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ABSTRACT

Random processes, in particular random genetic drift, often make it dif-

ficult to predict the fate of a particular mutation in a biological population.

In this work we show, using principles of theoretical population genetics, a

form of biological control that ensures that a focal allele’s frequency, at a

given locus, achieves a prescribed probability distribution at a given time.

This control is in the form of an additional evolutionary force that acts on

a population. We provide the mathematical framework that determines the

additional force. Our analysis indicates that, generally, the additional force

depends on the frequency of the focal allele, and may also depend on the

time. We argue that translating this additional force into an externally con-

trolled process, which has the possibility of being implemented in a number

of different ways, corresponding to selection, migration, mutation, or a com-

bination of these, may provide a flexible instrument for targeted change of

traits of interest in natural populations. This framework may be applied,

or used as an informed form of guidance, in a variety of different biologi-

cal scenarios including: yield and pesticide optimisation in crop production,

biofermentation, the local regulation of human-associated natural popula-

tions, such as parasitic animals, or bacterial communities in hospitals.
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1 Introduction

Since the beginning of the 20th century, it has become clear that controlled

intervention in many biological phenomena is crucial to avoid or reduce

costs that are potentially substantial. Examples of phenomena, with large

consequences for economics and health, include pest-induced reduction of

crop yields and insect-borne human diseases (McFadyen 1998; Kamareddine

2012). While such interventions may be described as ‘biological control’, we

note that in classical terms this phrase means “the use of all natural organic

checks, bacterial and fungous diseases as well as parasitic and predaceous

insects” to deal with insect pests (Smith 1919). Here we adopt a broader

viewpoint of biological control, as any steering influence of a biological popu-

lation. This then makes the subject particularly relevant in the era of large

genetic data, which arises, for example, from next-generation-sequencing

(Buermans and den Dunnen 2014). Such genetic information, combined

with phenotypic information, may be exploited for the biological control of

natural populations. As an example, genomic selection uses markers that

are in linkage with particular traits, and these can ultimately be used to pre-

dict yield gains or to increase breeding values of successive generations (de

Los Campos et al. 2013; Daetwyler et al. 2013). This method performs bet-

ter than previous methods, even when traits are controlled by many loci of
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small effect (Spindel et al. 2015a). However, usually, the method can only

be applied over short time-scales and it shows little consistency between

different populations with limited relatedness (Daetwyler et al. 2013).

Application of biological control theory has been driven by straightfor-

ward practical reasoning, e.g., the extinction of a parasite. This, however,

may either be difficult or impossible to achieve. For example, an excessive

use of pathogens to control the insects pests of crops and forests may be

harmful to the environment (Lacey et al. 2015), and may also lead to resis-

tance in the pest population against the pathogen or pesticides in general

(Owen and Zelaya 2005). Moreover, using natural enemies typically involves

perturbing a complex network of interacting biological species, making it

difficult to predict long-term outcomes and damaging ecological side-effects

(Reilly and Elderd 2014). Consequently, when it is necessary or desirable

to steer a biological population in a predictable manner, the external forces

which are applied, e.g., the amount of pathogen/pesticide used on a popu-

lation, need to be effectively controlled (for this case, minimised). We argue

that taking genetic information, in a population-genetics framework, into ac-

count, and intervening in a population’s natural behaviour, may overcome

or ameliorate these issues.

In this work we provide a mathematical framework for an additional
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evolutionary force (additional force, for short) which, when imposed on a

natural population of finite size, controls the population in a predictable

manner, to the extent that a specified final probability distribution of the

frequency of a focal allele is obtained.

The additional force of this work is given in terms of quantities that

describe the original population (where only pre-existing forces act). This

form of the additional force is not unique: other additional forces can also

can also produce the final distribution. Thus what we present is a particular

solution for the additional force that turns out to have the simplest form.

We devote some of the Discussion to the issue of the uniqueness of the

additional force, and ways this feature may be usefully exploited.

The additional evolutionary force always acts in concert with other (pre-

existing) forces. In finite populations, random genetic drift is always a pre-

existing force, and other forces may include selection, mutation, migration,

and although we do not consider it here, also recombination. In spite of

the final (specified) distribution being the joint outcome of multiple forces,

we will adopt the convenient shorthand of simply saying that the additional

force produces (or is chosen to produce) the final distribution.

The additional force introduced in this work has a characteristic feature

that it generally depends on the frequency of the focal allele. The additional
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force may also depend on the time that it acts. Under some circumstances,

the additional force may be viewed as a form of additional selection that

acts on the population; such additional selection will generally be frequency

dependent.

One possible application of the additional force is to a number of pop-

ulation lines1 where a focal allele at a biallelic locus has, in the simplest

case, the same initial frequency in all lines. An intervention, in the form

of an additional evolutionary force, can lead to the production of a specific

probability distribution of the allele frequency, over all lines, at a specified

final time2.

Pursuing this idea, we note that the classic experiment of Buri (1956),

as reanalysed by Hartl and Clark (1977, Chapter 7), illustrated the action of

random genetic drift over a number of population lines which were followed

over time. In Figure 1 we have presented related simulation results that

illustrate the action of genetic drift on a neutral focal allele in a haploid

Wright-Fisher population. For all three panels of Figure 1, a focal allele

started with a frequency of 0.5 in a large number of lines that each main-

1A set of lines is a number of identical (or near identical) biological subpopulations of
the same size, that have no migration between them. They may exhibit different allele
frequencies due to the operation of random genetic drift.

2Given a finite number of lines, the final frequency distribution of the focal allele,
achieved over all lines, will be a finite sample from the prescribed final distribution. As
a consequence, the final distribution will not precisely coincide with the prescribed distri-
bution.
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Figure 1A

tained the finite number of 100 adults in every generation. The distribution

of the frequency of the focal allele has been plotted over 60 generations. Fig-

ure 1A contains a plot of the distribution in the absence of any additional

force, while Figures 1B and 1C show results when two different forms for the

additional force were acting. In particular, in Figure 1B the additional force

was chosen so that fixation of the focal allele occurs by the final time (gen-

eration 60), while in Figure 1C the additional force was chosen so that the

final distribution corresponds to the occurrence of fixation with probability

0.7, and the occurrence of loss with probability of 0.3. The additional forces

required for both Figure 1B and Figure 1C both depend on the frequency

of the focal allele and the time.
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Figure 1B

The additional evolutionary forces that produced the final distributions

in Figures 1B and 1C are special cases of a general result, we present later,

for the additional force. In this general result, the frequency of the focal

allele does not start from a definite value, but from an initial probability

distribution, and the additional force ensures production of a given final

distribution. The general result applies for an ensemble of populations that,

collectively, have the appropriate initial and final distributions. An example

of such an ensemble is a set of population lines/subpopulations described

above.

The additional evolutionary force can also be applied to a single popu-

lation (not, e.g., to a set of lines). If the final distribution of the focal allele
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Figure 1C

Figure 1 Caption: This figure shows the distribution of the allele frequency
over time of uncontrolled and controlled populations. The figure is based
on simulations of a neutral biallelic haploid population in a Wright-Fisher
model. The parameter-values were arbitrarily chosen as follows. The sim-
ulations involved 105 lines (or replicate populations). Each line started in
generation 0 with a focal allele at a frequency of 0.5. Number regulation was
implemented, so that in every generation, 100 adults were maintained in each
line. In Panel A, the probability distribution of the focal allele’s frequency is
plotted over 60 generations when there was no additional evolutionary force.
Panel B shows what occurs under the action of an additional evolutionary
force that was chosen to ensure fixation occurs by generation 60. Panel C
shows what occurs under the action of an additional evolutionary force that
was chosen so that the frequency does not have the probability distribution
of a neutral population. Rather, the additional force was chosen so that by
generation 60 there is a probability of 0.7 of the allele achieving fixation,
a probability of 0.3 of the allele achieving loss, and zero probability of the
allele segregating.
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involves more than a single allele frequency, then a single population cannot,

in any sense, achieve the final distribution (in a single population there is

only a single value of the frequency at any time, including the final time)3.

