11]
describe a dynamic MAB problem (D-MABP) in which each arm has a uniform
reward distribution, from the interval [pi,t − 1, pi,t + 1] at time step t. Thus,
for every T time steps, the mean value of reward distribution of each arm pi,t
varies. Further, the reward distribution of all arms change simultaneously.

In the next section, we use the fundamental concepts of D-MABP to ad-
dress the dilemma of exploration and exploitation during a neighbourhood
search process. We introduce techniques such as mapping solution fitnesses to
rewards and dynamic neighbourhood management, to fit the characteristics of
neighbourhood search.
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3 Dynamic Multi-arm bandit neighbourhood search

Our dynamic multi-arm-bandit neighbourhood search (D-MABNS) is inspired
by many of the techniques reviewed in Section 2. D-MABNS maintains a search
trace within a neighbourhood, as in improvement heuristics, but also intro-
duces selection strategies between the neighbourhoods, like the methods that
statistically select moves. Furthermore, D-MABNS uses some of the techniques
from simple combinatorial search to discard unpromising moves during the
search.

3.1 D-MABNS overview and framework

The goal of search is to efficiently find an improvement direction in each it-
eration of local search process, so as to reach a local optimum quickly. First,
consider a typical VND approach to solving a CVRP. Neighbourhoods defined
by moves, such as “2Opt” and “Cross-exchange” [18], are searched sequentially
until an improved solution is found, as shown in Figure 2(a). The search can
be made more efficient, for instance, by ordering elements or by discarding un-
promising moves (Section 2), but the search is essentially over a set sequence
of neighbourhoods.

The D-MABNS design is based on the observation that it can be ineffi-
cient to check the whole of one move’s neighbourhood before considering the
neighbourhood of the next move. D-MABNS uses a search pointer within each
neighbourhood, and dynamically decides when to examine the next neighbour,
from which neighbourhood structure. At each decision point, D-MABNS looks
at the neighbourhood that has the best current expectation (Figure 2(b)).

(a) VND
(b) D-MABNS

Fig. 2: The search strategies of VNS and of D-MABNS

A neighbourhood Nk(x) represents the set of neighbours that can be ob-
tained by one defined move from the current solution x. For a given problem,
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there is a finite set of neighbourhood structures Nk, (k = 1, . . . , kmax). In D-
MABNS (Figure 2(b)) each neighbourhood structure Nk is associated with a
value vk that is used to evaluate the quality of Nk, based on the neighbours
seen so far from this neighbourhood. After a selected neighbour x′ ∈ Nk(x) has
been tested, a reward (or punishment) rk is given to Nk(x) and the value vk
is updated. Then, vk, (k = 1, ..., kmax) is used to decide which neighbourhood
to look at next.

In the following sections, we look in more detail at the D-MABNS deci-
sion making process, based on the MAB model. We also propose dynamic
neighbourhood updating, to further improve the search efficiency of LS.

3.2 Decision making

In traditional static MAB problems, the MAB arms are rewarded either 0 or 1
according to a Bernoulli distribution [1]. Applying the MAB model to neigh-
bourhood selection, each neighbourhood is treated as an arm and is charac-
terized by a fitness distribution.

The fitness distribution of each neighbourhood can be approximated by
empirical investigation, but identifying the neighbourhood to check next is an
exploration and exploitation dilemma in the design of D-MABNS. A greedy
selection strategy would select the neighbourhood with the current maximum
estimated vk. However we can introduce exploration into the deterministic
decision process by using approaches such as the Upper Confidence Bound
algorithm (UCB1) [1].

Formally, we denote nk as the number of neighbours from the kth neigh-
bourhood seen so far, and vk is the forecast value of the corresponding neigh-
bourhood (measured from rewards collected). The UCB1 algorithm selects the
neighbourhood which maximizes the value below [1]:

vk +

√

2log
∑kmax

i ni

nk

(1)

In Equation 1, the square-root component represents exploration, encour-
aging the search into less-explored neighbourhoods. The neighbourhood qual-
ity estimation, vk, represents exploitation by preferring the neighbourhoods
that have the best expectation value. The UCB1 algorithm ensures that each
neighbourhood can be chosen, but that the elapsed time between selections of
a sub-optimal neighbourhood increases exponentially.

3.2.1 Quality value estimation vk

D-MABNS requires a neighbourhood quality value estimation mechanism to
forecast the value of a neighbourhood, vk. Some existing approaches to credit
assignment are outlined in Section 2.2. In our approach, we employ exponential
smoothing [16], often referred to in the operator-selection literature as additive
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relaxation [11,13]. Unlike simple average values, exponential smoothing pro-
vides a decay mechanism; this is necessary later (Section 3.3), when D-MABNS
is applied to a dynamic MAB problem in which new solutions are accepted
during search. The value vk of the selected neighbourhood is updated when-
ever a reward rk is received, using Equation 2 [16], such that vk is a weighted
average of the previous smoothed value and the latest reward rk. A smoothing
factor α (0 < α ≤ 1) controls the decay rate of historical reward observations.

vk = (1− α)vk + αrk (2)

3.2.2 Reward functions and scaling

In combinatorial search problems, we usually define a fitness function to mea-
sure the quality of solutions. Rewards are generally related to the fitness of
solutions found in a neighbourhood. However, directly using the fitness as a re-
ward can unbalance the parts of Equation 1, biasing the search either towards
exploitation or towards exploration.

To reduce the bias, a scaling factor can be added to either the explo-
ration or exploitation parts of Equation 1. However, fitness measures and the
range of fitness values are domain-dependent, so the scaling factor needs to be
determined experimentally on a problem-specific basis. Here, we propose an
adaptive reward function that scales fitness into the range of [0, 1], and does
does not need any prior domain knowledge to balance Equation 1.

For a neighbourhood Nk, we select and test a solution x′ from the set of
neighbours of the current solution, x. The fitness of solution x′ is returned by
the function f(x′), and δf = f(x′) − f(x) is the difference in fitness between
the current solution and the tested solution. We record the maximum and
minimum changes of fitness over the last W tests of neighbours of x, denoted
as δmax

f and δmin
f , respectively. We refer to W as a time window parameter,

which can be set manually to any suitable value.

