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Abstract—This paper reports the development and 

implementation of an adaptive lithium-ion battery monitoring 

system. The monitoring algorithm is based on the nonlinear Dual 

Extended Kalman Filter (DEKF), which allows for simultaneous 

states and parameters estimation. The hardware platform 

consists of an ARM cortex-M0 processor with six embedded 

analogue-to-digital converters (ADCs) for data acquisition. Two 

definitions for online state-of-health (SOH) characterisation are 

presented; one energy-based and one power-based. Moreover, a 

method for online estimation of battery’s capacity, which is used 
in SOH characterisation is proposed. Two definitions for state-of-

power (SOP) are adopted. Despite the presence of large sensor 

noise and incorrect filter initialisation, the DEKF algorithm poses 

excellent SOC and SOP tracking capabilities during a dynamic 

discharge test. The SOH prediction results are also in good 

agreement with actual measurements. 

Keywords—Lithium-ion; Adaptive; Battery Monitoring System; 

State-of-Charge; State-of-Health; State-of-Power; Estimation 

I.  INTRODUCTION 

Lithium-ion batteries power a wide range of applications 
such as in electric vehicles (EVs), unmanned aerial vehicles 
(UAVs) and grid-tie energy storage. To enhance the safety 
performance and to prolong the battery’s service life, battery 
management systems (BMSs) are developed and utilised as an 
integral solution. A typical BMS comprises of two operational 
facets; monitoring the battery’s operating conditions and 
controlling the drive circuit accordingly [1]. The purpose of the 
monitoring system is to ensure that the battery does not incur 
any permanent damage due to over-rated currents and voltages, 
or undesirable levels of charge. To this end, various battery 
states including state-of-charge (SOC), state-of-health (SOH) 
and state-of-power (SOP) must be accurately predicted online. 

The simplest approach to estimate SOC is by integrating 
the terminal current with respect to charge/discharge period. 
This is called the “coulomb-counting” method. Similarly, SOH 
and SOP can be jointly predicted using a technique so-called 
electrochemical impedance spectroscopy (EIS) [2]. Although, 
great accuracies are achievable with EIS, it is a laborious and 
costly technique that can only be executed offline. Moreover, 
the coulomb-counting method for SOC estimation suffers 
largely from accumulative sensor noise and initialisation-
induced errors. As a result, researchers have developed various 
model-based techniques that can be used to accurately predict 
and monitor the aforementioned battery states online.  

Table I provides a list of the most reported online 
estimators in literature for BMS applications. These estimators 
are often combined with a suitable model representation of the 
battery system in order to adapt to the nonlinearities inherent to 
the battery dynamics. Whereas Fuzzy Logic [3] and Artificial 
Neural Network [4] estimators require large model-training 
datasets, those observer-based estimators, such as sliding-mode 
observer [5], may suffer from lack of persistence of excitation 
of battery input/output signals [6].  

Alternatively, the Extended Kalman Filter (EKF) [7] – a 
recursive algorithm used for online identification of nonlinear 
systems – can be employed to estimate SOC, SOH and SOP in 
real time. To compensate for the time-variability of battery 
parameters due to SOC modification and SOH degradation, a 
second EKF is usually designed to simultaneously identify the 
underlying nonlinear parameters. This forms the basis of the 
robust dual-EKF (DEKF) estimator that is applied in solving 
many BMS problems (e.g. [8]–[10]). 

TABLE I 

COMPARISON OF ONLINE ESTIMATORS FOR BMS USE   

 

Technique SOC SOH SOP 

Fuzzy Logic    

Sliding-Mode 
Observer 

   

Artificial Neural 
Network 

   

Dual Extended 
Kalman Filter 

   

 

Most BMS algorithms reported in literature are developed 
and verified with laboratory-based experiments. This is 
achieved by measuring the battery voltage and current using 
highly accurate lab equipment. The acquired data is then 
processed either online or offline, using PC-based software 
packages such as MATLAB and LabVIEW as an 
implementation platform. Therefore, in this work, the 
development of a low-cost battery monitoring system that is 
suitable for online BMS verification purposes, is reported. The 
proposed system features a microprocessor unit (MCU), which 
is utilised as a standalone platform for the DEKF algorithm to 
perform SOC, SOP, and SOH estimation in real time.        