The interpretation is that while the additional force does not guarantee a

particular outcome, its application could significantly bias matters, to the

extent that some outcomes could become much more probable than would

be the case in the absence of the additional force. Thus, in this case, the ad-

ditional force can be viewed as modifying the probabilities of final outcomes.

As an example, application of an additional force, to a single population,

can change the probability of fixation from its value in the absence of the

additional force (its ‘natural’ value), to a quite different (prescribed) value.

We shall consider examples of the additional force acting in plant popu-

lations, but also discuss other examples where the framework of the present

work may be applied. These include parasitic animals that are immune to

pesticides, bacterial communities in hospitals that exhibit antibiotic resis-

tance and to personalised/precision medicine. Generally, we argue that the

CRISPR/Cas9 system (Gantz and Bier 2015) provides the ultimate tool to

conduct evolutionary control on any population of interest, and for a recent

analysis of the effects of the mutagenic chain reaction associated with this,

3In the Discussion, we address the question of a single population which has uncertainty
in the value of the initial frequency.
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see the paper by Unckless et al. (2015).

2 Theoretical background

Prior to presenting the results of this work, we give some necessary theoret-

ical background.

Consider a focal allele at a biallelic locus where, in what follows, we shall

often refer to the frequency of this allele as just the frequency.

With X(t) the frequency at time t, we assume that in an effectively

infinite population, the frequency obeys4

dX

dt
= F0(X). (1)

In this equation we have suppressed the time dependence of X so X ≡ X(t),

and the quantity F0(x) is the ‘original force’ acting when the focal allele

has frequency x. When the force F0(x) is non-zero it systematically drives

changes in the allele’s frequency, and causes evolution to occur. For simplic-

ity, we have assumed that the force F0(x) depends only on the frequency,

and not on the time, but this is not an essential restriction.

4Throughout this work, we shall need to refer to ‘the frequency of the allele at time
t’ for a number of different cases. In each case, we shall write this frequency as X(t),
avoiding a more cumbersome notation where each case is notationally distinguished. The
context should make it clear which frequency is being referred to.
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Equation (1) naturally arises in an overlapping generation (i.e., contin-

uous time) model. However, we shall primarily envisage it as arising as an

approximation of a discrete time model, where time is measured in gener-

ations (t = 0, 1, 2, ...) and all changes in the allele frequency over adjacent

generations are small.

As an example of the systematic force F0(x) which drives evolution in

an effectively infinite population, consider an unlinked locus in a randomly

mating diploid population. If each copy of the focal allele additively changes

the relative fitness of its carriers by s then to leading order in s we have

F0(x) = sx(1− x).

In a finite population the behaviour of the frequency is more complex

than that described by Eq. (1) because random genetic drift has also to

be included. For a finite population, under a diffusion approximation of a

discrete time model, Eq. (1) becomes

dX = F0(X)dt+
√

V (X)dW (2)

where5 the quantity
√

V (X)dW is the change in X that arises from random

5Using Eq. (2) for a finite population with discrete generations is equivalent to making
a diffusion approximation: Eq. (2) treats frequency and time as continuous quantities and
directly leads to a diffusion equation for the probability density of X(t) (Tuckwell 1995).
All analytical results we give in this work are obtained under a diffusion approximation.
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genetic drift, when acting over a time interval of dt. This ‘drift force’ is a

source of time-dependent randomness, and consists of the product of two fac-

tors. One factor involves a function V (x), which is the rate at which genetic

drift introduces variance across replicate populations, when the frequency is

x. Assuming the population behaves as a randomly mating diploid popula-

tion of effective size Ne we have V (x) = x(1− x)/(2Ne) (Wright 1931; Gale

1990). The other factor in the ‘drift force’ involves the quantity W ≡ W (t)

which is a random function of time, namely a Wiener process (Tuckwell

1995).

Equation (2) is a stochastic differential equation6 where changes in X(t)

arise from two terms, one which acts systematically (F0(X)dt), the other

which acts stochastically (
√

V (X)dW ).

3 Aim of this work

In this work we focus solely on finite populations. Broadly speaking, we

wish to determine the necessary change in the dynamics, so that a specific

outcome is achieved. To this end, we find it sufficient to change only the

systematic part of the force in Eq. (2), (i.e., to only change the coefficient

6Equation (2) is the mathematically preferred way of writing the equation for X, rather
than dX/dt = F0(X)+

√
V (X)dW/dt. Deriving Eq. (2) from a discrete generation model,

leads naturally to an Ito stochastic differential equation (for Ito stochastic differential
equations, see e.g., Tuckwell 1995).
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of dt, in Eq. (2)).

To go further, let us consider a population where the focal allele has

frequency x at time t. We assume that, apart from the original force, F0(x),

which naturally arises within the population, an additional systematic force

also acts, which arises from sources external to the population. We write

the additional force as Fadd(x, t). The original force in Eq. (2) must then be

replaced by F0(x) + Fadd(x, t) and the equation that governs the frequency

becomes dX = [F0(X) + Fadd(X, t)] dt+
√

V (X)dW . We take the additional

force, Fadd(x, t), to arise from human intervention into the behaviour of the

population.

We can now precisely state the aim of this work. This is to determine

the form of the additional force, Fadd(x, t), which results in the achievement

of a specified probability distribution (of the frequency of the focal allele)

at a specific time T . In the general case considered in this work, there is an

arbitrary probability distribution at an initial time, and the desired outcome,

at the final time T , is also an arbitrary distribution. We shall call the

distribution of the frequency at the final time the target distribution. Thus

the additional force, Fadd(x, t), ensures that the desired target distribution

is produced at the desired time7.

7As we shall show, the additional force has to generally be a function of both frequency
and time. In other words, when the additional force acts on a population, the value of the
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This work is related to a previous work, where knowledge of the state of a

population at a final time, led to a time-dependent conditioned distribution

for the population. However, that problem was shown to be fully equiva-

lent to a different problem, where there was no knowledge or restriction on

the final state of the population, but there was an additional evolutionary

force acting (Zhao et al. 2013). Here, we use related ideas, in a significant

generalisation with a different logical order: we specify an arbitrary final dis-

tribution, and infer a form of the additional force that drives the population

to this final distribution, from an arbitrary initial distribution.

4 General result

We shall give the form of an additional force, Fadd(x, t), which produces a

target distribution at a final time, given the distribution at an initial time

of 0; the final distribution, the final time, and the initial distribution are all

arbitrary.

We first need to introduce three ingredients from which this force is con-

structed. These are: (i) the probability distribution of the allele frequency

in the absence of the additional force, (ii) the initial distribution of the allele

frequency, and (iii) the target (i.e., final) distribution of the allele frequency.

force depends on the composition of the population (frequency of the focal allele) and the
time the force acts.
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4.1 Probability distribution in the absence of the additional

force

Equation (2) is the stochastic differential equation for the frequency at time

t, in the absence of any additional force, and hence only involves the original

force, F0(x). Let X(t) denote the frequency described by Eq. (2) which, at

an initial time of u, takes the value y (i.e., X(u) = y). We write the proba-

bility density of X(t), as a function of x, as K0(x, t|y, u). This distribution

is the solution of a diffusion equation (see Eq. (A1)).

4.2 Initial and target distributions

We write the arbitrary initial allele frequency distribution as α(x).

We write the target distribution as β(x). There appears to be a more

general way of writing the target distribution, but we shall not make use of

this in the present work8.

8A more general way of writing the target distribution is in terms of the function
β(x|q), which denotes the target distribution, as a function of x, conditional on an initial
frequency of q. The target distribution is then given by β(x) =

∫ 1

0
β(x|q)α(q)dq.