For a minimization problem, in which δf < 0 indicates an improvement
from the current solution, we design an exponential reward function RF that
aims to reward a bigger improvement with a score closer to 1 and a worsening
solution with a score closer to 0. In selecting an RF , we note that, during a
neighbourhood search, it is common to have already tested many worse neigh-
bours from one or multiple neighbourhoods before finding any improvement.
The fitness of these solutions gives an indication of the quality of a neighbour-
hood, so simply assigning a zero reward to a worse solution is not appropriate.
Figure 3 shows how fitness change (x axis) maps to rewards (y axis) using the
exponential reward function; a more detailed experimental analysis appears in
Section 4.3.1.
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Fig. 3: Examples of exponential reward function, calculated from example
fitness values in the range of -10 to 10, using different scaling factors, a. RF =
exp(−a(δf − δmin

f )/|δmax
f − δmin

f |), where a = 2, 5, 10, 20.

3.3 Dynamic neighbourhood management

So far, we have only talked about a search process moving from the current
solution x towards x′, where x′ ∈ Nk(x). Solution x′ is one move from x and
thus typically has a similar solution structure; if the same move were to operate
on solutions x and x′, it would also generate solutions with similar structures.
Furthermore, depending on the problem and neighbourhood structure design,
Nk(x) and Nk(x

′) may share many neighbours. If we denote the fitness dis-
tribution of Nk(x) as F (Nk) and of Nk(x

′) as F (N ′
k), then F (Nk) ≃ F (N ′

k).
There is an obvious benefit of the dynamic model, in that we do not need to
build the understanding of each neighbourhood structure from scratch at each
LS iteration. However, a mechanism is needed to record fitnesses changes.

Where the fitness distribution of each neighbourhood structure gradu-
ally changes as the search progresses, we have a dynamic MAB problem (D-
MABP). Da Costa et al. [11] apply a hybrid of the UCB1 algorithm (Sec-
tion 3.2) to D-MABP, which uses a Page-Hinkley test (PH, see Section 3.3.1)
to detect abrupt changes in the environment. In our D-MABNS, “environ-
ment” refers to the fitness distributions. Algorithm 3.1 presents D-MABNS; a
proposal to adopt the concept of D-MABP solvers for neighbourhood search
problems.

3.3.1 Environment Change detection

We use the Page-Hinkley (PH) statistics [27,22], as proposed by Da Costa et
al. [11], to detect significant changes in fitness distributions. For a given set
of reward observations over time {rk,1, ..., rk,t, rk,t+1...}, PH detects a reward
rk,t+1 that does not come from the same statistical distribution as the previous
observations.
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Algorithm 3.1 D-MABNS (x)

1: Define a set of neighbourhood structures Nk, (k = 1, ..., kmax)
2: Assign initial UCB value UCBk=1 to each Nk

3: Ik indicates the next solution x′ ∈ Nk(x) will be checked. Initially Ik = 0, (k =
1, ..., kmax)

4: vbest is the best forecasting value among all neighbourhoods. vbest = 0
5: while ∃Ik do
6: i.e. not reached the end of Nk(x)
7: k∗ = argmaxk∈{k=1,...,kmax}UCBk

8: x′ ← the solution indicated by Ik∗ .
9: Ik∗ move to next
10: if f(x′) < f(x) then
11: x← x′

12: Update neighbourhoods (Section 3.3.2)
13: end if
14: Calculate reward rk∗ based on changed fitness (Section 3.2.2)
15: if Environment change (Section 3.3.1) then
16: Reset all values used to calculating UCBs
17: vbest = 0
18: ∀Ik = 0, (k = 1, ..., kmax)
19: end if
20: Update all values used to calculate UCB
21: Update UCB values for all neighbourhoods
22: If vk∗ > vbest, then vbest = vk∗

23: Pruning(Ik∗ ,vk∗ ,vbest) (Section 3.3.3)
24: end while
25: return x

Formally, we use rk to represent the average value of rewards observed so
far for neighbourhood Nk; rk is updated every time a new reward is received.
We define ǫk,t = rk − rk + θ to represent the difference between the reward rk
from the current iteration and the average reward value, where θ is a tolerance
parameter that is used to enhance the robustness of the PH test in a slowly
changing environment. For simplicity, we set θ = 0. The PH statistic calculates
a variable mk,t as the sum of ǫk,t1 , ..., ǫk,tmax

, and a variable Mk,t which is the
maximum value of mk,1, ...,mk,t.

Algorithm 3.2 is used to update information about the tested neighbour-
hood and to detect environment change. The parameter λ is a user-defined
value that controls the trade-off between false positive and false negative de-
tection errors; like θ, λ controls the sensitivity of the change detection. In
Section 4.3.4, we present experimental tests on a set of λ values to analyse the
impact of change detection on algorithm performance.

3.3.2 Feature Sequential Search and Neighbourhood Updating

Within the neighbourhood search, D-MABNS applies Feature Sequential Search
(FSS). FSS identifies a set of changing elements of a move according to the cost
of changing elements. The elements represent some basic units of our solution
structure such that each next element of a neighbourhood should be generated
in a constant time. For example, for a “2Opt” move, elements might be edges.
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Algorithm 3.2 Environment change [11]

1: rk ⇐
1

nk+1
(nkrk + rk+1)

2: nk ⇐ nk + 1
3: mk ⇐ mk + (r̄k − rk + θ)
4: Mk = max(Mk,mk)
5: if Mk −mk > λ then
6: return environment is changed.
7: else
8: return false
9: end if

FSS usually considers a candidate element list sorted intuitively by features
(e.g. in “2Opt” moves, length of edges), but sorting is not essential. Figure
4(a) shows construction of a complete move, involving two changing elements
labelled 3 and 6, that produces a neighbour solution from N1, using a nested
loop to search through the elements list.

