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Abstract—Representative distribution of body shapes is needed
when simulating crowds in real-world situations, e.g., for city
or event planning. Visual realism and plausibility are often
also required for visualization purposes, while these are the
top criteria for crowds in entertainment applications such as
games and movie production. Therefore, achieving representative
and visually plausible body-shape variation while optimizing
available resources is an important goal. We present a data-
driven approach to generating and selecting models with varied
body shapes, based on body measurement and demographic data
from the CAESAR anthropometric database. We conducted an
online perceptual study to explore the relationship between body
shape, distinctiveness and attractiveness for bodies close to the
median height and girth. We found that the most salient body
differences are in size and upper-lower body ratios, in particular
with respect to shoulders, waist and hips. Based on these results,
we propose strategies for body shape selection and distribution
that we have validated with a lab-based perceptual study. Finally,
we demonstrate our results in a data-driven crowd system with
perceptually plausible and varied body shape distribution.

I. INTRODUCTION

Simulation of crowds is needed for many applications, which

tend to fall into two main categories: those that need as accurate

a representation of a population as possible, and those for

which visual realism and plausibility are the most important

criteria. For example, for games and movies, the most important

criterion is usually that the crowd is perceived to be realistic and

to behave plausibly, whereas when designing a city, stadium

or theme park, the planners will need to be confident that

the movements, behaviors and body sizes of the agents are

representative of the real humans who will actually populate the

future environment. However, for many planning applications a

realistic visual representation of the crowd is also important as it

helps to better understand the real-world data being visualized;

and often for games and movies, the more representative the

virtual crowd is of a real population, the more realistic and

plausible the results will be. Therefore, a data-driven approach

that takes real-world demographics into account will be useful

in both cases.

One of the most important factors for perceived realism of

crowds is the level of variety in the 3D models used to visualize

the virtual humans present. The perception of varied human

appearance and motion have previously been studied in this

Note: This work was done while all authors were at Disney Research

context [1], [2], but to date, body shape variation has received

less attention. However, two of the most functionally relevant

and visually salient features of any crowd are the shapes and

sizes of the people in it, and their relative distributions: i.e.,

under normal circumstances most people will have shapes close

to the median of the population, and there will be decreasing

numbers of more atypical bodies present. For the majority of

practical applications, it is not possible to individually model

each member of a crowd, so a fixed budget of 3D models

is used and replicated to generate a large crowd. Therefore,

strategies are needed for choosing the optimal set of characters

and distributing them realistically, while minimizing the risk

of perceiving visual clones.

Approaches to varying body shapes for crowd simulation

have been presented, and our work is very complementary

to such approaches. For example, Thalmann and Musse

[3] generate models with different body types that may be

distributed according to any available statistics. However, the

resulting models in such systems have tended to be more

stylistic representations rather than physically accurate, and

the perception of body shape differences or motion variation

has not been considered. In the field of psychology, body

perception studies have mainly been focused on gender and

attractiveness (see [4] for a recent overview) and not on the

distinctiveness of different body shapes. To our knowledge,

this is the first study to perceptually evaluate the effects of

body shape on distinctiveness and the first to use body shapes

derived from real data to explore attractiveness.

In this paper, we present a data-driven approach to creating

a crowd with representative and varied body shapes. We

base our model generation and distribution strategies on

body measurement and demographic data from the Civilian

American and European Surface Anthropometry Resource

(CAESAR) anthropometric database. From preliminary studies

and observation, it was obvious that the most salient body

shape differences are due to the height and girth (i.e., waist

circumference) of the captured actors. However, closer to the

median, other types of body shape differences are increasingly

salient. As there are more individuals in this group than any

other, more replications of each template model will be needed.

We were interested in the following question and conducted

two perceptual studies to explore it: What are the most salient

factors that affect the perception of body shape distinctiveness



Fig. 1. A set of varied models created using our data-driven body shape selection and creation approach.

Fig. 2. Example pairs showing 3D models (right) generated from the CAESAR sample measurements (left).

for bodies close to the median height and girth?. We found that

the most salient body differences are in size and upper-lower

body ratios. Based on our results we strategically select of a

number of models which, with clothing variation, can be used

to optimize crowd variety with a limited budget of 3D models.