16



4.3 Additional force

We can now give the full form of the additional force. Defining a function

B(x, t; p) by

B(x, t; q) =

∫ 1

0
β(p)

K0(p, T |x, t)

K0(p, T |q, 0)
dp (3)

and given an initial probability distribution of α(x) at time 0, additional

force, which ensures that the target probability distribution β(x) is achieved

at time T , is

Fadd(x, t) = V (x)

∫ 1

0

∂B(x, t; q)

∂x
K0(x, t|q, 0)α(q)dq

∫ 1

0
B(x, t; q)K0(x, t|q, 0)α(q)dq

. (4)

A derivation of the additional force in Eq. (4) is given in Appendix A.

The additional force in Eq. (4) does not have a simple form. This is

perhaps understandable, since the additional force has to modify the shape

of a probability distribution over time and the frequency and time-dependent

form it has is a way of achieving this non-trivial outcome.

4.4 Interpretation and implementation of the additional force

Equation (4) represents an explicit formula for the additional force, in terms

of the ingredients given in Sections 4.1 and 4.2. We note that we have not
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given an explicit interpretation of the additional force, for example we have

not said it definitely represents selection or, indeed, another evolutionary

force. This is because any external agency that produces this force will

cause the final distribution to coincide with the target distribution. The

external force is thus arbitrary in this sense, and it may be thought of

(and implemented) in different ways. If, for example, the additional force is

viewed as additional additive selection that acts on the focal allele, then with

such an interpretation, we would write Fadd(x, t) = sadd(x, t)x(1− x) where

sadd(x, t) is a frequency and time dependent selection coefficient9 whose form

is given by dividing the right hand side of Eq. (4) by x(1−x). However, other

interpretations of the additional force are possible and may be more useful

or more natural. We could, for example, write Fadd(x, t) = u(x, t)(1 − x)

where u(x, t) is a frequency and time dependent mutation rate. Generally,

we can interpret the additional force as arising from a mixture of different

forces (such as selection, mutation and migration), with the interpretation

driven by considerations of external interventions with a population that are

feasible.

9This interpretation works if the typical (most probable) values of the selection co-
efficient are small (|sadd(x, t)| ≪ 1). If this is not the case then the picture of additive
selection breaks down (it is based on small selection coefficients). An alternative interpre-
tation of the additional force may then be possible, such as it being mutational in nature
- see later.
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5 Illustrative examples of the additional force

We now give some illustrative analytical examples of the additional force.

There are many possibilities, because of the range of choices possible in the

additional force given in Eq. (4). To reduce the range of options, we shall

assume the target distribution corresponds to the occurrence of fixation and

loss, with no segregating frequencies, and in Appendix B we give a number

of special cases for this target distribution. In the main text, we assume

further that the requirement on the target distribution is that it only be

achieved at a very large time, i.e., by a final time of T = ∞. We thus

consider the additional force that controls the probabilities of the ultimate

occurrence of fixation and loss. We shall assume fixation and loss occur with

the probabilities of β1 and β0 = 1− β1, respectively.

5.1 Time-dependent additional force

Consider the case where there is a non-trivial distribution of the initial allele

frequency, α(x). This would occur, for example, when there is an initial

distribution of frequencies across a set of population lines (as described in

the Introduction), where all lines do not start at the same allele frequency.
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In Appendix B we show that the additional force is given by

Fadd(x, t) = V (x)

∫ 1

0

[

∂
∂x

(

β1
Pfix(x)
Pfix(q)

+ β0
Ploss(x)
Ploss(q)

)]

K0(x, t|q)α(q)dq

∫ 1

0

(

β1
Pfix(x)
Pfix(q)

+ β0
Ploss(x)
Ploss(q)

)

K0(x, t|q)α(q)dq

(5)

where Pfix(x) is the probability of ultimate fixation of the focal allele when

its initial frequency is x and only the original force, F0(x), is acting
10.

Note that for Eq. (5), despite the target distribution being achieved at

the final time of T = ∞, the additional force generally has dependence on

the time, t.

5.2 Time-independent examples of the additional force

The time dependence in Eq. (5) follows because the initial distribution, α(x)

contains a range of frequencies of the focal allele, not a single frequency.

We shall now assume that only a single frequency is present in the initial

distribution. Taking this initial frequency to be y, we find from Eq. (5) that

the additional force is independent of time and given by

Fadd(x) = V (x)
[β1 − Pfix(y)]P

′
fix(x)

β1Pfix(x) + β0Pfix(y)− Pfix(y)Pfix(x)
(6)

where P ′
fix(x) = dPfix(x)/dx (see Appendix B for details).

10We shall sometimes refer to Pfix(x) as the ‘natural fixation probability’.
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We again assume the population behaves as a randomly mating diploid

population with effective sizeNe, and so take V (x) = x(1−x)/(2Ne) (Wright

1931; Gale 1990). We also assume an original force that corresponds to

additive selection, where each copy of the focal allele additively changes the

relative fitness of its carrier by s. Then the original force is

F0(x) = sx(1− x) (7)

to leading order in s.

Using the scaled strength of selection

S = 4Nes (8)

the natural probability of fixation is

Pfix(x) =
1− e−Sx

1− e−S
(9)

(Kimura 1962).

Explicit, time-independent results for the additional force for four cases

are as follows11 (see Appendix B for derivations).

11Where, below, we speak of selection, we are referring purely to the selection on the
focal allele from the original force, Eq. (7).
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1. Fixation ultimately occurs (T = ∞), and selection is non-zero. Thus

β1 = 1, β0 = 0, S 6= 0, and

Fadd(x) =
x(1− x)

2Ne

S

eSx − 1
. (10)

2. By time T = ∞, fixation is enhanced from its natural value, Pfix(y),

by a factor r (with 0 ≤ r ≤ 1/Pfix(y)) and selection is non-zero. Thus

β1 = rPfix(y), β0 = 1− rPfix(y), S 6= 0, and

Fadd(x) = −
x(1− x)

2Ne

S (1− r)

1− e−S(1−x) + r(e−S(y−x) − 1)
. (11)

3. By time T = ∞, fixation and loss can generally both occur, and there

is no selection. Thus β1 6= 0 or 1, β0 6= 0 or 1, S = 0, and

Fadd(x) =
x(1− x)

2Ne

β1 − y

β1 (x− y) + y(1− x)
. (12)

4. Loss ultimately occurs (T = ∞), and there is no selection. Thus

β1 = 0, β0 = 1, S = 0, and

Fadd(x) = −
x

2Ne
. (13)
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For an initial frequency y that lies in the range 0 < y < 1, we note

that the additional forces in Eqs. (10) and (13) are independent of y (see

Appendix B). This independence illustrates a general feature of Eq. (4),

that when only a single frequency is present in the target distribution, the

additional force is independent of the initial distribution, α(x). A direct

consequence is that the additional forces in Eqs. (10) and (13) apply for

any initial distribution. Later we shall present results that are based on

the additional forces in Eqs. (10) and (13), when the initial distribution is

uniform over a range of frequencies.

In Figure 2 we plot the additional forces given in Eqs. (10)-(12) as

functions of the frequency, x.

In Figure 2 we have not shown the additional force given in Eq. (13),

which applies when there is no selection on the focal allele and loss ultimately

occurs, because the corresponding additional force is mathematically simple,

namely a linear function of frequency12. The additional force in this case

does not vanish at x = 1, and cannot be taken to correspond to additive

selection, since this would entail a selection coefficient of − [2Ne(1− x)]−1,

which can become arbitrarily negative. Instead, the additional force given

in Eq.(13) is best interpreted/implemented as another systematic force, for

12The additional force is also a linear function of frequency when there is no selection,
and fixation ultimately occurs.
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Figure 2 Caption: The time-independent additional forces given in Eqs. (10)
- (12) are plotted as functions of the frequency, x, for an initial frequency
of y = 0.1 and an effective population size of Ne = 100. These results
apply when the target distribution is achieved by T = ∞. The thick solid
curve denotes the additional force when selection is of scaled strength S = 4
and the target distribution corresponds solely to fixation (β1 = 1). The
thick dashed curve denotes the additional force when selection is of scaled
strength S = 4 and the target distribution corresponds to doubling the
natural probability of fixation, i.e., β1 = 2Pf ix(y = 0.1) ≃ 0.67 and β0 ≃
0.33. The thin dashed curve denotes the additional force under neutrality
(S = 0) when the target distribution corresponds to the occurrence of both
fixation and loss, with probabilities of β1 = 0.3 and β0 = 0.7, respectively.