(a) Neighbourhood search in N1(xt) at LS
iteration t

(b) Neighbourhood search in N1(xt+1) at
LS iteration t+ 1

Fig. 4: Neighbourhood Updating

In Figure 4(b), solution xt+1 is derived from solution xt in Figure 4(a). The
two solutions share mostly the same structure and many joint neighbours, so
we do not need to check the neighbours that have already been checked in
the previous LS iteration. In practice, it is also unlikely that a move which
was checked in iteration t and did not make an improvement would produce
a better solution in iteration t + 1, even when the move leads to different
solutions in iteration t+ 1.

After making a move from xt to xt+1, where xt+1 ∈ N1(xt), we continue
to check other elements that still exist in the new solution xt+1, checking the
new elements last. The previously checked elements are reconsidered only when
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the algorithm detects an change (Algorithm 3.1, line 15). When the pointer Ik
(Algorithm 3.1) reaches the end of a neighbourhood Nk(xt), a large negative
value is assigned to the neighbourhood to ensure that it cannot be chosen
again until PH signals a change.

3.3.3 Neighbourhood structure pruning

For each neighbourhood structure Nk, the forecasting value vk is used to keep
track of quality. vk can also be used as an prompt to prune a bad neighbour-
hood. As shown in Algorithm 3.3, when vk is set to a large negative value, the
neighbourhood structure Nk will not be selected and updated until a change in
fitness distribution. This strategy is especially useful in conjunction with FSS,
where a promising area of a neighbourhood is explored early in the search. The
user-defined parameter γ in Algorithm 3.3 adjusts the tolerance of accepting a
neighbourhood that is worse than the best evaluated one. Setting γ = 0 turns
off the pruning function.

Algorithm 3.3 Pruning(Ik∗ ,vk∗ ,vbest)

1: if vk∗ < γ vbest then
2: set Ik∗ to the end of Nk

3: set vk to a big negative value
4: end if

Section 3 has introduced the general concept of D-MABNS, as well as the
techniques that it employs. The following sections apply D-MABNS on two
combinatorial optimisation problems, using a real-world scenario and a set of
benchmark problems.

4 An application of D-MABNS to maintenance scheduling

The first application of D-MABNS is to a real-world geographical-distributed
asset maintenance problem (GDMP) on which we have previously worked [5];
we briefly introduce the problem, and explain how we derive five test instances
from our original data set [5].

In our GDMP, a geographically-distributed system has n assets that need
sufficient maintenance over period D, given limited resource. Rather than im-
posing a hard constraint for visit pattern and frequency, the solution decides
whether to visit an asset i in the D period. Each asset i is associated with
a risk impact ri that measures the impact of asset failure on the surround-
ing environment (e.g. as the economic loss incurred). The failure rate of each
asset changes over time; a function Pi(d) using time since last maintenance
estimates whether an asset i is in a failure state on day d.

The objective is to select a judicious subset of assets from n assets and
schedule them to daily maintenance routes within the planning period D, in
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order to minimize the risk in this period, expressed as:

∑

d∈D

n
∑

i=1

riPi(d) (3)

There are three constraints that must be respected by a feasible scheduling
plan: (1) a maximum of K routes can be generated each day (one per vehicle);
(2) each route of maintenance actions must start and end at the depot; (3) for
any route, the maximum duration constraint should be respected.

The original data [6] is for gully pot maintenance in Blackpool, UK. The
gully pot maintenance system records 28,294 gullies distributed over approxi-
mately 36.1km2. To test performance of our D-MABNS algorithm, we generate
five problem instances of various sizes, by randomly selecting 10%, 25%, 50%,
75% and 100% of the gullies from the system. Each gully pot is associated
with location, risk impact ri, the number of days since its last service, and two
parameters for the failure probability estimation function Pi(d)

1. The plan-
ning horizon in each instance is set to 7 days and only one vehicle is available
to deliver the service.

4.1 GDMP solution approach

In [5], we use a hyperheuristic to schedule maintenance; we use the same
solution framework for the D-MABNS experiments. Here, we briefly outline
the process.

1. Preparation: generate a candidate route set Sall that ignores all risk
impact and failure rate information; optimise for distance using a standard
CVRP heuristic approach. (Extending [5], we have stored our 309 distance-
optimised routes for the 28,294 gullies in a database.)

2. Initialisation: generate a schedule for D days by selecting the routes s ∈
Sall with the highest risk, measured by

∑

i∈s riPi(d1), where d1 represents
the first day of D period.

3. Optimisation The optimisation steps repeat for a fixed amount of CPU
time:

Improvement: apply a heuristic approach to improve the solution,
evaluated by the objective function in Equation 3.

Re-initialisation: randomly destroy w days’ schedule from the out-
put of the improvement stage; rebuild the destroyed routes from scratch
by considering assets with the highest risk estimation and few randomly
selected asset points; assign these routes randomly to the days.

In [5], we use a tabu-based hyperheuristic (binary exponential back off
(BEBO) [28]) to manage the search in the improvement stage. Here, we replace
BEBO by D-MABNS.

1 A Weibull distribution is used to estimate the lifetime of a gully pot. The data set, and
further details, can be found online, at https://www-users.cs.york.ac.uk/~yujiec/
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4.2 Local search moves

We use the same six moves for both D-MABNS and BEBO [5], as follows.

move1 Delete two edges each from two routes and reconstruct to generate
two feasible new routes. This move is the same as chain cross exchange;
each chain contains a maximum k points, 1 ≤ k ≤ 5.

move2 Insert k points that do not appear in the schedule plan, using a cheap-
est insertion heuristic with a relaxed route duration constraint. If, as a
result of the planned insertion, any target route exceeds the duration con-
straint, repeatedly remove the best-condition point from the route until it
becomes feasible; 5 ≤ k ≤ 20.

move3 Replace the last n days’ schedule with n other routes from the candi-
date set Sall, 1 ≤ n ≤ D.

move4 Same as move3, except that we choose the n days’ schedule to replace
uniformly at random, instead of the last n days’ schedule, 1 ≤ n ≤ D − 1.

move5 Switch two days’ schedules.
move6 Move one day’s schedule to an earlier day.