II. BATTERY MODELLING AND STATE ESTIMATION 

A. Equivalent Electrical-Circuit Model 

A second-order RC network model [11] is adopted herein 
to describe the dynamics of the battery/cell under operation. 
The model structure, as depicted in Fig. 1, is comprised of an 
ideal voltage source that represents the battery/cell’s open-
circuit voltage (OCV) as a function of SOC, an uncompensated 
series-resistor element 𝑅s and two RC branches that capture the 
short time-constant voltage drops associated with the charge-
transfer resistance and double-layer capacitance at the 
electrodes (𝑉stc) and the long time-constant diffusional 
processes (𝑉ltc) respectively. 

B. State-of-Charge Estimation 

Here, SOC is defined as the ratio of available ampere-hour 
charge measured using the coulomb-counting method, with 
respect to the maximum available battery capacity 𝐶ma𝑥. 

 SOC𝑘+1 = SOC𝑘 − 𝜂𝐼𝑘Δ𝑡𝑄max  (1) 

where 𝑄max = 3600 × 𝐶max; Δ𝑡 is the sampling period; 𝜂 is 
the battery’s coulombic efficiency; and 𝐼𝑘 is input current. 

C. Open-Circuit Voltage Estimation 

The OCV is defined as the battery’s terminal voltage that is 
measured after a very long period of zero-current relaxation. In 
practice, the OCV at a particular SOC is generally measured 
based on the first few hours of load disconnection. A pulsed-
current test, similar to that reported in [8], is conducted at 25 
°C to extract the charge and discharge OCV curves as a 
function of SOC. A current level of 0.5 C is used to 
charge/discharge the battery under test in steps of ΔSOC = 
10%. The current pulses are separated by one-hour relaxation 
intervals, which is long enough for most lithium-ion battery 
chemistries to reach an equilibrium state.  

The OCV results obtained for a 3.6 Ah cylindrical lithium-
ion nickel manganese cobalt oxide (LiNMC) test cell are 
presented in Fig. 2. For most energy storage applications with 
regenerative currents, the battery’s SOC is usually confined to 
a useable operating range of ~20 to 80%. Over this range, a 
third-order polynomial (as fitted in Fig. 2) can sufficiently 
describe the average OCV-SOC relationship for a typical 3.6 
Ah LiNMC test cell. This is expressed as, 

 𝑉OC = 𝑝3 × SOC3 + 𝑝2 × SOC2 + 𝑝1 × SOC + 𝑝0 (2) 

where coefficients 𝑝0, 𝑝1, 𝑝2 and 𝑝3 are experimentally 
determined. In this work, the OCV-SOC relationship is 
established at an ambient temperature of 25 °C. 

D. State-of-Power Estimation 

The SOP definition used here is similar to that reported in 
[11], which is related to the available sink/source power over a 

short period of Δ𝑡 seconds. Subsequently, the discharge 𝑃𝑘dis 
and charge 𝑃𝑘ch powers at time-step 𝑘 can be defined as,   

 

Fig. 1. Second-order RC battery model structure 

 
Fig. 2. OCV-SOC relationship for a lithium-ion NMC cell, showing third-

order polynomial curve-fit over the useable SOC range 

 𝑃𝑘dis = 𝑉min(𝑉̂OC,𝑘 − 𝑉min)𝑅̂s + 𝑅̂1 + 𝑅̂2  (3) 

 𝑃𝑘ch = 𝑉max(𝑉max − 𝑉̂OC,𝑘)𝑅̂s + 𝑅̂1 + 𝑅̂2 . (4) 

In (3) and (4), 𝑉min and 𝑉max are the minimum and 
maximum battery threshold voltages specified for a safe 

operation. 𝑅̂s, 𝑅̂1 and 𝑅̂2 are predictions for the resistive 

elements in Fig. 1 and 𝑉̂OC is an estimate for the battery’s OCV 
at time-step 𝑘. Consequently, using (3) and (4), a power-based 
definition for the battery’s functionality or state-of-function 
(SOF) is developed. 