II. RELATED WORK

McDonnell et al. [1], [5] have studied the effects of different

types of appearance and motion variation on the perceptibility

of visual clones in crowds, while Pražák et al. [2] demonstrated

how only three different human motions replicated evenly

through a crowd. Hoyet et al. [6] evaluated the distinctiveness

and attractiveness of different types of human motion and

found that average motions were the least distinctive and

most attractive, consistent with findings in face perception

[7]. Johnson and Tassinary [8], [9] studied the effects of

both shape and motion on the perception of sex, gender, and

attractiveness. Using mainly stylized silhouettes of human body

shapes with varying waist to hip ratios, from exaggerated

hourglass to tubular, they found that both shape (especially

waist to hip ratio for women, and and motion information

contributed to participants judgments of attractiveness. In

particular, the waist-to-hip ratio (WHR) and hip sway are

important for sex categorization and female attractiveness, while

shoulders and their sway are most salient in men. Wellerdiek

et.al. [10] recently explored how body shapes and postures

affect perceived strength and power of male characters. See [4]

for a thorough overview of recent research in body perception.

apart from sex categorization, we are not aware of any studies

where the distinctiveness of different body shapes has been

explored.

Realistic body shape generation usually starts from real data,

e.g. body scans [11] and measurements [12]. To generate a

variety of body shapes, a body shape manifold or statistic model

is typically learned from shape data [13]–[19]. Many assume

a low dimensional manifold and dimensionality reduction tech-

niques such as Principle Component Analysis (PCA) have been

used to learn such representations. Once the manifold is learned,

controlled body generation can be achieved by specifying part

of the parameters and inferring the remainder. The parameter

specification can be either done through sampling or user input

[17], [20]. We use a commercial system (Daz3D) to generate

our crowd characters, but our results would be applicable

to models generated by any of these methods. With respect

to crowd generation, our work is complementary to that of

Thalmann and Musse [3], who generate models with different

somatotypes (endomorph, mesomorph and ectomorph) which

vary based mainly on the distribution of body fat, muscle and

WHR. Then, these body types may be distributed according

to any available statistics. Our model selection strategies and

perceptual results could be used to improve the realism and

representativeness of such a system.

III. MODEL SELECTION AND CREATION

To generate a set of 3D virtual human models for our data-

driven crowd system, we need to select a representative sample

of real body shape measurements and then create a realistic

visual representation for each. Using a set of templates to be

repeated throughout the crowd is efficient in terms of both



Fig. 3. The CAESAR database distribution of body heights and girths, with red dots showing the samples we picked to generate our template models; the red
cluster in the median group shows the samples used to generate our experimental stimuli. The total number of samples within each quadrant is shown at its top
left corner.

artist time and computational resources, as hardware instancing

can be used to replicate selected models.

We use body measurement data sourced from the CAESAR

project. The CAESAR data is based on stratified sampling of

age, ethnicity and gender [21]. It contains demographic data,

3D range scan and measurements for 2391 US residents (52.9%

female, 47.1% male, aged 18-65, with varied ethnicity). Height

and girth (waist circumference) are used to pick reference

samples, as we observe that these are by far the most salient

features that differentiate people from each other, especially

the more they deviate from the median. Then, we use 29

measurements for each sample (see Table I) to direct the

creation of each template 3D human model. To represent

the variation of the height and girth distribution as shown

in Figure 3, we divide the height into 5 groups and girth into 7

groups respectively. We combine some of the outlier quadrants

with small numbers of samples. Then 3 samples are drawn

randomly from each quadrant at least r distance apart to avoid

resemblance. After careful examination, one sample is kept to

represent each bucket and is used as templates for generating

the crowd. Due to the large sample count around the median

(row 2, column 2), more distinctive samples are needed to

maximize variety.

We use Daz3D to create realistic 3D models as it provides

useful tools and morphs for creating body shapes, although any

model generation tool with similar properties could be used. A

set of mesh deformers P is used to morph the template mesh T

to the desired measurement Md . Thus we can generate models

with measurements that closely match the CAESAR samples

(see Figure 2). Note that some measurements require the avatar

to be seated and in these cases we take the measurement from

the template mesh by setting the joint rotation of the avatars.

We wrote a script to apply the Daz3D mesh deformers P =
{p1, p2, · · · , pn} to morph the template mesh T using weights

wi. The post morph measurement Mt of the model is shown

in 1. Our script adjusts the morphs iteratively and different

measurements are recorded and compared against the desired

measurements.

Mt = Measure(T +
n

∑
i=0

wi ∗ pi(T )) (1)

To conform the avatar to the CAESAR subject measurements,

we use conjugate gradient descent to minimize the error

between the template mesh measurements and the desired

ones: ε = ‖Md −Mt‖. A set of clothes for the template female

and male meshes were created by an artist, and morphed

in Daz3D to fit each of our selected models. The models

are exported to Morpheme where retargeting and animation

occurs, and finally they are imported into our crowd system.

There they are rendered with color variation to create our final

varied crowd simulation.