Our earlier implementation of BEBO [5] applies a first-improvement heuris-
tic (using lexicographic search) for each move as a low-level heuristic. The
search structure of D-MABNS is shown in Figure 2(b), Section 3.1.

4.2.1 Element sorting by features

It is not essential to sort elements, but we do so whenever we have suitable
domain information. GDMP is a risk minimisation problem, so many elements
can be sorted by their current risk estimation. In our implementation, move1
uses an edge list that is sorted by the length of edges; move2 uses an asset
point list that is sorted by the current risk estimation of each point. Due to the
large number of asset points we have in an instance, a single search loop that
selects the next k points is used instead of a nested loop; move3 and move4
use a route information list that is sorted by the sum of the current risk of
all points in each route. move5 and move6 do not sort their elements by any
features.

4.3 Computational results for GDMP

This section firstly reports a series of sensitivity analyses on the parameter set-
tings of D-MABNS. We then compare D-MABNS with two algorithms based
on the multi-arm bandit. The algorithms tested apply different decision making
strategies (probability matching [17] and random selection) allowing compar-
ison to the UCB1 algorithm (Section 3.2). Section 4.5 compares D-MABNS
performance to that of two BEBO hyperheuristics introduced in [5] and a
modified VNS [7] (denoted as VNSr(R)). All algorithms are implemented in
C♯ and executed on a cluster composed of 8 Windows computers with 8 core
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Intel Xeon E3-1230 CPUs and 16GB RAM. All tested parameter settings and
algorithms start with the same initial solution obtained by the Preparation
and Initialisation steps in section 4.1. For each of the problem instances, each
algorithm is run 30 times. The stopping condition for all algorithms is the
same CPU time, as shown in Table 1.

Table 1: Data set information and CPU time allowed for experiments

ID number of asset CPU allowed
mi01 2815 120s
mi02 7037 240s
mi03 14074 900s
mi04 21111 1800s
mi05 28149 3600s

4.3.1 Sensitivity analysis

Finding the best setting of parameter values is a non-trivial and time con-
suming task, that often requires considerable expertise and experience. Table
2 summaries the parameters used by the D-MABNS algorithm, including the
time window parameter W and the scaling parameter a in the exponential
reward function (Section 3.2.2), the smoothing factor α (Section 3.2.1), the
fitness distribution change λ (Section 3.3.1) and the pruning rate γ (Section
3.3.3). For each parameter in Table 2, we sample values from a given range
and run each parameter-set 30 times for the predefined CPU times shown in
Table 1. The parameter-set that has the best average performance over all
instances is used for comparison with other heuristic methods.

Table 2: Parameter settings

Parameter Tested range Value applied
Time window W [100, 200, 400, 600, 1000, 3000, 5000] 400

Scaling parameter a [2, 5, 10, 20] 5
smoothing factor α [0.2, 0.4, 0.6, 0.8, 1.0] 0.8

Environment change λ [0.01, 0.05, 0.15, .., 0.3, 0.5, .., 1.0, 2.0, .., 4.0] 0.05
Pruning rate γ [0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9] 0.7

Small values of W , the time window parameter, mean that the algorithm
only considers recent fitnesses in neighbourhood evaluation, resulting in a more
dynamic reward process over time. Consequently, if recent fitness observations
are not good, even a slightly better fitness may result in a big reward. For
the smoothing factor α, larger values mean that historic rewards are forgotten
more quickly.

Our preliminary tests show a strong impact on performance from the en-
vironment change detection parameter λ and the neighbourhood pruning pa-
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rameter γ. Some interesting behaviours have also been observed in reward
function usage and search within neighbourhoods. Therefore, we design fur-
ther experiments and explore these parameters in more detail.

4.3.2 Reward function and Neighbourhood pruning

As discussed in Section 3.2.2, the reward function maps the fitness changes to
rewards that are used to in the neighbourhood quality evaluations. The reward
function, along with the pruning parameter (Section 3.3.3), are essential parts
of D-MABNS algorithm design. We test the exponential reward functions with
different settings of the neighbourhood pruning parameter γ. The other pa-
rameters (Table 2) are fixed as {W = 400, α = 0.8, λ = 0.05}. Each setting
runs 30 times.

RF = exp(−a(δf − δmin
f

)/|δmax
f

− δmin
f
|)

Fig. 5: Effect of reward function with different neighbourhood pruning param-
eter settings γ, illustrated for mi02. We measure the algorithm performance
using the objective function of risk minimisation.

We have run the experiment on all five GDMP instances, and observe sim-
ilar results. In all plots, we can see that the pruning parameter γ is important
to algorithm performance. Figure 5 presents the results for the mi02 instance,
as box plots of risk (y axis) against pruning parameter settings (x axis). When
γ = 0, there is no significant difference across all setting of a. However, when γ
is increased to values in the range 0.01 to 0.05, bigger a values achieve better
results. This is because a bigger a value emphasises the difference between
results of improving and worsening moves (Fig. 3, Section 3.2.2). Combining
the effect of the pruning mechanism and the scaling factor a for the expo-
nential reward function, bigger a values result in an earlier or more harsh
neighbourhood pruning policy, which seems to especially benefit our problem
instances. However, this advantage fades as γ increases. The best performing
combination here, measured by the mean fitness value, is {γ = 0.5, a = 5}.

Recall that the reward function uses a positive constant a to map the raw
fitness change δf to the range [−1, a− 1], such that when δf > 0, lim

a→∞
rk = 0.
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The exponential reward function amplifies small differences in δf and needs
an extra parameter a to adjust the shape of reward function; this may affect
the overall performance of algorithms. Increasing a leads to a smaller reward
range of worsening fitnesses (δf > 0), which dilutes information from most
tested neighbours. We suggest assigning a to a value smaller than 10 to map
the worst found fitnesses to values about 10−5.

4.3.3 Neighbourhood sorting and pruning

Our proposed D-MABNS uses FSS (Section 3.3.2) to determine the order
in which neighbours are checked within one neighbourhood. To verify the

(a) Neighbourhood structure using move2

(b) Neighbourhood structure using move1

Fig. 6: A snapshot of two neighbourhood structures using or not using FSS,
illustrated for the mi02 instance.
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importance of the FSS strategy, we capture a few neighbourhood structures
for a current solution x, and plot the δf .