 SOF = {1, for 𝑃𝑘ch ≥ 𝑃reqch  and 𝑃𝑘dis ≥ 𝑃reqdis0, for 𝑃𝑘ch < 𝑃reqch  and 𝑃𝑘dis < 𝑃reqdis (5) 

where 𝑃reqch = 𝐼reqch × 𝑉max and 𝑃reqdis = 𝐼reqdis × 𝑉min are 

respectively the quantities of required charge or discharge 
power in order to fulfil a particular task. In order to verify the 
charge and discharge SOP definitions given in this paper, a 
hybrid pulse power characterisation (HPPC) test [12] is 
performed on the LiNMC test cell at 25 °C.  
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E. State-of-Health Estimation 

There are two distinct definitions for SOH in literature 
relating it to either a power or energy fade. The source/sink 
power capability of a battery largely depends on its internal 
resistance. As the resistance grows with ageing, the battery’s 
instantaneous available power fades away. Moreover, as the 
battery ages, it loses some of its ampere-hour capacity, leading 
to an energy fade.  

Thus, to establish a comprehensive battery state monitoring 
system, in this paper, both definitions of SOH as given by (6) 
and (7) are considered.  

 SOHpwr = 1 − (𝑅nows − 𝑅0s𝑅0s ) × 100% (6) 

 SOHenr = 𝐶nowAh𝐶0Ah × 100% (7) 

where SOHpwr is a power-based definition, relating the 

battery’s current series resistance 𝑅nows  to that of a reference 
value 𝑅0s; SOHenr is an energy-based definition, which is the 

ratio of the battery’s current capacity 𝐶nowAh  in ampere-hour to 

that of a reference value 𝐶0Ah. The reference quantities 𝑅0s and 𝐶0Ah can either be determined experimentally at the beginning 
of the battery’s life (i.e. 𝑗 = 0) at 25 °C, or they can be 
exported from the manufacture’s datasheet. 

In order to predict 𝐶𝑗Ah without performing a full 

charge/discharge cycle, a new method is proposed. During a 
charge/discharge cycle, the quantity of coulombic charge in the 
battery is modified according to (8). 

 𝑄mod = 𝑄𝛼 − 𝑄𝛽 = 𝑄𝛼 −∑ 𝐼𝑘 ∙ Δ𝑡𝛽
𝑘=𝛼  (8) 

where 𝑄𝛼 is the initial charge at discrete time-step 𝑘 = 𝛼 and 𝑄𝛽 is the final charge value at 𝑘 = 𝛽. For short-time intervals 

of charge/discharge cycles (i.e. seconds to minutes), 𝑄𝛽 can be 

calculated using the integral of the current-sensor 
measurements. The short time reduces any sensor-induced 
errors during current integration.  The SOC is also modified as,  

 SOCmod = SOC𝛼 − SOC𝛽. (9) 

Now, considering the definition of SOC given in (1), and 
assuming an accurate estimate for SOCmod is available during 
the charge modification 𝑄mod, the battery’s ampere-hour 
capacity in real time can be predicted by, 

 𝐶̂Ah = 𝑄mod3600 × SOCmod. (10) 

III. DUAL EXTENDED KALMAN FILTER ALGORITHM 

A. Battery State-Space Equations 

By using standard techniques, the state-space equations for 
the battery model depicted in Fig. 1 are derived. 

