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Who drives the ciliary highway?
Jarema Malicki

MRC Centre for Developmental and Biomedical Genetics; Department of Biomedical Science; The University of Sheffield; Sheffield, UK

Keywords: cilia, flagella, intraflagellar, motor, kinesin, zebrafish, mouse, C. elegans, photoreceptor

Cilia are protrusions on the surface of cells. They are frequently
motile and function to propel cells in an aqueous environ-
ment or to generate fluid flow. Equally important is the role
of immotile cilia in detecting environmental changes or in
sensing extracellular signals. The structure of cilia is supported
by microtubules, and their formation requires microtubule-
dependent motors, kinesins, which are thought to transport
both structural and signaling ciliary proteins from the cell
body into the distal portion of the ciliary shaft. In multicellular
organisms, multiple kinesins are known to drive ciliary
transport, and frequently cilia of a single cell type require
more than one kinesin for their formation and function. In
addition to kinesin-2 family motors, which function in cilia of
all species investigated so far, kinesins from other families
contribute to the transport of signaling proteins in a tissue-
specific manner. It is becoming increasingly obvious that
functional relationships between ciliary kinesins are complex,
and a good understanding of these relationships is essential to
comprehend the basis of biological processes as diverse as
olfaction, vision, and embryonic development.

The structure of cilia and their close relatives, flagella, is supported
by a characteristic configuration of microtubules. In most cases,
nine evenly spaced parallel microtubule doublets run along most
of the ciliary length (reviewed in ref. 1). On cross sections, they
are arranged in a circle, and two additional single microtubules
are frequently found in the center of the ciliary shaft (Fig. 1).
Although most cilia are characterized by a simple antenna-like
appearance, some differentiate into much more complex struc-
tures that feature wing- or finger-shaped membrane extensions
thought to aid their sensory functions. Such elaborate morphology
characterizes some of the chemosensory cilia in C. elegans, for
example.2 Even more structurally complex cilia are found in
vertebrate photoreceptor cells. These differentiate hundreds of
membrane folds harboring light-sensitive receptor molecules,
opsins and other components of the phototransduction
apparatus.3,4 A billion or so of opsin molecules is estimated to
reside in the ciliary membrane of a single photoreceptor cell in
some vertebrate species.5 Receptors of many other signaling
pathways, and the components of their respective signal
transduction cascades are found in cilia of numerous tissues.5-8

As cilia do not conduct protein synthesis on their own, all
protein components, from the most basic blocks of cilia structure,

such as tubulin, to transmembrane receptors and channels that
mediate signaling functions, must be delivered from the cell’s
cytoplasm. This is a multistep process that first involves
cytoplasmic transport to the base of the cilium, subsequently
crossing of the diffusion barrier that separates the ciliary compart-
ment from the rest of the cell, and finally, so-called intraflagellar
transport (IFT) along ciliary microtubules.1 Intraflagellar transport
has received ample attention in recent years, and advances in the
understanding of this process have been reviewed.9-11 Briefly, IFT
involves a movement of protein complexes, so-called IFT
particles, which consist of about 20 polypeptides, along ciliary
microtubules. In mutants of many IFT genes, cilia are absent.12-14

The IFT particle is thought to engage in two functionally distinct
types of molecular interactions: on the one hand it binds
microtubule-dependent motors that drive its movement, and on
the other it forms transient complexes with molecules that are
transported along the cilium and considered its cargo. Kinesins
and dyneins move the IFT particle in the anterograde (toward the
tip of the cilium) and retrograde directions, respectively. Recent
studies reveal an unexpected complexity in the function of ciliary
kinesins, and as it frequently happens provoke new questions.