24



example as recurrent mutation of the focal allele, at a rate of (2Ne)
−1.

Such an additional force systematically pushes the population away from

high frequencies, so loss ultimately occurs. In contrast, when the target

distribution corresponds to non-zero probabilities of both fixation and loss at

long times, the additional force vanishes at the boundaries x = 0 and x = 1,

and can, if desired, be interpreted as arising from a form of (frequency-

dependent) additive selection.

6 Simulations

We illustrate this work further, with a presentation of results from simula-

tions.

All simulations used for this work were of a hybrid nature, in the sense

that the additional force was derived under a diffusion approximation, which

involves continuous time and continuous frequencies, but the additional

force was employed within a stochastic equation equivalent to Wright-Fisher

model, where time and frequencies are discrete, (details of the simulations

are given in Appendix C).
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Figure 3A

6.1 Results for time-independent additional forces

In Figure 3 we illustrate results of simulations where we have used the time-

independent additional forces of Eqs. (10) and (13). For each panel of

Figure 3, properties of a large set of simulated trajectories are shown when

the target distribution corresponds to either fixation or loss being ultimately

achieved (T = ∞).

In Figure 4, we illustrate results of simulations where we employed the

time-independent additional forces of Eqs. (11) and (12). The target dis-

tribution contains two states of the population, namely fixation and loss.

In Figure 4A, the additional force was used to enhance the natural fixation

probability by a factor r. The level of enhancement (fixation probability
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Figure 3B

Figure 3 Caption: Results are presented for simulated
trajectories where the target distribution corresponds to the
ultimate achievement of a single frequency. The additional

forces of Eqs. (10) and (13) were employed within the
stochastic dynamics of a Wright-Fisher model (see Appendix

C for details of the simulations). For both panels, 105

simulated trajectories were used, and all trajectories were
initially distributed uniformly over frequencies in the range
0.2 to 0.4 (i.e., the initial frequency distribution, α(x), was
uniform over this range). In each generation, all trajectories
where sorted according to the value of their frequency and

percentiles were determined. In both panels, the shaded area
shows the middle 50% of all trajectories (i.e., lying between
25th and 75th percentiles), and the thick solid lines denote
median trajectories. For Panel A, selection was additive in
the number of focal alleles (Eq. (7)) and of scaled strength

S = 4, and all trajectories were directed to ultimately
achieve fixation (β1 = 1) using the force of Eq. (10). For

Panel B, there was no selection (S = 0) and the force given
in Eq. (13) was imposed, so loss was ultimately achieved.
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divided by natural fixation probability) observed in the simulations is very

close to the linear value that the force was designed to produce. In Figure

4B, a neutral focal allele was directed to achieve fixation with probability

0.7, using the additional force of Eq. (12). The dashed and shaded areas

in Figure 4B show the lower 30% and upper 70% of all trajectories, re-

spectively13. The lines in each area show the conditional medians of the

respective areas. From the conditional median in the dashed area, it is ap-

parent that by approximately generation 100, 15% of all trajectories have

been lost, and similarly, by approximately generation 300, 35% of all trajec-

tories have fixed. For a comparison, Figure 4C shows the dynamics of the

same population, in the absence of any additional force.

6.2 Results for time-dependent additional forces

We have numerically determined the additional force, Eq. (4), in some

situations where the final time, T , is finite (< ∞) and the additional force,

apart from being frequency dependent, also has time dependence.

We again assume additive selection, as given in Eq. (7), and the form of

V (x) adopted is appropriate to an ideal randomly mating diploid population

of size N , namely V (x) = x(1−x)/(2N). We take the target distribution to

13To be precise, the indicated areas of Figure 4B are calculated from the 29.5th and
30.5th percentiles of all trajectories, so the two areas indicated contain 99% of all trajec-
tories.
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Figure 4A

Figure 4B
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Figure 4C

Figure 4 Caption: In this figure, we show the outcomes of a
large set of simulated trajectories for a target distribution
involving both fixation and loss by the final time T = ∞.

For Panel A, the natural fixation probability of Eq. (9), with
a scaled strength of selection of S = 4 and an initial

frequency of y = 0.1, was enhanced by a factor of r, by
application of the additional force of Eq. (11). For each

value of r, a data point (black dot) was plotted, representing
the simulated value of ‘the probability of fixation, divided by
Pf ix(0.1)’. A straight line was fitted to the data, and a slope
and intercept of approximately 0.98 and 0.01 were obtained

(theoretically, the slope and intercept are 1 and 0,
respectively). For Panel B, the simulated trajectories started
from an initial allele frequency of y = 0.2. The strength of

selection was S = 0 and the focal allele was, by time T = ∞,
directed to achieve fixation with probability β1 = 0.7, and
loss with probability β0 = 0.3, using the additional force of
Eq. (12). We found that in each generation, 70% of all

trajectories lay within the shaded area, and the bold solid
line in this area shows the conditional median of this 70% of
all trajectories. Similarly, 30% of all trajectories lay in the
dashed area, each generation, and the bold dashed line gives
the conditional median of these trajectories. For comparison,
in Panel C we have plotted the outcomes of a large set of
simulated trajectories, for the same parameters as Panel B,

when no additional force acts.
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correspond only to fixation. The additional force in Eq. (4) then reduces to

Fadd(x, t) = V (x)∂ ln [Pfix (T |x, t)] /∂x where Pfix(T |x, t) is the probability

of fixation of the focal allele (under the dynamics of Eq. (2)) by time T given

an initial frequency of x at time t (see Appendix B for details). Since the

form of Pfix(T |x, t), as a function of x, is not explicitly known, we replaced

it by the corresponding quantity of a Wright Fisher model, with the deriva-

tive replaced by a finite difference. In the Wright-Fisher model, Pfix(T |x, t)

corresponds to an element of the (T − t)’th power of the transition matrix,

hence when t is small, the transition matrix is raised to higher power than

when t is large. This allows the quantitative conclusion (borne out numeri-

cally and evident in Figure 5) that when t is small, the force is smaller than

when t is large. In Figure 5A we plot this force as a function of x for four

different values of the time, when the target distribution is fixation by time

T = 100. Figure 5B shows simulation results of the dynamics of such a

population. The results can be viewed as the additional force ‘pushing’ the

trajectories to a restricted region of frequency, by the final time.

At the final time (T = 100) in Figure 5B, all simulated trajectories

achieved a frequency of unity (i.e., fixed).

Figure 6 gives another example for a time-dependent additional force,

where the target distribution is achieved by a finite time. This is for a neutral
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Figure 5A

focal allele, when the target distribution involves both fixation and loss, but

no segregating frequencies. The force is given in Eq. (B4). The target

distribution involves more than one frequency, and the form of the additional

force strongly depends on time (cf. Figure 5A, where the target distribution

involves only a single frequency and there is much weaker time dependence

in the additional force). In Figure 6B, simulation of the dynamics is shown.

The time and frequency dependence of the additional force shown in

Figure 6A is complicated, and despite a relatively simple outcome (fixation

and loss, by a finite time, of a neutral allele) it would be very hard to guess

the additional force that achieves this.