 

𝒇(∙) = [𝑥𝟏𝑥𝟐𝑥𝟑] = [SOC𝑘+1𝑉ltc𝑘+1𝑉stc𝑘+1 ]= [1 0 00 𝑒−Δ𝑡𝜏1 00 0 𝑒−Δ𝑡𝜏2 ] [
SOC𝑘𝑉ltc𝑘𝑉stc𝑘 ]

+
[  
   
 − 𝜂Δ𝑡𝑄max 0 00 𝑅1 (1 − 𝑒−Δ𝑡𝜏ltc) 0

0 0 𝑅2 (1 − 𝑒−Δ𝑡𝜏stc)]  
   
 
𝐼𝑘 

𝛉𝑘 = [𝑅s, 𝑅1, 𝜏ltc, 𝑅2, 𝜏stc]T 𝒉(∙) = 𝑉𝑘 = 𝑉OC(SOC𝑘) − 𝑉ltc𝑘 − 𝑉stc𝑘 − 𝐼𝑘𝑅s 

(11) 

where 𝒇(∙) and 𝒉(∙) are the nonlinear state transition and 
observation models respectively and 𝜏ltc = 𝑅1𝐶1 and 𝜏stc =𝑅2𝐶2 are the transient time-constants. 

Now, assuming the state filter gain 𝐋𝑘x  is weakly related to 𝛉𝑘, the Jacobian matrices required for the recursive DEKF 
algorithm presented in Table II can be computed as,   

 𝐅𝑘−1 = 𝜕𝒇(∙)𝜕𝐱𝑘 |𝐱𝑘=𝐱̂𝑘−1+ = [1 0 00 𝑒−Δ𝑡𝜏1 00 0 𝑒−Δ𝑡𝜏2 ] (12) 

 𝐇𝑘x = 𝜕𝒉(∙)𝜕𝐱𝑘 |𝐱𝑘=𝐱̂𝑘− = [𝜕𝑉OC/𝜕SOC𝑘 −1 −1] (13) 

 𝐇𝑘θ = dℎ(∙)d𝛉𝑘 |𝛉𝑘=𝛉̂𝑘− = 𝜕𝒉(∙)𝜕𝛉̂𝑘− + 𝜕𝒉(∙)𝜕𝐱̂𝑘− ∙ d𝐱̂𝑘−d𝛉̂𝑘−d𝐱̂𝑘−d𝛉̂𝑘− = 𝜕𝒇(∙)𝜕𝛉̂𝑘− + 𝜕𝒇(∙)𝜕𝐱̂𝑘−1+ ∙ d𝐱̂𝑘−1+d𝛉̂𝑘−𝜕𝒉(∙)𝜕𝛉̂𝑘− = [−𝐼𝑘−1 0 0 0 0]d𝐱̂𝑘−d𝛉̂𝑘− = [0 0 0 0 00 𝑎2,2 𝑎2,3 0 00 0 0 𝑎3,4 𝑎3,5] }  
   
    
 

 (14) 

where,  𝑎2,2 = −𝐼𝑘−1 ∙ (exp(Δ𝑡/𝜏ltc2 ) − 1);  𝑎2,3 = (Δ𝑡/𝜏ltc2  ) ∙ (𝑥̂2,𝑘− − 𝑅1𝐼𝑘−1) exp(−Δ𝑡/𝜏ltc);  𝑎3,4 = −𝐼𝑘−1 ∙ (exp(Δ𝑡/𝜏stc2 ) − 1); and 𝑎3,5 = (Δ𝑡/𝜏stc2  ) ∙ (𝑥̂3,𝑘− − 𝑅2𝐼𝑘−1) exp(−Δ𝑡/𝜏stc). 



B. Underlying Theory  

The state-space equations for the states filter are given as, 

 

𝐱𝑘+1 = 𝑓(𝐱𝑘, 𝐮𝑘, 𝛉𝑘) + 𝐰𝑘 𝐲𝑘 = ℎ(𝐱𝑘, 𝐮𝑘, 𝛉𝑘) + 𝐯𝑘 𝐰𝑘 ~ 𝑁(0, 𝐐𝑘x) 𝐯𝑘 ~ 𝑁(0, 𝐑𝑘x ) (15) 

where 𝐱𝑘 ∈ ℝ𝑛 is a the states vector, 𝛉𝑘 ∈ ℝ𝑞  is the time-
varying parameters vector; 𝐰𝑘 ∈ ℝ𝑛 and 𝐯𝑘 ∈ ℝ𝑚 are the 
zero-mean process and measurement noises of covariance 𝐐𝑘x  
and 𝐑𝑘x  respectively; 𝑓(∙,∙,∙) is a nonlinear function that evolves 
the state estimates from 𝐱𝑘 to 𝐱𝑘+1 in discrete time-steps; and ℎ(∙,∙,∙) is a nonlinear function that maps the state estimates into 
the observed space. 