The genetics of ciliary kinesins has been studied in several
model systems, most notably in Chlamydomonas and C. elegans,
but also in the mouse, zebrafish, Tetrahymena, and the fruit fly
(reviewed in refs. 15 and 16). These studies led to the conclusion
that the heterotrimeric kinesin-2 (known also as kinesin-II) is the
main anterograde motor that drives cilia formation. In
Chlamydomonas, mutations that affect each of its three subunits
lead to the loss of flagella.17,18 Similarly strong phenotypes are
observed in Tetrahymena and in fly Johnston organs.19,20

In C. elegans, ciliary kinesin function involves multiple motors
that act redundantly. Thus the loss of kinesin-II does not produce
a mutant phenotype in amphidial channel cilia, due to
redundancy with the homodimeric kinesin-2, encoded by the
osm-3 gene (Fig. 1B). In this group of cilia, microtubules form
doublets in the proximal (here known as the “middle segment”)
region and singlets in the distal region. Mutations in osm-3 result
in a loss of the distal ciliary segment only, which contains
microtubule singlets. Double mutants of both kinesins display,
however, a complete absence of cilia.21 The heterotrimeric and
homodimeric kinesins are also redundant or partially redundant in
the cilia of neighboring AWC and AWB neurons.22,23 An even
more complex interplay of kinesin function has been described in
nematode CEM (cephalic male) cilia, where three kinesins:
kinesin-II, osm-3, and klp-6, the latter a member of the kinesin-3
family, contribute to ciliogenesis. In this class of cilia, klp-6
appears to inhibit the activity of the two kinesin-2 family motors.
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In addition, the loss of kinesin-II alone leads to an unusual
phenotype, a lengthening of CEM cilia.24

So far, the majority of studies on vertebrate ciliary kinesins have
been performed in mice. The mouse has three genes that encode
the heterotrimeric kinesin 2 motor subunits: kif3a, kif3b and kif3c
(Fig. 1C). Genetic analysis in this model organism is complicated
by mid-gestation lethality associated with knockout phenotypes of
both kif3a and kif3b.25,26 To circumvent this difficulty, a number
of studies relied on conditional mutants that eliminate kif3a
function in several cell types or tissues of the kidney, skin,
pancreas, ear, retina and the brain.27-30 In agreement with
invertebrate data, all of these reported a cilia loss, and thus
confirmed the importance of kinesin-II in ciliogenesis. As

discussed below in more detail, the only exception to
this so far may be the vertebrate photoreceptor cell.

In contrast to kif3a and kif3b, the ablation of kif3c in
the mouse does not produce any obvious phenotype.31,32

The genetic analysis of Kif3 subunits in the mouse was
supplemented with biochemical studies, which revealed
that Kif3c dimerizes with Kif3a.33,34 Similarly, early
studies reported that Kif3b dimerizes with Kif3a.35 Kif3c
and Kif3b do not, however, appear to bind each other
(Fig. 1C). Based on these observations, a hypothesis
was formulated that kif3c and kif3b are functionally
redundant.34 This idea has not been, however, genetically
tested in the mouse so far.

In addition to the kinesin-II, the mouse genome
encodes a homolog of the homodimeric kinesin-2,
kif17. Unlike heterotrimeric kinesin-2 mutants, kif17
knockout mice display very subtle phenotypes only,
such as hippocampus-dependent memory impairment.36

Morphological abnormalities have not been reported in
the cilia of these animals. Such a weak phenotype could
be a consequence of genetic redundancy. So far, there is
no evidence, however, that kif17 acts redundantly with
the heterotrimeric kinesin in any of the mouse cilia, and
thus C. elegans remains the only model organism in
which a redundancy of these two kinesins has been
reported so far.

The zebrafish is the most recent model used to study
the genetics of vertebrate ciliary kinesins.37,38 The analysis
of kinesin-2 family genes in this organism has recently
revealed that, surprisingly, cilia of several tissues persist in
kif3b mutants. These include the cilia of two sensory cell
types, auditory hair cells and cone photoreceptors, as well
as some cilia in the spinal canal (ref. 37, and unpublished
results). (In the context of the photoreceptor cell, I will
use the term “cilium” as meaning the connecting cilium
and the outer segment, Figure 2E). At least two aspects
of mutant phenotypes in these cell types deserve
additional commentary. First, although all wild-type
auditory hair cells grossly display the same morphological
features, such as the presence of the apical kinocilium and
an array of stereocilia, it is only the hair cells of auditory
cristae that retain cilia in kif3b mutants (Fig. 2B and B’).
In the neighboring maculae, cilia of mutant hair cells are

not maintained (Fig. 2A and A’). The second intriguing
observation is that cilia of kif3b mutant cone photoreceptors
differentiate after a delay (Fig. 2C, C’, D and D’). This has not
been observed in mouse conditional mutants,39 perhaps due to a
late onset of Cre expression, which may preclude the analysis of
kif3a function at the earliest stages of photoreceptor differenti-
ation. A delay of cilia formation in mutant zebrafish suggests the
existence of a redundant transport mechanism that is initially
absent and becomes active only at a later stage of cell
differentiation. The evidence for the presence of such a
mechanism is outlined below.