We have carried out simulations involving both time-dependent and
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Figure 5B

Figure 5 Caption: In this figure we plot the time-dependent
additional force and results of simulations, assuming additive
selection, when the target distribution corresponds solely to
fixation. In Panel A, the additional force is plotted as a

function of allele frequency, x, for four different values of the
time. The target distribution was required to be achieved by
time T = 100. The population had equal census and effective
sizes: N = Ne = 100 and selection was of scaled strength

S = 4Ns = 4. The additional force was numerically
approximated (using probabilities from a Wright-Fisher
model, with derivatives replaced by finite differences). In
Panel B, results of simulations for 105 trajectories are

plotted, using the above parameters (see Appendix C for
details of simulations). All trajectories were initially

distributed uniformly over allele frequencies in the range 0.2
to 0.4 (i.e., the initial distribution, α(x), was uniform over

this range of frequencies). The 25th, 50th and 75th
percentiles of the allele frequency are shown, hence half of all

trajectories lie in the shaded area at any time.
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Figure 6A

time-independent additional forces. When the target distribution corre-

sponds purely to fixation, or purely to loss, we have observed that by the

final time the target distribution is fully achieved. However, when the target

distribution corresponds to the possibility of both fixation and loss (i.e., both

have non-zero probabilities of occurrence in the target distribution), we have

not observed any segregating trajectories, but have observed errors in the

prescribed probabilities of fixation and loss that are smaller than 1%. These

errors do not primarily arise because of finiteness of the simulations (we used

a very large number of trajectories), but rather because the additional force

was calculated under a diffusion approximation, but was employed within

a Wright-Fisher model, and the calculated force is an approximation of the
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Figure 6B

Figure 6 Caption: In this figure we plot time-dependent
additional forces and the results of simulations for target

distributions with multiple frequencies, assuming no
selection. In Panel A, the additional force of Eq. (B4) is

plotted as a function of allele frequency, x, at four different
times, when there was a single initial frequency of y = 0.2.
The target distribution corresponds, by time T = 100, to

achieving fixation with probability 0.7 and loss with
probability 0.3. The population was of equal census and
effective size: N = Ne = 100, and there was no selection
(S = 0). The additional force of Eq.(B4) was numerically

approximated (see Figure 5 Caption). In Panel B, results of
simulations for 105 trajectories are plotted, using the above
parameters (see Appendix C for details of simulations). We
found that in each generation, 70% of all trajectories lay in
the shaded area, and the bold solid line in this area shows
the conditional median of these trajectories. Similarly, 30%
of all trajectories lay in the dashed area, each generation,
and the bold dashed line gives the conditional median of

these trajectories.
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additional force that is required within this model. Errors of this magnitude

are present in Figures 1C, 4B and 6B.

7 Discussion

In this work we have provided a mathematical framework for a form of

biological control. We have introduced and described an additional evolu-

tionary force that controls the frequency of a focal allele, in the sense that

from an arbitrary initial distribution of the focal allele, the additional force

produces an arbitrary target (or final) distribution at a specific time.

An issue that has been noted in the Introduction and Appendix A, but

not addressed in the main text is whether the additional force we have found

is unique, or whether there can be other forms of the additional force with

the same outcome, namely producing the target distribution at the final

time. The additional force was calculated from a probability distribution

of the frequency, that was determined by properties of the original popula-

tion (i.e., it depended on pre-existing forces that acted in the population).

The probability distribution of the frequency written down was the sim-

plest that went from the initial distribution to the target distribution, at

the appropriate times. There are various ways to show that other forces can

also produce the target distribution from the initial distribution. We give
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a somewhat general method in Appendix A (see the paragraph following

Eq. (A6)). Here we give two other ways, in particular examples, to see

this. One way is to put further requirements on the probability distribution

of the frequency (apart from achieving the initial and target distributions),

for example, requiring that a particular distribution is achieved at an in-

termediate time. This further requirement generally leads to an additional

force that is different to that presented in Eq. (4). Another way of showing

the non-uniqueness of the additional force, applies when the additional force

Fadd(x, t) produces just fixation by a finite time T . In this case, the force

k×Fadd(x, t) with any k > 1 will produce fixation before time T , and hence

also by time T . This last example is instructive; we can use results like this

to introduce the idea that we can ‘tune’ the additional force to modify the

time taken or in other ways, to produce a modified outcome.

There remains the question whether the specific additional force we have

presented, Eq. (4), has a particular property that distinguishes it from al-

ternative forms of the additional force (that also produce the target distri-

bution). As we argue in Appendix A, it has the simplest form, and it may

be conjectured that in a general sense, it is the minimal force that produces

the target distribution. But the notion of ‘minimal’ requires an explicit

measure of an additional force that depends on both time and frequency.
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At the present time, we have no such measure and we leave open the issue

of what makes the additional force in Eq. (4) genuinely ‘special’.

We note that the only method we have of analytically calculating the

additional force is via the diffusion approximation. In principle, this can

lead to additional forces of large magnitude. However, in the time indepen-

dent examples we have considered, the additional force typically takes small

values. For example, from Figure 2, the additional force is of the order 10−3,

while for Figure 3, the magnitude of the additional force, when calculated

along the median trajectory, is less than 0.005. In time dependent cases, the

force is a function of both frequency and time. In Figures 5A and 6A the

additional force is of order 10−2 but for times close to termination time T ,

the magnitude of Fadd increases. Since we have a finite final time, T , those

trajectories that are ‘far’ from the target distribution at times close to T ,

can suffer a large additional force, to push them to the target by the final

time. However, the additional force is applied to all trajectories from the

initial time onwards, and as shown in Figures 5B and 6B, the distributions

of the resulting trajectories are indicative of being directed to the target

from earlier times. A consequence is that only a tiny fraction of all trajec-

tories lie in a frequency-time region where there is a large additional force.

In other words, the probability of requiring a large additional force is small,
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and typically, we do not need to concern ourselves with additional forces of

large magnitude. The good performance of the additional force within the

Wright-Fisher model where a bounded version of the additional force is used

(see Appendix C), is an illustration of this.

Consider now the initial distribution of the frequency. With real data

about a single population, the initial frequency is generally not precisely

known, but is an estimate that is derived by sampling the population. It

might be thought that incorporating uncertainty about the initial frequency,

in the initial distribution, would be a way to deal with such uncertainty.

However, it seems to us that there is a real difference between an initial

distribution that reflects genuinely different allele frequencies that are ini-

tially present (as could occur for a set of population lines, that do not all

have the same initial frequency), and a distribution that reflects uncertainty

about the initial frequency. To take one example of this, consider with a

single population, which certainly just has a single initial frequency. In the

case where the target distribution corresponds to fixation and loss by time

T = ∞, the additional force will, according to Eq. (6), be time independent.

If, however, we incorporate uncertainty in the initial frequency, by using an

initial distribution to encapsulate this, then the additional force will be

time dependent (see Eq. (5)). It seems to us that this time dependence is
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an artefact of using the initial distribution to model uncertainty, and that a

preferable procedure to deal with such uncertainty would be to average the

time independent additional force (for a single initial frequency), over differ-

ent initial frequencies. This would still lead to a time independent additional

force. This argumentation leads us to believe that generally, uncertainty in

the initial frequency should not be reflected in the initial distribution, α(x).

We have already pointed out that the additional force can be interpreted

in different ways, i.e., as selection, migration, mutation or some combination

of these (with some non-trivial frequency dependence in most cases). There-

fore implementation of the additional force in a biological problem is highly

flexible and may be customised according to available techniques. Although

we derive the mathematical framework for a single locus, the additional force

can, as it stands, be applied to an arbitrary number of unlinked loci of a

population, in the absence of epistasis.

Intuitively, certain desirable target distributions (e.g. immediate extinc-

tion of a resistant parasite) may require very large interventionist forces.

This may turn out to be impracticable, and thus indicates an effectively

inaccessible choice of the target distribution. Within our mathematical

framework we can investigate this problem, by theoretically exploring ways

of reducing the extent of the additional force applied. We can determine,
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for example, how allowing additional time before the target distribution has

to be achieved, or choosing more reasonable target distributions, affect the

practicality of an intervention.

The framework we present also provides results for the distributions

that are achieved between the initial and final times (see Eq. (A7)). Such

distributions are generally different to the initial and target distributions, as

is illustrated in, e.g., Figure 1C. During application of an additional force,

the distributions that are observed at intermediate times may be compared

to the theoretical distribution (Eq. (A7)). If significant discrepancies are

detected, this may suggest modifications of the additional force, in the form

of fine scale adjustments of the experimental setup. This may be useful

since quantifying the additional force from real data requires estimation of

parameters of the population, which may not necessarily be easy (Barbosa

et al. 2011).