Similarly, for the EKF parameters, the state-space 
equations are defined as,  

 

𝛉𝑘+1 = 𝛉𝑘 + 𝐫𝑘 𝐝𝑘 = ℎ(𝐱𝑘, 𝐮𝑘, 𝛉𝑘) + 𝐞𝑘 𝐫𝑘 ~ 𝑁(0, 𝐐𝑘θ) 𝐞𝑘 ~ 𝑁(0, 𝐑𝑘θ) (16) 

𝐫𝑘 ∈ ℝ𝑝 is a small white noise of covariance 𝐐𝑘θ that evolves 
the parameters over time; the output equation 𝐝𝑘 ∈ ℝ𝑚 is 
given as a measurable function of 𝛉𝑘 and a white noise 𝐞𝑘 ∈ℝ𝑚 of covariance 𝐑𝑘θ  to account for the sensor noise and 
modelling uncertainties. The equations for the recursive 
identification of 𝐱𝑘  and 𝛉𝑘 are summarised in Table II. 

TABLE II 
DUAL-EKF ALGORITHM FOR ONLINE BATTERY STATE AND PARAMETER 

IDETIFICATION  

 

Initialisation: 𝐱̂0+ = [0.2, 0, 0]T, 𝛉̂0+ = [0.02, 0.01, 100,0.01,10]T  𝐐0x = diag𝑛{1 × 10−8}, 𝐏x̃,0+ = diag𝑛{10}, 𝐑0x = diag𝑚{10}  𝐐0θ = diag𝑞{1 × 10−8}, 𝐏θ̃,0+ = diag𝑞{10}, 𝐑0θ = diag𝑚{10} 
Time-update equations: 𝐱̂𝑘− = 𝑓(𝐱̂𝑘−1+ , 𝐮𝑘−1, 𝛉̂𝑘−), 𝛉̂𝑘− = 𝛉̂𝑘−1+  𝐏x̃,𝑘− = 𝐅𝑘−1𝐏x̃,𝑘−1+ 𝐅𝑘−1𝑇 + 𝐐𝑘x , 𝐏θ̃,𝑘− = 𝐏θ̃,𝑘−1+ + 𝐐𝑘θ 

Measurement-update equations: 𝐋𝑘x = 𝐏x̃,𝑘− (𝐇𝑘x)𝑇[𝐇𝑘x𝐏x̃,𝑘− (𝐇𝑘x)𝑇 + 𝐑𝑘x ]−1 𝐱̂𝑘+ = 𝐱̂𝑘− + 𝐋𝑘x [𝐲𝑘 − ℎ(𝐱̂𝑘−, 𝐮𝑘 , 𝛉̂𝑘−)] 𝐏x̃,𝑘+ = (𝑰 − 𝐋𝑘x𝐇𝑘x)𝐏x̃,𝑘− (𝑰 − 𝐋𝑘x𝐇𝑘x)𝑇 + 𝐋𝑘x𝐑𝑘x (𝐋𝑘x )𝑇 

𝐋𝑘θ = 𝐏θ̃,𝑘− (𝐇𝑘θ)𝑇 [𝐇𝑘θ𝐏θ̃,𝑘− (𝐇𝑘θ)𝑇 + 𝐑𝑘θ]−1 𝛉̂𝑘+ = 𝛉̂𝑘− + 𝐋𝑘θ [𝐝𝑘 − ℎ(𝐱̂𝑘−, 𝐮𝑘 , 𝛉̂𝑘−)] 𝐏θ̃,𝑘+ = (𝑰 − 𝐋𝑘θ𝐇𝑘θ)𝐏θ̃,𝑘− (𝑰 − 𝐋𝑘θ𝐇𝑘θ)𝑇 + 𝐋𝑘θ𝐑𝑘θ(𝐋𝑘θ )𝑇 