In addition to kif3b, a kif17 mutant has also become available
in zebrafish. This mutant allele, kif17sa0119, obtained through the

Figure 1. Some key features of ciliary kinesins. (A) An electron micrograph of
a cross section through a cilium in zebrafish (left, from ref. 64) and a schematic
representation of ciliary microtubules (right). Inside the ciliary shaft, microtubules
form nine doublets that point their plus ends toward the tip of the cilium.
These doublets frequently continue as single microtubules in the distal region,
sometimes referred to as the “distal segment” of the cilium (d. s.). The portion of
the cilium occupied by single microtubules is highly variable in different cells.
(B and C) Kinesins are microtubule-dependent motors that transport cargo toward
plus ends of microtubules. In all species examined so far, the heterotrimeric
kinesin-2 (also known as kinesin-II) plays a major role in ciliary transport. It consists
of two distinct motor subunits and an accessory subunit (KAP3). In C. elegans, two
genes encode kinesin-II motor subunits (B). In vertebrates, on the other hand,
these motor subunits are encoded by at least three loci (C). Their protein products
are thought to assemble into complexes containing the Kif3a subunit, and either
Kif3b or Kif3c. Thus at least two distinct Kinesin-II complexes appear to function in
vertebrates. In addition to the heterotrimeric kinesin-2, the homodimeric kinesin-2,
in vertebrates encoded by the kif-17 gene, contributes to ciliary transport. In
C. elegans, this kinesin is frequently redundant with Kinesin-II and plays a major
role in cilia formation. In at least one group of cells, the homodimeric kinesin-2,
but not the heterotrimeric one, is necessary for the formation of the distal segment.
In vertebrates, the homodimeric kinesin-2 appears to play a less significant role.
It may transport unique cargos and/or kinesin-II cargos. There is no evidence that
the formation of single microtubules in the distal portion of vertebrate cilia requires
kinesins that differ from these that function in the formation of microtubule doubles.
Kinesins of other families also contribute to ciliary transport (not shown). Verterbrate
and C. elegans nomenclature is provided at the bottom of the figure.
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Sanger Institute TILLING project, contains a stop codon that
eliminates the tail region of the Kif17 protein, including the
binding domain for at least one of its cargo adaptors in the mouse,
the mLin-10/Mint1 protein.40,41 Such a defect should render the
Kif17 protein entirely dysfunctional, unless additional cargo
binding regions are present in the central portion of the Kif17
polypeptide. In addition, the phenotype of kif17sa0119 homo-
zygotes is not exacerbated by morpholino injections, further
suggesting that this allele is either null or close to that.37 The
zebrafish kif17sa0119 mutant homozygotes are viable and grossly
indistinguishable from the wild type. Apart from a weak
shortening of olfactory cilia, no morphological defects have been
observed in other types of cilia investigated in this mutant so far.37

Rigorous behavioral testing of kif17sa0119 animals is yet to be
performed, and may reveal additional phenotypes.

The C. elegans homolog of kif17 is one of the two major
kinesins involved in cilia formation. Is there then a broader role
for the kif17 kinesin in vertebrate cilia? One possibility could be
that this motor increases the throughput or the stability of
transport in cilia that translocate a particularly heavy load of

protein cargo. In such a case, the loss of kif17
could produce subtle functional changes in some
specialized cilia only. This could happen in
photoreceptors, for example, which based on
outer segment membrane renewal rate are esti-
mated to transport in the order of 1,000 opsin
molecules and many other polypeptides every
second.42 To evaluate opsin transport in photo-
receptor cells, a pulse of opsin-GFP fusion protein
can be expressed from a heat-shock promoter. The
time required for opsin-GFP to translocate from
the cell body into the outer segment reflects
transport efficiency.43 In kif17 zebrafish mutants,
such a test does not reveal any transport defects,
however. Similarly, no morphological abnormal-
ities, cell loss, or a mislocalization of the
endogenous opsin are observed in photoreceptors
of adult kif17 homozygotes.37 Thus based on all
the above studies, the function of kif17 appears to
be very limited. This conclusion is also in
agreement with tissue culture experiments show-
ing that a loss of kif17 affects the transport of a
ciliary CNG channel, but not cilia morphology.8