Figure 6(a) shows one example structure of the neighbourhood Nmove2(x).
Because the search using move2 applies a single search loop that picks every
next k elements (Section 4.2), only a sub-area of Nmove2(x) is checked. In this
case, the sorted features seem especially helpful in forming improved solutions
early in the search stage and pruning the neighbourhood after about the 50th
examination looks like it would produce savings in CPU time without missing
good moves.

Comparing the search with unsorted and sorted elements for move1, the
feature sorting strategy shows no significant contribution to the search in
Nmove1(x) (Figure 6(b)). In this case, the pruning strategy may not be bene-
ficial as improvements could be found throughout the neighbourhood. Recall
that the elements in move1 are sorted by the length of edges, whereas our
objective function is risk minimisation. This result reveals the importance of
problem domain knowledge in FSS design. If the fitness distribution of a neigh-
bourhood shows strong orderliness on one or a few features, FSS significantly
improves the search efficiency. In other situations, the sorting process may not
be worth the effort.

Fig. 7: Impact of sorted features with different pruning parameter γ, on the
mi02 instance. Parameter settings: {W = 400, RF = exp(a = 5), α = 0.8, λ =
0.05}

An example of another, more direct, way to illustrate the impact of FSS
and pruning is shown in Figure 7. We repeat each parameter setting 30 times
with the predefined CPU time and record the solution quality. The same ex-
periment has been tested for our five instances (see Appendix, Figure 17)
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Fig. 8: The effect of parameter λ on environment change detection. The green
points indicate a change leading to resetting of arms; the red points represent
the normal situation. Other parameter settings are presented in Table 2

and similar effects have been observed across all of them. Overall, the results
clearly show the positive impact of FSS on algorithm performance. Feature
sorting guides the search to promising moves in the early stages. Combined
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with the pruning strategy, FSS significantly improves the search efficiency. On
the other hand, when not using feature sorting, pruning too early reduces the
chance of finding good neighbours. As we can see from Figure 6, when a neigh-
bourhood is unsorted and its fitness landscape is chaotic, the pruning decision
(see Algorithm 3.3) becomes less meaningful.

4.3.4 Environment change detection

D-MABNS resets the evaluation of all of the neighbourhood arms when the
PH statistic signals an environment change (Section 3.3.1). The PH statistic
is widely used in D-MABP, but no analysis is presented [12,31]. In order to
understand the contribution of the PH statistic and the impact of parame-
ter λ, we test different λ values, given other parameters {W = 400, RF =
exp(a = 5), α = 0.8, γ = 0.05}. A small γ value is used for this experiment as
preliminary tests showed that a large γ diminishes the impact of λ.

We evaluate the PH statistic via algorithm performance in terms of final
solution quality. As before, each parameter setting is repeated 30 times with
the predefined CPU time (Table 1). Figure 8 illustrates an example of rewards
collected by move2(k = 10) given different λ setting. As λ gets bigger, the PH
statistic becomes more tolerant of reward variations. Figure 9(a) shows that
D-MABNS achieves worse results when λ is too small, because there is too
much noise in the PH alarm signals.

To further analyse the relation between solution quality and environment
change detection, we measure the distance between PH signals for environment
change and PH for the normal situation. We repeat each parameter setting 5
times for 180 CPU seconds, and each run records the rewards collected over
time by each neighbourhood arm. Each data point is labelled True or False
depending on whether it is a changing point or not. We then use a Dunn index
[29] to evaluate the decision quality of PH by measuring the distance within
and between environment changing and non-changing points. The intuition
is that the lower the noise in the detection, the better the solution quality
that an algorithm can achieve. Figure 9(b) includes the average value of the
Dunn index of each neighbourhood detection result. We can see that as the
Dunn index gradually gets bigger, the solution quality in Figure 9(a) gets
better. Note that the Dunn index could thus be used to efficiently tune the
environment threshold parameter.

4.3.5 Environment change detection and Neighbourhood pruning

In the previous experiments, we observe the strong positive impact of the
pruning parameter γ on algorithm performance for our GDMP instances. As
γ increases, the algorithm performance also improves. When γ is bigger than
0.3, sensitivity to other parameters is reduced.

Our experiments on the combined impact of environment detection λ and
pruning parameter γ give a rather different view. For example, Figure 10 shows
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(a) mi02: Performance with different lambda
setting

(b) mi02: Cluster validation index

(c) mi04: Performance with different lambda
setting

(d) mi04: Cluster validation index

Fig. 9: The effect of parameter λ on algorithm performance. The Dunn index
is calculated as follows: Dunn = 1

K

∑i=K
i=1 Dunni, where K is the number of

neighbourhoods; Dunni =
δ(Ctrue,Cfalse)

max ∆C
, where δ(Ctrue, Cfalse) measures the

Euclidean distance between the centres of two clusters (denoted as external
distance), and ∆C = 1

|C|

∑

d(s, v(C)) measures the average distance between

all samples s ∈ C and the cluster’s centre v(C) (denoted as internal distance).
For more information about cluster validation index see [29].

that, when the environment detection parameter λ is bigger than 0.25, increas-
ing the pruning parameter γ starts to loose its effect. To compare the search
strategies, three box plots, A, B, and C, are picked out in Figure 10. Parame-
ter settings at A (λ = 0.01, γ = 0.5) emphasise wide exploration, whilst those
at C (λ = 4.0, γ = 0.05) concentrate on exploitation. During exploitation, his-
torical reward information becomes useful to guide the search; smaller λ values
give poorer results because the MAB arms are reset too frequently, resulting
in loss of historical information. Parameter setting B is the best performing in
this experiment, as it achieves a balance between exploration and exploitation.
Results for the other GDMP instances are presented in the Appendix, Figure
18.
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Fig. 10: The effect of parameter λ on the algorithm performance with two
different pruning parameter setting γ. The other parameter settings are {W =
400, RF = exp(a = 5), α = 0.8}. Tested on mi05.