IV. BATTERY MONITORING SYSTEM DEVELOPMENT 

A. Software Configuration 

The process flow-chart for the developed battery 
monitoring system is illustrated in Fig. 3. It starts by initialising 
the DEKF algorithm with the parameters given in Table II. The 
value of 𝑄max in (11) is initially set to the battery’s nominal 
capacity. Thereafter, battery data (i.e. voltage, current and 
temperature) are acquired and fed into the DEKF algorithm 
every Δ𝑡 seconds. Upon the completion of DEKF 
measurement-update at time-step 𝑘, SOC, OCV and RC model 
parameters are estimated. Then, the updated estimates are used 
in Equations (2)–(6) to calculate SOP, SOF and SOHpwr. Since 

the capacity 𝐶max is a very slow time-varying parameter, it is 
predicted every 10 minutes, which is employed to update 𝑄max 
in (11) and predict SOHenr. Finally, the estimated states and 
parameters are sent to a PC over serial communication for 
storage and in situ user interface. 

 

 

 Fig. 3. Flow chart showing software structure for battery states estimation 

B. Hardware Configuration 

As depicted in Fig. 4, the developed system consists of an 
ARM Cortex-M0 processor (NXP KL25z128) with six 
embedded 16-bit analogue-to-digital-converters (ADCs). 
Battery current is measured using a bidirectional Hall-effect 
sensor (Allegro ACS712-20A), which outputs a proportional 
positive/negative analogue voltage for discharge/charge 
currents respectively. The battery surface temperature is 
measured using a 10 kΩ thermistor, which is calibrated using 
the Steinhart-Hart equation. The data acquisition is performed 
at 10 Hz. Prior to digital conversion of the analogue signals, 
they are conditioned accordingly; this involves an intermediate 
amplification stage that ensures the input signals are within the 
MCU’s operating voltage range of 0–3.3 V; and a low-pass 
filter stage (corner frequency = 1 kHz) is added to remove any 
high-frequency noise contents. 

START

Initialise DEKF 

algorithm

Acquire battery 
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Step DEKF:

SOC, OCV and RC 
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Predict SOP, 
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Predict 

Cmax and SOHenr

YES

NO



 

Fig. 4. Hardware configuration for embedded battery monitoring system 

V. EXPERIMENTAL VERIFICATION 

In order to verify the developed battery monitoring system, 
a dynamic test based on the Artemis [13] EV dive cycle is 
devised and implemented on a multi-channel Maccor battery 
tester. The test profile is comprised of a full charge/discharge 
cycle to measure the cell’s actual capacity. Then, using a 0.5 C 
discharge current, SOC is moved from 100% to an initial level 
of 80% (typical in EV applications), followed by a 30 minute 
rest period. Thereafter, the cell is applied with approximately 
28 repetitions of the Artemis-based current profile (as shown in 
Fig. 5.) to dynamically move SOC from 80% to 20%. All the 
tests are performed at a controlled temperature of 25 °C.    

 

Fig. 5. Single repetition of Artemis-based dynamic current profile 

Fig. 6 presents the measured terminal voltage and the 
predicted OCV for the 3.6 Ah LiNMC test cell, during the 
dynamic stress testing. Fig. 7 displays the DEKF identified 
model parameters 𝑅s, 𝑅1 and 𝑅2 and their variations with SOC. 
Generally, as SOC decreases, the over-potential gradient 
between the positive and negative electrodes grows. This 
explains the increasing trend of 𝑅s as observed in Fig. 7. 
During the first 30 minutes, whilst the battery is in open-circuit 
mode, the parameter EKF produces unrealistic negative 
estimates. This is due to the lack of persistence of excitation of 
the input signals. However, as soon as the load is engaged, the 
algorithm starts to converge towards the ‘true’ estimates. 

 Subsequently, the predicted OCV and predicted parameters 𝑅̂s, 𝑅̂1 and 𝑅̂2 are substituted into (3) and (4) at each time step 
to yield an instantaneous estimate for the available discharge 
and charge power respectively. The results are presented in Fig. 
8. The available discharge power is calculated considering a 
minimum voltage threshold of 2.75 V, recommended by the 
cell manufacturer. Similarly, the amount of available charge 
power is obtained based on a maximum voltage limit of 4.2 V. 