The additional force can be applied in a repeated experimental setup

where the same lines are exposed to the same evolutionary force, and this

is similar to ‘evolve and resequence experiments’ (Schlötterer et al. 2015).

However, potential applications are not restricted to an artificial experi-

mental setup. Repeated exposure of the same additional force to identical

populations may be feasible for human monocultured plantations, such as
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crop fields and monocultured forests, or in animal breeding such as cattle. In

such a framework, evolutionary control can be used to reduce the frequency

of detrimental alleles or to increase the genetic diversity for particular loci,

e.g. regions of the genome with a reduced local effective population size

(Gossmann et al. 2011) as observed in highly inbred individuals.

We note that different humans constitute different lines, as far as somatic

cell lineages, diseases and parasites are concerned. Hence an individualised

treatment of different individuals may yield a desirable population-wide dis-

tribution. A drug that thus targets a specific disease/parasite can be admin-

istered at an individual level that is guided by the mathematical framework

of the present work. The same framework can used to quantify prophylactic

steering of human populations, e.g. a population wide treatment, such as

nutrition add-on of iodine (Zimmermann and Andersson 2012).

As noted at the beginning of the paper, the additional evolutionary force

can also be applied to a single population. In general, the target distribu-

tion involves more than a single allele frequency, but a single population is

characterised by a single frequency at any time, and the additional force

is perhaps best not thought of as producing a particular distribution, but

rather of biasing matters, so some outcomes are made more probable (or

less) than they would be in the absence of the additional force. With a
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single population in mind, the additional force could be used as a method of

population control. It could be applied to urban animal populations, such as

pest bird populations in cities (Fuller et al. 2009) or antimicrobial resistance

populations in hospitals (Ferri et al. 2015). Allele invasions into popula-

tions may only be stably introduced at certain allele frequencies (Unckless

et al. 2015), therefore shifting allele frequencies for a certain limited period

of time, by applying an additional evolutionary force, may be crucial for the

successful establishment of a trait into a population.

The results we have presented are based on the stochastic differential

equation given in Eq. (2). Related equations arise in different contexts,

with different interpretations. It may be that, with the necessary changes

made, the results we have derived have applications to a variety of systems

other than the genetic ones considered here.

To sum up, we believe the theory presented in this work provides a useful

and flexible method for the control of biological populations. The additional

force we have introduced can be applied to a diverse set of biological prob-

lems, and it may have interesting extensions/generalisations/applications to

a wider set of problems than those considered in this work.
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Appendices

Appendix A: Determining the additional force

In this appendix we motivate and determine expressions for the form of

an additional systematic force that acts on the frequency of an allele in

a population. This force, in concert with the original force and random

genetic drift, produces an arbitrary target distribution at a given time, from

an arbitrary initial distribution.

As we shall point out, the form of the additional force is not unique.

However, we believe that the additional force we present has the simplest

form, as we shall reason later in this Appendix. We establish the form of the

additional force as follows. (i) We write down a time-dependent probability

density in terms of quantities describing the original population (i.e., in the

absence of any additional force). (ii) The probability density is explicitly

constructed so that it starts at the initial distribution and achieves the target

distribution at the final time. (iii) This time-dependent probability density is

shown to obey a diffusion equation. (iv) Inspection of this diffusion equation

allows us to infer the form of the additional force required to achieve the

target distribution.

Background
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We begin with Eq. (2) of the main text,namely dX = F0(X)dt +

√

V (X)dW , which is the stochastic differential equation for the allele fre-

quency when the additional force is absent. Assuming the frequency, X(t),

takes the value y at initial time u (i.e., X(u) = y), we write the probability

density of X(t), when evaluated at frequency x, as K0(x, t|y, u). This obeys

the forward and backward diffusion equations

−
∂

∂t
K0(x, t|y, u) = −

1

2

∂2

∂x2
[V (x)K0(x, t|y, u)] +

∂

∂x
[F0(x)K0(x, t|y, u)]

(A1)

∂

∂u
K0(x, t|y, u) = −

V (y)

2

∂2

∂y2
K0(x, t|y, u)− F0(y)

∂

∂y
K0(x, t|y, u) (A2)

(Kimura 1964) where V (x) is the genetic variance introduced per unit time

by genetic drift when the allele frequency is x. The distribution K0(x, t|y, u)

also obeys the initial condition K0(x, u|y, u) = δ(x− y), where δ(x) denotes

a Dirac delta function of argument x.

The distribution K0(x, t|y, u) we use is complete in the sense that it

describes all possible states of a population, that is to say where the focal

allele is segregating, lost or fixed (McKane and Waxman 2007; Waxman

2011; Zhao et al. 2013). Since K0(x, t|y, u) is complete, it has the property
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that for all t ≥ u, it is normalised to unity:
∫ 1
0 K0(x, t|y, u)dx = 1. Generally

K0(x, t|y, u) is singular, in that it contains Dirac delta functions located at

x = 0 and x = 1, which represent loss and fixation, while the non-singular

part represents populations where the allele is segregating (McKane and

Waxman 2007; Waxman 2011; Zhao et al. 2013).

We treat the distributionK0(x, t|y, u) as known, since all of its properties

follow from the known functions V (x) and F0(x), and analytical or numerical

approaches may be used to elicit these properties.

We now consider a conditioned probability density of the frequency of

the focal allele. We assume the frequency of the focal starts at the value y at

initial time 0 and achieves (or ‘is conditioned upon’) the value z at final time

T . The conditioned probability density of the frequency at an intermediate

time t (0 ≤ t ≤ T ), as a function of x, follows by an application of Bayes’

Theorem

K [z,T ](x, t|y, 0) = C(z, T, x, t, y)K0(x, t|y, 0) (A3)

where

C(z, T, x, t, y) =
K0(z, T |x, t)

K0(z, T |y, 0)
(A4)

(see Zhao et al. 2013).

Assuming loss and fixation can occur, the result in Eq. (A3) takes dif-
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ferent forms, depending on whether the final frequency corresponds to the

allele segregating (0 < z < 1) or fixed (z = 1) or lost (z = 0).

When 0 < z < 1 only the non-singular parts of the K0’s in the ratio

C(z, T, x, t, y) of Eq. (A4) contribute (the non-singular parts describe seg-

regating alleles). When z = 1, C(z, T, x, t, y) takes the value

Pfix(T |x, t)/Pfix(T |y, 0) where Pfix(T |x, t) is the probability of fixation of

the focal allele by time T (under the dynamics of Eq. (2) of the main

text) given that it had an initial frequency of x at time t. When z = 0,

C(z, T, x, t; y) takes the value Ploss(T |x, t)/Ploss(T |y, 0) where Ploss(T |x, t)

is the corresponding probability of loss of the focal allele (for further details,

see Appendix A of Zhao et al. 2013)14.

It may be directly verified, using the forward and backward diffusion

equations, Eqs. (A1) and (A2), that K [z,T ](x, t|y, 0) obeys the diffusion

14A simple way to understand the value of C(z, T, x, t; y) when e.g., z = 1, is to ar-
gue that the term in K0(z, T |x, t) involving δ(1 − z) dominates the numerator, while
the corresponding term in K0(z, T |y, 0) involving δ(1 − z) dominates the denominator,
and the two Dirac delta functions cancel, leaving the ratio of their coefficients, which is
Pfix(T |x, t)/Pfix(T |y, 0). This argumentation can be made more formal by first ‘weaken-
ing’ the Dirac delta functions so they are non-singular distributions. After setting, e.g.,
z = 1, the weakened Dirac delta functions can be allowed to become singular. The result
obtained, namely Pfix(T |x, t)/Pfix(T |y, 0), is in full accord with the corresponding result
in the Wright-Fisher model.
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equation

−
∂

∂t
K [z,T ](x, t|y, 0) = −

1

2

∂2

∂x2

[

V (x)K [z,T ](x, t|y, 0)
]

+
∂

∂x

{

[F0(x) + fadd(x, t)]K
[z,T ](x, t|y, 0)

}

(A5)

where

fadd(x, t) = V (x)
∂

∂x
ln [C(z, T, x, t, y)] (A6)

(Zhao et al. 2013).