IV. EXPERIMENTS

We conducted an online perceptual experiment to investigate

the influence of body measurements on the perception of body

shapes that are close to the median, as these are the templates

that will be most often replicated in a crowd. We are particularly

interested in the distinctiveness of the different body shapes,

and as previous research shows how attractiveness is closely

related, we also explore this metric. We also ran a laboratory-

based experiment with a different method and smaller number

of participants to gain further insights.

Stimuli: We select 32 male and female CAESAR samples

with girth and height closest to the median (see Figure 3) and

generate the 3D models that match their measurements, as

described in Section III. We also generate average male and

female models, as previous research in face and body motion



Fig. 4. Example models used in Experiment 1, sampled near the median:
models picked to represent the median group (left); most distinctive and
most/least attractive models (right).

perception has shown that the average is usually amongst the

least distinctive and most attractive. Some of the models used

can be seen in Figure 4.

Method: In order to recruit as many participants as possible,

we created several online surveys and posted the links on

Mechanical Turk (MT). The HITs (Human Intelligence Tasks)

were available only to ‘master MTurkers’, i.e., those who have

a good performance track record. The study was approved

by an institutional ethics review board and all participants

provided informed consent. After first removing the responses

of participants whose accuracy was too low (97 out of 479),

we analyzed the results of 382 participants (206F/176M).

Participants are shown a set of 99 pages, showing either all

male or female models depending on the hit. A target model

is shown on the left, and three smaller sample models are

shown on the right. One of the sample models always matched

the target, while the other two distractor models are chosen

at random from the remaining 32. The task was to first rate

the attractiveness of the target on a 7-point Likert scale from

1 (very unattractive) to 7 (very attractive); then to select the

sample on the right that was the same as the target. Three

repetitions of each target were shown, and the order of all

pages was randomized. Each page was viewed for between

5-10 seconds so the experiment took approximately 15-20

minutes on average.

As it would be infeasible to generate all possible combina-

tions of the 33 models as the time and/or number of participants

needed would be prohibitive, we created two surveys each for

male and female models. This means that each target was

compared with a total of 12 distractor models. To ensure that

Fig. 5. Distinctiveness and Attractiveness results from Experiment 1: the red
dots show the models we chose for the median group. The average Male and
Female models were also chosen.

we were not introducing bias with this limitation, we also ran a

laboratory-based experiment with 17 participants (8M/9F). We

followed a similar procedure to Hoyet et al. [6], where first a

group of two side-by-side models was shown, then one target

model, and the task was to indicate using one of two keys

whether the target was Present or Absent from the previous

group. In 50% of cases the model was present. One group of

9 participants viewed the Females and one group of 8 viewed

the Males. There were 4 repetitions of each target model (2

present, 2 absent) and the distractor models were selected at

random.

V. RESULTS AND DISCUSSION

Analysis of Variance (ANOVA): To ensure that differ-

ences between models were indeed being noticed, we first

performed repeated measures ANOVA on the average accuracy

values and attractiveness ratings for the Mechanical Turk

experiment. For accuracy (i.e., mean percentage of correct

identifications), we found a main effect of Model for the

33 female models (F(32,7680) = 50.06, p < .00005)) and the

33 male models (F(32,7520) = 30.65, p < .00005). For the

attractiveness ratings, we also found a main effect of Model

for both Females (F(32,7680) = 134.01, p < .00005)) and

Males F(32,7520) = 136.83, p < .00005). We also analyzed

the factors of participant sex, age group and the self-reported

display device used and found no significant effects.

We also performed repeated measures Analysis of Variance

(ANOVA) on the accuracy results from the Laboratory exper-

iment for Males and Females separately (a between-groups

analysis showed no main effect of Model Sex). We found

a main effect of both Female (F(32,256) = 1.88, p < .005))



and Male (F(32,256) = 1.97, p < .00005)) Models. We also

evaluated whether presence or absence detection accuracy were

different, and found that the former was significantly higher

than the latter (F(1,8) = 25.70, p < .0005)). However, a two-

way interaction between presence/absence and Model for the

Female models (F(32,256) = 1.49, p < .05)) indicated that

for some actors, absence detection was as good as presence

detection, in one case (90%) whereas for others it was as low

as 20%. There was much less variability in the scores for

presence detection, with participants scoring above 80% on

average.