The presence of cilia in zebrafish kif3b mutants
and the limited scope of the kif17 phenotype may
result from the functional redundancy between
these two genes. This idea is attractive, given what
is known about the function of nematode ciliary
kinesins. Nonetheless, contrary to such expecta-
tions, in kif17/kif3b double mutants cone opsin
continues to localize properly.37 Similarly, cristae
cilia are present in the double mutant. The
formation of cilia in kif3b mutant cone photo-
receptors and hair cells appears then to rely on yet
another transport mechanism.

Another potential reason for the absence of
defects in some kif3b mutant cilia is a redundancy of function
with kif3c. As already discussed above, this possibility is supported
by biochemical studies.34 It is not supported, however, by protein
localization reports that did not detect Kif3c at the photoreceptor
cilium.33,34 Nonetheless, to test this possibility, kif3b mutants
were treated with anti-kif3c morpholinos. The zebrafish genome
contains two kif3c-related genes, kif3c and kif3c-like (kif3cl). A
knockdown of one of these, kif3c, in the kif3b mutant strain does
result in a severe loss of cilia both in cone photoreceptors and in
hair cells of ear cristae.37 This leads to the conclusion that indeed,
as predicted more than a decade ago, kif3b and kif3c do function
redundantly in some cilia.

Two additional experiments were performed to test the role of
kif3c in photoreceptor cilia. First, the opsin-GFP transport assay
was conducted in kif3c morphants at two stages: 3 and 5 d
postfertilization (dpf). This revealed that ciliary transport proceeds
at a normal speed in morphant photoreceptors at 3 dpf. By 5 dpf,
however, transport appears to be slower, compared with control
animals. The difference is small but statistically significant. The
small magnitude of the slowdown appears nonetheless noteworthy

Figure 2. A subset of cilia differentiate in kif3bjj203 mutant embryos. In (A, A’, B and B’),
shown are wild-type (A and B) and mutant (A’ and B’) embryos stained with anti-acetylated
tubulin antibody at 3 (B and B’) and 7 (A and A’) dpf. (A and A’) Confocal images of a
macula in the zebrafish ear. Cilia (arrows) are present in both wild type and mutant.
(B and B’) Confocal images of a crista of the zebrafish ear. Cilia (arrows) are absent in the
mutant. (C, C’ and D’) Electron micrographs of sections through wild-type
(C and D) and mutant (C’ and D’) photoreceptor cells at 3.5 (C and C’) and 5 (D and D’) dpf.
Photoreceptor outer segments [OS, asterisks in (C–E)] are initially absent in the mutant.
(E) A schematic drawing of the vertebrate photoreceptor cell (after Kennedy and Malicki,
2009). The outer segment membrane is in red. Microtubules that support its structure are
in blue. In this work, term “cilium” is used to mean the structure that includes the
connecting cilium and the outer segment. The outer segment (OS) forms in the distal part
of photoreceptor cilia, which differentiates membrane folds. The connecting cilium (CC),
on the other hand, is the proximal region of photoreceptor cilia, and displays
characteristics of the ciliary transition zone. OLM, outer limiting membrane.
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given that antisense morpholinos lose much of their activity by
that stage. In the second experiment, kif3c mRNA was
overexpressed in kif3b mutant homozygotes, which differentiate
photoreceptor cilia with a delay of at least 24 h, compared with
the wild type. This resulted in an earlier differentiation of kif3b
mutant cilia, more in line with the time course observed in the
wild type.37 This observation suggests that kif3c function,
although capable of substituting for kif3b, is initially absent
during photoreceptor ciliogenesis. kif3c presumably becomes
active at a later stage of photoreceptor cilia assembly, and is
responsible for partial recovery of outer segment formation in
kif3b mutant homozygotes (summarized in Figure 3).