Note that Eq. (A5) has the form of diffusion equation for an uncondi-

tioned problem that is subject to a total force of F0(x) + fadd(x, t), i.e., the

original force F0(x) plus the ‘additional force’ fadd(x, t). Thus although Eq.

(A5) originally arose in a conditioned problem, we can ignore this connec-

tion, and simply note that for the force F0(x) + fadd(x, t), the solution of

the diffusion equation, Eq. (A5), is given by the distribution K [z,T ](x, t|y, 0)

of Eq. (A3). This solution has the properties K [z,T ](x, 0|y, 0) = δ(x − y)

and K [z,T ](x, T |y, 0) = δ(x − z) which shows that, from a definite starting

value of y at time 0, the force F0(x) + fadd(x, t) systematically ‘pushes’ the

frequency to a definite final value of z at time T . The form of the additional
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force fadd(x, t) is not unique but has the simplest form15.

Generalisation

Continuing, we generalise the above results, so that fadd(x, t) is replaced

by a force Fadd(x, t) which, starting from an arbitrary initial distribution,

α(x), drives the allele frequency to the arbitrary target distribution β(x).

Both α(x) and β(x) are normalised to unity (
∫ 1
0 α(x)dx = 1 and

∫ 1
0 β(x)dx =

1) as befits probability densities.

We begin the generalisation by constructing

P (x, t) =

∫ 1

0
dp

∫ 1

0
dqβ(p)K [p,T ](x, t|q, 0)α(q). (A7)

This is a probability density defined over the times 0 ≤ t ≤ T with u the

initial time and T the final time. The distribution in Eq. (A7) has the

following properties: (i)
∫ 1
0 P (x, t)dx = 1 (because

∫ 1
0 K [p,T ](x, t|q, 0)dx =

1); (ii) when t = 0 we have P (x, 0) = α(x) (because K [p,T ](x, 0|q, 0) =

15A somewhat general way to see that the additional force fadd(x, t) is not unique is as
follows. Suppose that in Eq. (A3), instead of usingK [z,T ](x, t|y, 0) we used the conditioned

distribution K̃ [z,T ](x, t|y, 0) = K1(z,T |x,t)K1(x,t|y,0)
K1(z,T |y,0)

where K1(x, t|y, u) is the distribution

of the frequency for the force F1(x, t). The distribution K̃ [z,T ](x, t|y, 0) has the properties

K̃ [z,T ](x, 0|y, 0) = δ(x − y) and K̃ [z,T ](x, T |y, 0) = δ(x − z), thus (like K [z,T ](x, t|y, 0)),

the frequency also ‘goes’ from y to z. However, the total force driving K̃ [z,T ](x, t|y, 0) is

F1(x, t) + V (x) ∂
∂x

ln
[
K1(z,T |x,t)
K1(z,T |y,0)

]
, and the additional force, relative to the force acting in

the original problem (F0(x)), is F1(x, t)+V (x) ∂
∂x

ln
[
K1(z,T |x,t)
K1(z,T |y,0)

]
−F0(x). This additional

force generally differs from the additional force in Eq. (A6). The additional force has the
simplest form when F1(x, t) coincides with F0(x).
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δ(x − q)); (iii) when t = T we have P (x, T ) =
∫ 1
0 β(x|q)α(q)dq = β(x)

(because K [p,T ](x, T |q, 0) = δ(x − p)). Thus the form of the distribution in

Eq. (A7) satisfies the requirements that it starts at an initial distribution of

α(x) at time 0 and becomes the target distribution β(x) at time T . We shall

show that P (x, t) obeys a diffusion equation where, apart from the original

force F0(x), an additional force acts. This additional force thus serves to

produce β(x) from α(x), but because of reasons advanced above, does not

have a unique form.

Proceeding, we note that using Eq. (A3) we can write P (x, t) as

P (x, t) =

∫ 1

0
B(x, t; q)K0(x, t|q, 0)α(q)dq (A8)

where

B(x, t; q) =

∫ 1

0
β(p)

K0(p, T |x, t)

K0(p, T |q, 0)
dp. (A9)

As a function of x and t, B(x, t; q) obeys the backward diffusion equation,

Eq. (A2). Because of this, the quantity

Q(x, t; q) = B(x, t; q)K0(x, t|q, 0) (A10)
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obeys, as a function of x and t, the equation

−
∂

∂t
Q(x, t; q) = −

1

2

∂2

∂x2
[V (x)Q(x, t; q)] +

∂

∂x
[F0(x, t)Q(x, t; q)]

+
∂

∂x

[

V (x)

(

∂

∂x
ln [B(x, t; q)]

)

Q(x, t; q)

]

. (A11)

On multiplying this equation by α(q) and integrating over all q yields (using

P (x, t) =
∫ 1
0 Q(x, t; q)α(q)dq, which follows from Eqs. (A7) and (A10))

−
∂

∂t
P (x, t) = −

1

2

∂2

∂x2
[V (x)P (x, t)] +

∂

∂x
[F0(x, t)P (x, t)]

+
∂

∂x

[

V (x)

∫ 1

0

(

∂

∂x
ln [B(x, t; q)]

)

Q(x, t; q)α(q)dq

]

. (A12)

We write the last term as

∂

∂x

[

V (x)
∫ 1
0

(

∂
∂x

ln[B(x,t;q)]
)

Q(x,t;q)α(q)dq
∫ 1
0 Q(x,t;q)α(q)dq

×

∫ 1

0
Q(x, t; q)α(q)dq

]

=
∂

∂x

[

V (x)
∫ 1
0

(

∂
∂x

ln[B(x,t;q)]
)

Q(x,t;q)α(q)dq
∫ 1
0 Q(x,t;q)α(q)dq

× P (x, t)

]

(A13)
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This is of the form
∂

∂x
[Fadd(x, t)P (x, t)] where

Fadd(x, t) = V (x)

∫ 1
0

(

∂
∂x

ln[B(x,t;q)]
)

Q(x,t;q)α(q)dq
∫ 1
0 Q(x,t;q)α(q)dq

. (A14)

Using Eq. (A10) allows this to be written as

Fadd(x, t) = V (x)

∫ 1
0

∂B(x, t; q)

∂x
K0(x, t|q)α(q)dq

∫ 1
0 B(x, t; q)K0(x, t|q)α(q)dq

(A15)

and Fadd(x, t) is the generalisation of the force appearing in Eq. (A6).

Appendix B: Special cases and examples of the additional

force

In this appendix we consider some special cases of the additional force in-

cluding some time-independent examples. Throughout this appendix, we

take the target distribution to correspond to just the occurrence of fixation

and loss, and take these to occur with probabilities of β1 and β0 = 1 − β1,

respectively. That is

β(x) = β1δ(1− x) + β0δ(x) (B1)

where δ(x) is a Dirac delta function of argument x.
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The function B(x, t; q) of Eq. (3), that appears in Eq. (A15) for the

additional force, is given by B(x, t; q) =
∫ 1
0 β(p)K0(p,T |x,t)

K0(p,T |q,0)dp. Due to Eq.