Correlation Analysis: One of the main goals of our

experiments was to determine which body shape features have

the strongest effect on body shape perception. Hence we wished

to assess the correlations between our results and the body

measurements that we used to create the 3D models. Based on

the observation that absence detection appeared to yield greater

variability between models in the Laboratory experiment, we

decided to use five metrics based on our results: the Mechanical

Turk Hit rate (MT-H), which was calculated for each model

as the percentage of times it was accurately matched; the

Mechanical Turk False alarm rate (MT-F), i.e., for each model,

we calculated the number of times it was wrongly selected

divided by the number of times it was seen as a distractor

(note that we could not do this on a per-participant basis, as

the distribution of distractors was random); the Laboratory

Hit (LAB-H) and False alarm (LAB-F) rates; and the average

Attractiveness (ATT) ratings.

From viewing the images of the ranked models, it was clear

that the women fell into one or other of two very visually

distinct groups: those with symmetric upper and lower bodies

(i.e., hour-glass) and those whose lower body was wider than

the top (i.e., pear-shaped). Further analysis of the male images

showed that the two main body types were V-shaped (i.e.,

shoulders larger than the lower body) and Block (upper and

lower body widths more or less similar). Furthermore, from

the cited literature we know that Waist to Hip Ratios (WHR)

in women and Waist to shoulder or Chest Ratios (WCR) in

men have been found to be strong predictors of Gender and

Attractiveness. In order to determine whether the Females were

more Hourglass or Pear-shaped, we also calculated WCR-WHR

for the females (i.e., indicates symmetry between the upper

and lower body). We also found high correlations with these

measurements and factors as shown in Table II. We focus on

the most salient features here, and include all other significant

correlations in the supplemental material.

We selected Hourglass and Pear female models from those

above and below the median of WCR-WHR; and VShape and

Block males similarly, based on the median WCR. In Figure

5 we plot the average attractiveness (ATT) ratings against the

average distinctiveness (MT-H) for these models. We can see

that for the Hourglass group, attractiveness and distinctiveness

are positively correlated (0.9), whereas for the Pear group they

are not (the only reason there is not a significant negative

correlation is due to an outlier pear model who was much

thinner and lighter than all the others). Similarly, for the

Fig. 6. Close-up from the crowd simulation.

VShape males, there is a significant positive correlation between

distinctiveness and attractiveness (0.8) and a negative one for

the Blocks (-0.8). The most distinctive hourglass female was

also the most attractive female overall, with the most distinctive

pear the least attractive, with the same being true for the male

VShape and Block models (see Figure 4:right).

Selection Strategy: These results confirm our intuition that

these different body types are perceived very differently by

participants, and hence we made our choice of the three

representatives of the Median groups (Figure 4:left) by choosing

the average Male and Female (both of whom had the median

WCR or WCR-WHR and were amongst the least distinctive

of all models), along with one of each of the Hourglass, Pear,

VShape and Block models (chosen to be not overly distinctive

but reasonably different from each other). For the non-median

groups, as described in Section III, one sample is selected

among three candidates to represent its body size group. As

shown in Figure 1, we generated a set of crowd template for

various size and shapes to simulate the real-world crowd.

VI. CONCLUSION

We have found that the most visually salient properties of

body shape for models near the median are hips, chest and their

ratios with waist size. Furthermore, the types of bodies that

are defined by these ratios, i.e., V-shape or Block for males;

Hourglass or Pear for females, are perceived differently. The

template models that are selected using our perception based

strategy are most representative of the median population in a

crowd, which combined with the samples we selected from the

other body sizes, allow the generation of a crowd that is both

varied and representative of a real population (see Figure 6).

There are limitations to our work, in that we have only

explored similarity for a very small group of body shapes, and

we did not perform a full confusion analysis due to the nature

of the experimental data. We also did not assess the overall

variation perception of the full crowd, which is an interesting

direction for future work.



REFERENCES

[1] R. McDonnell, M. Larkin, S. Dobbyn, S. Collins, and C. O’Sullivan,
“Clone attack! perception of crowd variety,” ACM Trans. Graph.,
vol. 27, no. 3, pp. 26:1–26:8, Aug. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1360612.1360625
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Measurement Explanation

Acromial Height, Sitting Vertical difference from the sitting surface to the left acromion (shoulder)

Ankle Circumference

Arm Length (Shoulder to Wrist)

Hand Length Distance from tip of middle finger to the end of the palm

Head Circumference Circumference of the hand across knuckles of the index and little fingers

Hip Circumference, Maximum Maximum hip circumference measured parallel to the standing surface

Hip Circumference, Maximum, Height Vertical distance from standing surface to level of maximum hip circumference

Knee Height, Sitting Vertical distance from foot support surface to the top of knee

Neck Base Circumference Circumference of neck measured at the juncture of neck and shoulder

Shoulder Breadth Horizontal distance between maximum protrusion of left and right shoulder

Sitting Height Vertical distance sitting surface to the highest point of the head