4.4 Other search strategies between neighbourhoods

Apart from the UCB1 algorithm, many other decision making strategies are
proposed in literature (Section 2.2). These methods introduce strategies from
different perspectives to tackle the exploration and exploitation dilemma of
MABPs. In this section, we compare the UCB1 method to probability match-
ing (PM) [17,33] and a simple random (Ran) selection strategy.

4.4.1 Probability matching

Compared to UCB1, PM implements exploration by adding uncertainty to the
selection process instead of using a statistical equation. At each decision point,
the probability p of examining a neighbourhood is proportional to its forecast
quality. The benefit is obvious: there is no need to rescale fitness to tune the
statistic.

Our implementation of PM follows the pseudo code provided by [33]. We
use an exponential reward function, shown in Function 4, for which no scaling
factor a is needed. Other parameters for PM are: {pmin = 0.01, α = 0.8, γ =
0.94}, where pmin is the minimal probability value to ensure that none of the
arms is ignored; α and γ are the same parameters as for the UCB1 algorithm,
with values selected through preliminary experiments.

RF = exp(−δf/f(x)) (4)

4.4.2 Random selection

Ran randomly selects a neighbourhood Nk from the available candidate set
following a uniform distribution. Compared to UCB1 and PM, Ran does not
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need any statistical technique to evaluate arms. To apply a neighbourhood
pruning strategy, we simply cut off a neighbourhood if no improvement has
been found through the last m tries of this neighbourhood. We use m = 50, as
the value that produces the best average results over our five GDMP instances.

4.4.3 Comparing the UCB1, PM and Ran strategies

We compare UCB1 (parameter settings in Table 2), PM and Ran. Each al-
gorithm repeats 30 times and the results are shown in Figure 11. For small
problem instances (instance mi01, mi02), there is no obvious difference be-
tween the three tested methods. However, for larger problem instances, the
performance of Ran is much worse than the other two methods. This suggests
that there is some useful information in the fitness distribution and landscape
and that we can statistically capture this information, via the reward function,
to guide the search in the correct direction.

(a) mi01 (b) mi02 (c) mi03 (d) mi04 (e) mi05

Fig. 11: Performance comparison of different decision making strategy: UCB1,
Probability matching (PM) and random selection (Ran)

4.5 Comparison to traditional hyperheuristic

In this section, we compare D-MABNS with two hyperheuristic algorithms,
BEBO [28] and the VNSr(R) variant of VNS [20]. The implementation details
have been published in [5,7], respectively. As Figure 12 shows, D-MABNS
improves the solution quality for all tested instances.

Comparing the architecture of the three algorithms, D-MABNS (Figure
2) is more like a breadth first search. Whereas BEBO and VNSr(R) use first
improvement low-level heuristics to repeatedly examine one type of move un-
til an improvement is found, D-MABNS biases the neighbourhood search in
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(a) mi01 (b) mi02 (c) mi03 (d) mi04 (e) mi05

Fig. 12: Performance of D-MABNS (labelled as UCB1), VNSr(R) and BEBO

a promising direction, which tends to improve the algorithm efficiency. At a
higher level, compared to VNSr(R), D-MABNS builds a descent search path
with a more flexible combination of moves. Furthermore, D-MABNS intro-
duces many tricks, such as dynamic neighbourhood updating to avoid repeat-
edly checking the same elements, and pruning to discard unpromising areas of
the neighbourhood.

Figure 13 plots an example of the risk value (minimisation objective) chang-
ing over time using BEBO, VNSr(R), D-MABNS without pruning (γ = 0)
and D-MABNS with pruning (γ = 0.3). Pruning reduces unnecessary search
space, allowing the algorithm to converge earlier. Even without pruning, the D-
MABNS algorithm has the advantage over the two hyperheuristics, especially
for larger problem instances. We attribute the achievement to the D-MABNS
algorithm’s breadth first style of search and dynamic neighbourhood updating.

5 Applying D-MABNS to PVRP

So far, we have tested the D-MABNS on five instances of GDMP and shown
that it significantly out-performs other hyperheuristic approaches. To test our
algorithms on other combinatorial optimisation problems, we choose the Pe-
riodic vehicle routing problem (PVRP) ([8,4,9,19]), a widely-used standard
model for periodic maintenance and on-site service problems. Compared to
GDMP, PVRP has tighter constraints on service pattern requirements. Con-
sequently, the search space of feasible solutions for visiting pattern assignment
is smaller. In this section, we test the D-MABNS on 42 benchmark PVRP



A multi-arm bandit neighbourhood search for routing and scheduling problems 25

(a) mi01

(b) mi05

Fig. 13: Comparing single runs of D-MABNS, VNSr(R) and BEBO.

instances, allowing comparison to a wide range of heuristic approaches. Back-
ground information on the benchmark instances can be found in [21]2.

5.1 Using D-MABNS as an improvement heuristic in a hyperheuristic
framework

To evaluate D-MABNS performance on PVRP benchmark problems, we em-
bed the D-MABNS algorithm in the improvement stage of the HyperILS frame-
work [25,2], as shown in Figure 14. The work presented here extends [7], and
uses the same (re)initialisation and mutation moves in the hyper-perturbation
stage.

2 The data for the benchmark instances is available at http://neo.lcc.uma.es/vrp/vrp-
instances/periodic-vrp-instances/
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(a) PVRP solution (b) HyperILS

Fig. 14: Algorithm framework

Table 3: Local search moves for PVRP. Details are given in [7].

Type Moves Element sorting (FSS)

Route related 2Opt, 3Opt, 2PS, Relocate, Cross Edges sorted by length

Pattern related
Customer pattern reassign,
Two customer pattern swap

Customers sorted by adjacent
edge lengths

Mixed
Relocate with pattern,
Cross with pattern

Edges sorted by length

To build the neighbourhoods for D-MABNS, we consider three types of
moves: route modification, customer service pattern modification and mixed
operators [7]. Unlike the first improvement low-level heuristics employed by
VNSr(R), all local moves are managed by D-MABNS. FSS is used, as described
in Table 3.