The current understanding of kinesin function in vertebrate
cilia leaves many questions unanswered. One is why kif3c
functions in some cilia but not in others. This issue is puzzling
especially because cells that do deploy kif3c appear morphologi-
cally and functionally similar to those that do not. This is the case,
for example, in hair cells of maculae and cristae, which display few

differences. The most obvious disparity between cells of these two
populations, which differentiate in neighboring regions of the
inner ear, is the length of kinocilia, which are substantially longer
in cristae. This, again, brings to mind the possibility that longer
or more bulky cilia, such as these in cristae or in photoreceptor
cells, would require a particularly robust transport mechanism,
and consequently employ multiple and functionally redundant
kinesins.

The biggest number of unsolved questions surrounds, however,
transport mechanisms that contribute to cilium formation in the
photoreceptor cell. According to the kif3c/kif3b redundancy
model, protein products of both genes require Kif3a as a binding
partner. If so, kif3a mutants should not differentiate any cilia at
all. It is not clear, however, whether this is the case. Following a
conditional knockout of kif3a specifically in mouse rod photo-
receptors, opsin, peripherin, as well as certain phototransduction
cascade components continue to localize to the apical region of
the cell at least until postnatal day 21.39 Similarly, following a
cone-specific knockout, peripherin continues to be detected in the
apical region of the cell until day p30. This suggests that
rudimentary outer segments may be maintained in these animals
despite the absence of kif3a. Ultrastructural data are needed to
determine with certainty whether or not outer segments are
present in mutant photoreceptors.

A trivial explanation for the persistence of outer segments in
kif3a mutant retinae is that the Kif3a protein perdures for a long
time, following conditional knockout of the kif3a gene at about
postnatal day 7. If, however, and this has been already suggested
in literature, such a scenario is not correct, a kif3a-independent
transport mechanism must function in photoreceptor cilia. What
could this mechanism involve? Several speculative ideas can be
offered. One possibility is that kif3c alone is sufficient to drive the
differentiation of some cilia. Kif3c protein appears to exist in two
complexes, only one of which contains Kif3a.34 It is thus possible
that a from of the Kif3c complex that does not contain Kif3a is
sufficient to facilitate at least some aspects of ciliary transport into
the photoreceptor outer segment. Another possibility is that an
entirely different transport mechanism is involved: one based on
actin-dependent motors. Actin has been detected at the junction
of the connecting cilium and the outer segment,44,45 and further
support for this idea is provided by observations that in Myo7a
mutant mice, rod opsin accumulates in the connecting cilium.46,47

This phenotype is much weaker, compared with defects observed
in mouse kinesin mutants, perhaps due to redundancy between
myo7a and kinesins. Double mutants are needed to investigate
this possibility.

In addition to VIIa, several other myosins, including IIa, IIIa,
IIIb, VI, and IXb have been detected in vertebrate photoreceptors.
Myosin VI appears to be present in photoreceptor inner segments,
and its mutation affects photoreceptor function as evidenced by a
decrease of ERG a-wave amplitude.48 No structural abnormalities
have been reported, however, in mouse Myo6 mutant photo-
receptors. Similarly, Myosin IIIa appears to be expressed in the
inner segments of mouse photoreceptors.49 Although human
mutations in this gene are known to exist, they do not affect
vision, possibly due to functional redundancy with Myo IIIB,

Figure 3. Current understanding of functional relationships between
kinesin-2 family motors in vertebrate ciliogenesis. (A) In rod photo-
receptors, kif3b is necessary for cilia differentiation and cell survival.
In cone photoreceptors, on the other hand, kif3b is necessary for cilia
formation at 3 dpf. Somewhat later, at 5 dpf, kif3b and kif3c function
largely redundantly in cone cilia formation. kif3c does not, however,
entirely compensate for the loss of kif3b function, and vice versa kif3b
does not seem to entirely substitute for the loss of kif3c. (B) In the ear,
two populations of mechanosensory hair cells display very different
requirements for kinesin function: while kif3b is required for ciliogenesis
in auditory maculae, kif3b and kif3c function redundantly in the cilia
of cristae; either is sufficient to drive ciliogenesis in these cells.
(C) In olfactory placodes, both kif3b and kif17 are necessary for normal
ciliogenesis. The contribution of kif3b is much more significant,
compared with kif17. Based on mouse knockout data, Kif3a is necessary
for the differentiation of all cilia, except perhaps in photoreceptor cells,
where yet another mechanism may be operational (dashed arrow).