Height Vertical distance between the standing surface and the highest point of the head

Thigh Circumference

Total Crotch Length Distance from front to back of the waist passing through the crotch

Waist Circumference

Waist Front Length Distance from front neck base to front of waistline in the median plane

Waist Height Vertical distance from waist to the standing surface

Weight

Armscye Circumference Circumference passing acromion (shoulder) and armpit

Chest Circumference Circumference of the torso at nipple level

Bust/Chest Circumference Under Bust

Buttock-Knee Length, Sitting Horizontal distance from foremost point of kneecap to rearmost point of buttock

Chest Girth at Scye Max circumference of torso passing under the arms and across upper chest

Crotch Height Vertical distance between crotch and standing surface

Eye Height, Sitting Vertical distance between sitting surface to outer corner of the eyes

Foot Length Maximum distance from the rear of the heel to the tip of the longest toe

Hand Circumference Circumference hand passing knuckles of index and little fingers
TABLE I

THE 27 CAESAR BODY MEASUREMENTS USED TO GENERATE OUR 3D MODELS

Female Correlations All Females Hourglass Females Pear Females

MT-H MT-F LAB-H LAB-F ATT MT-H MT-F LAB-H LAB-F ATT MT-H MT-F LAB-H LAB-F ATT

MTurk Hit Rate (MT-H) - -0.5 - -0.6 - - -0.8 - -0.7 0.9 - - - -0.6 -
MTurk False Alarm Rate (MT-F) -0.5 - - 0.6 -0.5 -0.8 - - 0.8 -0.8 - - - - -0.5
Lab Test Hit Rate (LAB-H) - - - - - - - - - - - - - - -
Lab Test False Alarm Rate (LAB-F) -0.6 0.6 - - - -0.7 0.8 - - -0.7 -0.6 - - - -
Attractiveness Ratings (ATT) - -0.5 - - - 0.9 -0.8 - -0.7 - - -0.5 - - -

Chest Circumference (mm) - 0.4 - 0.4 -0.4 - - - - -0.6 - 0.8 - - -0.7
Hip Circumference, Maximum (mm) - 0.5 - - -0.9 -0.7 0.9 0.1 0.6 -0.9 - - - - -0.9
Waist Circumference, Pref (mm) - - - - -0.6 - - - - - - -0.6 - - -0.7
Waist to Chest Ratio (WCR) - -0.4 - -0.5 - - - - - 0.6 - -0.8 - - 0.6
Waist to Hip Ratio (WHR) - -0.6 - - 0.8 0.7 -0.9 -0.2 -0.7 0.8 - - - - 0.8
WCR-WHR 0.4 - - - -0.4 - - - - - 0.6 - - - -

Male Correlations All Males VShape Males Block Males

MT-H MT-F LAB-H LAB-F ATT MT-H MT-F LAB-H LAB-F ATT MT-H MT-F LAB-H LAB-F ATT

MTurk Hit Rate (MT-H) - -0.8 - -0.5 - - -0.9 - -0.5 0.8 - -0.7 - - -0.8
MTurk False Alarm Rate (MT-F) -0.8 - -0.4 0.6 0.4 -0.9 - - 0.6 -0.7 -0.7 - -0.6 - 0.6
Lab Test Hit Rate (LAB-H) - -0.4 - - - - - - - 0.5 - -0.6 - - -
Lab Test False Alarm Rate (LAB-F) -0.5 0.6 - - - -0.5 0.6 - - -0.6 - - - - -
Attractiveness Ratings (ATT) - 0.4 - - - 0.8 -0.7 0.5 0.6 - -0.8 0.6 - - -

Chest Circumference (mm) -0.1 0.4 -0.1 0.4 0.8 0.8 -0.7 0.4 -0.6 0.9 -0.4 0.7 -0.4 0.4 0.6
Waist Circumference (mm) - - - - - - - - - - - - - - -
Hip Circumference, Maximum (mm) - - - 0.5 - - - - - - - - - - -
Waist to Chest Ratio (WCR) 0.2 -0.3 0.1 -0.4 -0.8 -0.8 0.8 -0.2 0.6 -0.8 0.6 -0.6 0.3 -0.3 -0.7

TABLE II
ALL SIGNIFICANT CORRELATIONS BETWEEN THE BODY MEASUREMENTS AND OUR FIVE METRICS: HIT (H) AND FALSE ALARM RATES (F) FOR OUR TWO

EXPERIMENTS (MT AND LAB), AND ATTRACTIVENESS RATINGS (ATT). ALL OTHER SIGNIFICANT CORRELATIONS ARE PROVIDED IN THE SUPPLEMENTARY

MATERIAL.