5.2 Computational results for PVRP

In this section, we discuss the behaviour of D-MABNS on PVRP, and compare
results to D-MABNS on GDMP. In addition, we compare D-MABNS with
state-of-the-art meta-heuristics that are specifically designed for PVRP.

5.2.1 Sensitivity analysis

We conduct parameter sensitivity experiments, similar to those in Section
4.3.1; the best performing parameter settings for D-MABNS are used for per-
formance comparison with other methods.

Compared to solving GDMP, neighbourhood pruning and sorting exhibit
some different behaviours. Figure 15(a) shows an example tested on PVRP
instance p13, the largest benchmark containing 417 customers, of recording



A multi-arm bandit neighbourhood search for routing and scheduling problems 27

the number of solutions that D-MABNS (γ = 0) examines before it moves to
the next solution. Every interval between two worsening solution (shown as
positive δ(f)) is a local search process. We can see that, at a late stage of each
local search, the cost to find an improvement increases significantly. When is
the optimal time to prune the search within a neighbourhood? Tested on p13
(Fig. 15(b)), we can see the algorithm performance decreases significantly when
the pruning parameter γ is bigger than 0.01. Because of early pruning, the
algorithm cannot reach local optima and the final solution is of poor quality.

(a)

(b) D-MABNS with different γ

Fig. 15: Impact of neighbourhood pruning on PVRP benchmark p13. Graph
(a) records the changed fitness δ(f), and the number of solution examined
before accepting the next solution, for D-MABNS (γ = 0).

Similarly, sorting strategies do not give any obvious advantage in the PVRP
solver. In contrast to GDMP, the PVRP fitness landscape does not show ob-
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(a) Relocated neighbourhood

(b) 3Opt neighbourhood

Fig. 16: PVRP sorting effects: examples of current-solution neighbourhoods

vious orderliness on the features we tried. Figure 16 illustrates two examples,
from “relocate” and “3Opt” neighbourhoods.

Our experiments raise an important question: when is the appropriate mo-
ment to stop the local search and restart the journey somewhere else in the
solution space? From our experience, we summarise guideline rules as follows.

1. For small problem instances, such as the PVRP benchmarks (between
about 50 and 200 customers), the total time needed for each local search
procedure is short. In this situation, no pruning strategy is needed.

2. In any problem where a sorting strategy does not help to guide the local
search within neighbourhood structures, a pruning strategy is also unhelp-
ful.

3. When the solution space is very big but a sorting strategy fails, memory
techniques plus adaptive pruning rate can be applied to control exploration
and exploitation in early and later stages of the search process. The memory
technique needs to record potentially-promising areas of the solution space
that have been cut off in the early search.

4. When the solution space is big and the fitness distribution of many neigh-
bourhood structures shows strong orderliness on some features, neighbour-
hood sorting and pruning bring big benefits to the search process.
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5.3 Comparing MAB methods to other meta-heuristics

We compare our results with state-of-the-art hybrid-meta-heuristics [35,10]
and the best results using a hyperheuristic (VNSr(R)) achieved in our previous
work [7]. We use MAB with the simple random selection (Ran) and D-MABNS
with parameter settings {W = 400, RF = exp(C = 5), α = 0.8, λ = 0.7, γ =
0.001}. The experiments are designed to replicate benchmark conditions from
[35]. In particular, the search is always terminated after a fixed amount of
CPU time [35]. The results are presented in the Table 4; the best-known value
for each problem instance is shown in bold.

Table 4: Performance on PVRP benchmarks, hybrid-GA (VCGLR)[35], par-
allel tabu search (CM) [10]. The first column shows the number of customers
in each instance.

VCGLR CM VNSr(R) Ran D-MABNS

mean best mean best mean best CPU(s)

ID 10 run 10 run 10 run 10 run 10 run

51 p01 524.6 524.6 524.6 524.6 524.6 524.6 524.7 524.6 13.2
50 p02 1322.9 1328.7 1333.2 1325.1 1336.1 1324.2 1336.2 1322.9 26.4
50 p03 524.6 524.6 524.6 524.6 524.7 524.6 524.7 524.6 10.8
75 p04 836.6 836 841.2 835.8 843.5 836.8 842 835.3 63
75 p05 2033.7 2034.7 2077 2062.6 2068 2048.5 2069 2047 136.2
75 p06 842.5 836.4 851.7 841.8 861.7 845.1 856.3 843.4 53.4
100 p07 827 826.8 829.2 826.1 831.2 827.8 831.9 827.5 52.8
100 p08 2022.9 2044.3 2069.2 2053.7 2072.3 2054.1 2075.1 2050.2 152.4
100 p09 826.9 826.6 831 827.4 833.3 829.5 833.8 826.1 60.6
100 p10 1605.2 1600.9 1637.4 1617.5 1651.1 1634.2 1649.1 1618.6 108
139 p11 775.8 780.6 792.2 785.2 792.8 786.9 795.4 785.7 276
163 p12 1195.3 1196.8 1249.8 1220.3 1243.6 1217.9 1246.4 1218 320.4
417 p13 3599.9 3518.7 3662.8 3585.6 3581.2 3548.7 3607.6 3541.8 2400
20 p14 954.8 954.8 954.8 954.8 954.8 954.8 954.8 954.8 4.8
38 p15 1862.6 1862.6 1862.6 1862.6 1862.6 1862.6 1862.6 1862.6 10.2
56 p16 2875.2 2875.2 2875.2 2875.2 2875.2 2875.2 2875.2 2875.2 19.2
40 p17 1597.8 1597.8 1621.8 1597.7 1627 1597.7 1620.8 1597.7 16.2
76 p18 3131.1 3155.2 3159 3152.4 3157.1 3150.2 3158.4 3151.6 53.4
112 p19 4834.5 4843 4846.5 4846.5 4846.5 4846.5 4846.5 4846.5 135.6
184 p20 8367.4 8367.4 8367.4 8367.4 8367.4 8367.4 8367.4 8367.4 240.6
60 p21 2170.6 2184.1 2187.6 2183.5 2184.4 2182.6 2189.4 2182.6 54
114 p22 4194.2 4213.7 4282.3 4229 4288.6 4235.6 4279.2 4232.5 256.2
168 p23 6434.1 6575.5 6674.8 6609.2 6633.5 6589 6704.5 6572.7 257.4
51 p24 3687.5 3695.2 3731 3693.5 3725.6 3693.5 3734 3693.5 19.2
51 p25 3777.2 3780.2 3785.6 3781.4 3781.4 3781.4 3783.6 3781.4 35.4
51 p26 3795.3 3795.3 3831.8 3795.3 3834 3834 3833.5 3815.3 19.8
102 p27 21885.7 21877.5 22293 22196.3 22136.7 22071.4 22158.7 22057.7 211.2
102 p28 22272.6 22271.4 22559 22444.7 22455.8 22360.7 22471.4 22391.4 280.2
102 p29 22564.1 22586.6 23103 22775.2 22749.8 22698.8 22825.4 22663.6 231.6
153 p30 74534.4 74547.5 77525.9 76776.7 75903.5 75215.7 76187.1 75421 599.4
153 p31 76686.7 76883.2 78650.4 78128.5 77663 77346.3 77916.9 77373.2 600
153 p32 78168.8 78366.2 80832 79647.3 79404.6 78907.4 79652.9 78927.3 600
48 pr01 2209 2209.9 2209 2209 2210.6 2209 2211.7 2209 17.4
72 pr02 3768.9 3779.2 3842.2 3822 3849.8 3825.6 3851.7 3817.6 149.4
96 pr03 5174.8 5206.6 5303.3 5254.7 5324.3 5255.6 5342.3 5259.1 439.2
144 pr04 5936.2 5947.9 6109.3 6056.6 6132.9 6065.7 6150 6070.2 600
144 pr05 6651.8 6664.8 6873.1 6810.2 6873.4 6826.3 6885 6792.8 1200
192 pr06 8284.9 8316.4 8619.2 8569.9 8667.6 8560.9 8735.3 8597.8 1200
216 pr07 4996.1 4996.1 5013.8 5000.6 5022.3 5012.3 5024.2 5000.3 89.4
240 pr08 7035.5 7041.1 7240.6 7193.6 7246.8 7190.7 7276.6 7174.7 600
288 pr09 10162.2 10174 10527.4 10397 10541.4 10484.7 10578.7 10445.4 1200