 

Fig. 6. Measured terminal voltage and predicted OCV 

 

Fig. 7. DEKF identified model parameters 𝑅s, 𝑅1 and 𝑅2 

 

Fig. 8. Predicted instantaneous available discharge and charge power 

Evidently, as SOC moves from 80% to 20%, the quantity of 
available discharge power drops, whilst the charge-accepting 
power of the cell increases. Over the active SOC range, it is 
determined that the LiNMC test cell can provide a minimum 

and maximum charge power of 𝑃minch = 35 W and 𝑃maxch =70 W, and a minimum and maximum discharge power of 𝑃mindis = 60 W and 𝑃maxdis = 90 W respectively. These are in 
accordance with the HPPC results also presented in Fig. 8. 

The cell’s SOC is estimated by the EKF states filter and the 
results are presented in Fig. 9. To verify the convergence of the 
designed filter, the initial SOC is incorrectly set to 20%, whilst 
the true SOC = 79.57%. Without any prior knowledge of the 
cell’s  actual  capacity, 𝑄max in (1) and (11) is set to a  nominal 

𝑅̂s 
𝑅̂2 

𝑅̂1 



 

Fig. 9. Comparison of SOC estimated by DEKF and coulomb counting 

 

Fig. 10. Comparison of experimentally measured and predicted cell capacity 

value of 3.6 Ah × 3600. Since the current sensor noise for the 
Maccor system is relatively small (±0.05% of full scale range), 
the integral of the cell current measured is used as a ‘reference’ 
for SOC comparison purposes. 

As can be overserved in Fig. 9, the SOC calculated using 
the coulomb-counting method drifts away. This is due to the 
accumulation of sensor noise during the dynamic test period. 
As a result, the final SOC reported by the coulomb-counting 
method is measured at 14%, whilst the ‘actual’ SOC is 19.47%. 
On the other hand, despite the noisy measurements provided by 
the cheap current sensor and the incorrect initialisation, the 
DEKF algorithm achieves an excellent tracking of SOC.   

In order to estimate the cell’s current SOH level using the 
definitions given in (6) and (7), the initial capacity and 

resistance values are experimentally determined as 𝐶0Ah =3.718 Ah and 𝑅0s = 0.028 Ω. Using the accurately estimated 
SOC and the measured coulombic charge during a 10 minute 
window, cell capacity is predicted/updated. The arithmetic 
mode of the resulting capacity estimates is taken, yielding a 

value of 𝐶𝑛𝑜𝑤Ah = 3.643 Ah, whilst the actual capacity after a 
full charge/discharge cycle is determined to be 3.638 Ah. In 
addition, the cell’s total resistance is identified by DEKF over 
the active SOC range as 𝑅nows = 0.029 Ω. Therefore, 
according to (6) and (7), the cell’s SOH can be predicted and 
given as SOHenr = 97.85% and SOHpwr = 96.43%, whilst 

actual SOH = 97.98%.  

VI. CONCLUSIONS 

In this paper, on-chip implementation of the recursive 
DEKF algorithm for adaptive lithium-ion battery monitoring 
has been reported. The developed system consisted of an ARM 
Cortex-M0 processor with embedded ADCs for data 
acquisition. The battery states of interest in this work included 
SOC, SOP and SOH. Subsequently, a method for online 
prediction of battery capacity for SOH characterisation has 
been proposed. Experimental data from a dynamic discharge 
test on a 3.6 Ah nominal capacity LiNMC cell was used for 
verification purposes. Despite the large current sensor drift and 
incorrect SOC initialisation, the DEKF algorithm posed 
excellent SOC and SOP tracking capabilities. These 
attributions are particularly important for those applications 
(e.g. in EVs and UAVs) requiring accurate SOC, SOP and 
SOH estimates for in situ implementation of various battery 
management strategies. Therefore, to prolong the battery/cell’s 
lifetime, the proposed system can also be employed as a low-
cost platform to perform the necessary control actions. 
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