(B1), the ratio K0(p,T |x,t)
K0(p,T |y,0) within B(x, t; q) is evaluated at the frequencies

p = 1 and p = 0 (fixation and loss) and has (as stated in Appendix A) to be

replaced by the appropriate ratio of fixation or loss probabilities. For p = 1

the ratio becomes
Pfix(T |x,t)
Pfix(T |y,0) where Pfix(T |x, t) is the probability of fixation

of the focal allele (under the dynamics of Eq. (2)) by time T given an initial

frequency of x at time t; similarly, for p = 0 the ratio becomes Ploss(T |x,t)
Ploss(T |y,0)

where Ploss(T |x, t) is the corresponding probability of loss by time T . We

thus have

B(x, t; q) =

∫ 1

0
β(p)

K0(p, T |x, t)

K0(p, T |q, 0)
dp

= β1
Pfix(T |x, t)

Pfix(T |q, 0)
+ β0

Ploss(T |x, t)

Ploss(T |q, 0)
. (B2)

Using this result in Eq. (A15) for the force gives

Fadd(x, t) = V (x)

∫ 1
0

[

∂
∂x

(

β1
Pfix(T |x,t)
Pfix(T |q,0) + β0

Ploss(T |x,t)
Ploss(T |q,0)

)]

K0(x, t|q)α(q)dq

∫ 1
0

(

β1
Pfix(T |x,t)
Pfix(T |q,0) + β0

Ploss(T |x,t)
Ploss(T |q,0)

)

K0(x, t|q)α(q)dq
.

(B3)
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Special case: only a single initial frequency

A special case of the additional force in Eq. (B3) occurs when the initial

distribution corresponds to only the presence of the single frequency y (that

is α(q) = δ(q − y)). We then obtain the simpler result

Fadd(x, t) = V (x)

∂

∂x

(

β1
Pfix(T |x,t)
Pfix(T |y,0) + β0

Ploss(T |x,t)
Ploss(T |y,0)

)

β1
Pfix(T |x,t)
Pfix(T |y,0) + β0

Ploss(T |x,t)
Ploss(T |y,0)

. (B4)

Assuming the time of attaining the target distribution, T , is finite, this

additional force generally has time dependence.

Special case: only fixation occurs

A special case of the additional force in Eq. (B3) occurs when the final

distribution corresponds to only the occurrence of fixation (that is β1 = 1

and β0 = 0). We then obtain the simpler result

Fadd(x, t) = V (x)
∂

∂x
ln [Pfix(T |x, t)] . (B5)

Assuming the time of attaining the target distribution, T , is finite, this

additional force will generally depend on the time, t.

Special case: T → ∞

A different special case of the additional force of Eq. (B3) is the limit of
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large T , corresponding to the target distribution being achieved at very long

times. We shall assume the original force and the effective population size are

independent of time. Then when T → ∞, Pfix(T |x, t) becomes Pfix(x), the

probability of ultimate fixation of the focal allele when the initial frequency

is x and similarly, Ploss(T |x, t) becomes Ploss(x) = 1 − Pfix(x). We thus

obtain

Fadd(x, t) = V (x)

∫ 1
0

[

∂
∂x

(

β1
Pfix(x)

Pfix(q)
+β0

Ploss(x)

Ploss(q)

)]

K0(x,t|q)α(q)dq

∫ 1
0

(

β1
Pfix(x)

Pfix(q)
+β0

Ploss(x)

Ploss(q)

)

K0(x,t|q)α(q)dq
. (B6)

Assuming an initial distribution, α(q), that covers a range of frequencies

(not just a single frequency) we note that despite taking the large T limit

(T → ∞) the additional force in Eq. (B6) generally depends on the value

of the time, t. At large values of the time, t, however, this additional

force becomes independent of time (because when t → ∞, the distribution

K0(x, t|q) becomes independent of time: K0(x, t|q) → δ(1 − x)Pfix(q) +

δ(x)Ploss(q)).

Special case: T → ∞, only a single initial frequency

We can specialise this last result further, to the case where, additionally,

the initial distribution corresponds to only the single frequency y being

present (that is α(q) = δ(q − y)). We then obtain the time independent
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result

Fadd(x, t) = V (x)

∂

∂x

(

β1
Pfix(x)
Pfix(y)

+ β0
Ploss(x)
Ploss(y)

)

β1
Pfix(x)
Pfix(y)

+ β0
Ploss(x)
Ploss(y)

, T → ∞, initial freq. is y

= V (x)
[β1 − Pfix(y)]P

′
fix(x)

β1Pfix(x) + β0Pfix(y)− Pfix(x)Pfix(y)
(B7)

where P ′
fix(x) = dPfix(x)/dx.

Deriving examples of the special case: T → ∞, only a single initial frequency

We shall now derive some time-independent examples for the additional

force, based on Eq. (B7).

Assuming a diploid population that behaves as though it undergoes ran-

dom mating, with effective size Ne, we have V (x) = x(1−x)/(2Ne) (Wright

1931, Gale 1990) and for additive selection, where each copy of the focal

allele changes the relative fitness of its carrier by s, the original force is

F0(x) = sx(1 − x), with assumed negligible corrections of order s2. The

probability of ultimate fixation is then given by Kimura’s (1962) result

Pfix(x) =
1− e−Sx

1− e−S
(B8)

where S = 4Nes.
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To obtain the results in Eqs. (10) - (13) of the main text we have the

following.

For (β1 = 1, β0 = 0), Eq. (B7) yields Fadd(x) =
V (x)P ′

fix
(x)

Pfix(x)
. Use of Eq.

(B8) then leads to Eq. (10) of the main text.

For (β1 = rPfix(y), β0 = 1 − rPfix(y)), Eq. (B7) yields Fadd(x) =

−
V (x)(1−r)P ′

fix
(x)

1−Pfix(x)+r[Pfix(x)−Pfix(y)]
. Use of Eq. (B8) then leads to Eq. (11) of the

main text.

For S = 0, Eq. (B8) reduces to Pfix(x) = x and Eq. (B7) yields

Fadd(x) =
V (x)(β1−y)

β1(x−y)+y(1−x) which is Eq. (12) of the main text.

For (S = 0, β1 = 0, β0 = 1), Eq. (B7) yields Fadd(x) = −
V (x)P ′

fix
(x)

1−Pfix(x)
.

Since Pfix(x) = x, we obtain Eq. (13) of the main text.

Appendix C: Wright-Fisher simulations

In this appendix we give details of the simulations we used in this work,

that were based on a Wright-Fisher model.

Starting with an effectively infinite population, where the frequency of a

focal allele at time t is Xt, we assume that Xt changes according to Xt+1 =

Xt+F0(Xt) (thus F0(x) is the evolutionary force acting when the frequency

is x).

In a finite diploid population of census size N the Wright-Fisher model
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corresponds to the equation

Xt+1 =
Bin(2N,Xt + F0(Xt))

2N
(C1)

where we use Bin(n, p) to denote a random variable (not a distribution) that

is drawn from a binomial distribution with parameters n and p, such that

Bin(n, p) takes the valuesm = 0, 1, 2, ..., n with probabilities
n!

(n−m)!m!
pm(1−

p)n−m.

Generating a large number of copies of trajectories (X0, X1, X2, ...),

from Eq. (C1), is the most basic form of the simulations adopted in this

work.

When we incorporate the additional force into the simulations, we replace

F0(Xt) in Eq. (C1) by Ftotal(Xt, t) = F0(Xt) + Fadd(Xt, t), with Fadd(Xt, t)

obtained from a diffusion approximation. This leads to simulations of a

hybrid nature since the Wright-Fisher model has discrete generations and

discrete frequencies, but the diffusion approximation treats both frequency

and time as continuous quantities.

In principle, the diffusion approximation can lead to additional forces

of large magnitude, but when a force as a function of frequency x, say

F (x), appears in a Wright-Fisher model, it always occurs in the combination
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x + F (x). This combination has the interpretation as a probability, which

means that for all x we must have 0 ≤ x + F (x) ≤ 1. When 0 ≤ Xt +

Ftotal(Xt, t) ≤ 1 we can directly use Ftotal(Xt, t) in the simulations. When

Xt + Ftotal(Xt, t) < 0 we reset it to 0 while when Xt + Ftotal(Xt, t) > 1 we

reset it to 1.

Typically resetting of Xt + Ftotal(Xt, t) is not necessary in the examples

we have considered where the additional force is time independent. When

the target distribution is to be achieved at a finite time T , the diffusion

approximation of the additional force is time dependent and can become

large. This occurs for trajectories that are far from probable target frequen-

cies at times close to T . Because the additional force acts from early times,

such trajectories are highly improbable, and resetting needs rarely to be

performed.
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