pr10 13091 13105.9

summary
average
CPU(s)

<100 gap 0.00062 0.001999 0.009529 0.004327 0.011071 0.005371 0.011078 0.004115 68.86
>100 gap 0.00118 0.002645 0.026084 0.016554 0.020872 0.013821 0.023947 0.013163 594.63
All gap 0.00089 0.002307 0.017201 0.009993 0.015613 0.009287 0.017041 0.008308 312.51

The two MAB-based algorithms achieve competitive results. On average,
D-MABNS produces routes that are 1.7% longer than the best-known solu-
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tions. D-MABNS has found 10 best solutions out of 42 tested instances and a
new best solution for instance p04 ; the routes are in the Appendix, Table 5.

Comparing the average results of D-MABNS with Ran, in 29 out of 41
tested instances, Ran outperforms D-MABNS. Further analysis suggests that
Ran reaches more different local optima than D-MABNS within given CPU
times. Consequently, it increases the chance of finding better solutions. For
GDMP, we found that the advantage of the pure random strategy was lost for
larger solution spaces (Section 4.4), and we might predict a similar result for
larger PVRP.

6 Conclusion

In this paper, we introduce a D-MABNS algorithm for a scheduling and rout-
ing problem with geographically-distributed assets maintenance (GDMP). The
original problem concerns the scheduling of real-world drainage system main-
tenance and contains a large number of assets [6]. In order to solve this problem
more effectively, the D-MABNS utilises the orderliness property of the neigh-
bourhood structures and applies techniques that focus the search in promising
areas of the solution space, such as dynamic neighbourhood updating, feature
sequential search and neighbourhood pruning. We perform a comprehensive
sensitivity analysis and gain insights into the relationship between FSS and
neighbourhood pruning, showing pruning is reliant on good sorting to gain
big advantages. Compared to the two heuristic approaches that we developed
in previous work (BEBO and VNSr(R) [7]), D-MABNS achieves significant
better results in all tested instances.

We then test our algorithm on 42 PVRP benchmark instances to compare
its performance with other heuristic approaches found in recent literature.
Unlike GDMP, the PVRP neighbourhood structures show no orderliness on
the features that have been tested, which reduces the impact of D-MABNS’s
tricks during the search. However, D-MABNS still achieves very competitive
results. On average, D-MABNS achieves solutions within 1.7% of the best-
known solutions. This reinforces its success at solving the larger and more
challenging instances of GDMP.
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Appendix

Table 5: Best found solutions

p04 (total length of routes: 835.3)
day1:
Route0: 0,67,46,34,4,75,0,
Route1: 0,6,33,63,23,56,24,49,16,0,
Route2: 0,27,37,20,70,60,71,69,36,47,48,0,
Route3: 0,62,22,64,42,41,43,1,73,51,0,
Route4: 0,30,74,21,61,28,2,68,0,
day2:
Route5: 0,17,40,9,39,12,26,0,
Route6: 0,38,65,66,59,14,7,0,
Route7: 0,52,19,54,13,57,15,5,29,45,0,
Route8: 0,8,35,53,11,10,58,0,
Route9: 0,3,44,32,50,18,55,25,31,72,0,
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(a) mi01: 2815 vertices (b) mi03: 14074 vertices

(c) mi04: 21111 vertices (d) mi05: 28149 vertices

Fig. 17: Effect of feature sorting strategy with different neighbourhoods prune
rate γ to different sizes of GDMP instances

(a) mi01: 2815 vertices (b) mi02: 7037 vertices

(c) mi03: 14074 vertices (d) mi04: 21111 vertices

Fig. 18: The effect of parameter λ on the algorithm performance with two
different pruning parameter setting. The other parameter settings are {W =
400, RF = exp(a = 5), α = 0.8}. Tested on different sizes of GDMP instances