114 BioArchitecture Volume 2 Issue 4



©
20

12
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

which is also found in the inner segment.49,50 Finally, an
immunohistochemical analysis of several myosins resulted in an
intriguing finding that three of them, IIA, VIIA, and IXB, are
enriched at the basal bodies of photoreceptor cilia.51 Functional
tests of these myosins may lead to interesting findings. One has to
keep in mind, however, that even if actin-based transport
contributes to ciliogenesis, its importance may be limited to cilia
that feature particularly elaborate morphologies, such as the one
found in photoreceptor cells.

The significance of a delay in the onset of kif3c function during
cilia differentiation in cone cells is also not clear. Zebrafish
photoreceptor cilia start to differentiate the complex array of
membrane folds that characterizes outer segment morphology at
ca. 2.5 dpf.52 By 3 dpf, outer segments of wild-type photo-
receptors are prominent, and the zebrafish retina is functional as
tested by behavioral criteria.53 By contrast, outer segments are
completely absent in kif3b mutants at this stage, and start to form
only between 3 and 4 dpf. This is presumably due to the late
onset of kif3c activity. What is difficult to explain is that the onset
of kif3c activity does not correlate with any obvious morphoge-
netic event in the differentiation of the wild-type photoreceptor.
Perhaps then kif3c activity becomes necessary once the outer
segment attains a certain critical volume? In the fully differ-
entiated photoreceptor, the outer segment is one of the most
voluminous features of the cell,54 and thus it appears likely that
once it reaches a certain size, additional transport mechanisms
may have to become operational in order to maintain its structure
or function. The lack of an obvious mutant phenotype in kif3c
homozygous mutant mice suggests, however, the kif3c-mediated
transport is not necessary to maintain outer segment structure.
Perhaps then mouse kif3c mutant photoreceptors display
functional abnormalities that remain to be characterized? Apart
from the above scenario, kif3c function may become important
under stress, such as light damage to photoreceptor cells, or in
aging animals. These possibilities could be tested in kif3c mutant
mice. It also remains to be seen whether developmental changes in
kinesin repertoire occur in cilia of other cells.

The studies of kif3b and kif3c lead to another question of a more
general nature: to what extent are different kinesins functionally
interchangeable? While kif3b appears to almost fully compensate
for the loss of kif3c (opsin transport is a bit slower in the fish
morphant, but mice do not display any obvious phenotype), the
opposite is not true, as zebrafish kif3bmutant homozygotes display
outer segment defects.37 In one scenario, the loss of kif3b could be
perhaps entirely compensated by the overexpression of kif3c at a
sufficiently high level, implying that both kinesins transport the
same cargo. If, however, Kif3c can transport only a subset of Kif3b
cargos, it will not fully compensate for the loss of the kif3b gene,
regardless of its expression level.

To test the idea that vertebrate kinesin-2 family members are
interchangeable, kif17 was overexpressed in kif3b mutant animals.
This treatment resulted in a rescue of cilia formation in the spinal
canal.37 Thus despite the absence of functional redundancy in
wild-type development, vertebrate homodimeric kinesin-2 can
substitute for kinesin-II function in at least some cilia when
overexpressed, and so must be capable of transporting cargos

similar to these transported by kinesin-II. At first glance, this is
inconsistent with tissue culture studies showing that the loss of
kif17 function impairs the transport of an olfactory channel
subunit, CNGB1b, but does not affect cilia morphology,
implying that kif17 makes little contribution to the transport of
structural ciliary proteins, such as tubulin.8 These observations
can be reconciled, however, provided that Kif17 and Kif3 display
different affinities to overlapping sets of cargo molecules. The
kif17 phenotype in vertebrates brings to mind observations
of nematode AWC cilia, where the loss of the heterotrimeric
kinesin-2, but not homodimeric osm-3, results in impaired
chemosensation but not in cilia morphology defects.23 It appears
then that different albeit overlapping cargo specificities are a
common feature of kinesin-2 family motors. Mechanisms that
mediate the binding interactions between kinesins and their
cargos are an interesting subject of research. A question that
should be addressed is whether such mechanisms provide an
avenue for tissue- or developmental stage specific regulation of
cargo specificity.

In addition to kinesin-2 motors, members of other kinesin
families, such kif28, a homolog of nematode klp-6, as well as two
costal2-related genes, kif7 and kif27, may contribute to transport
in vertebrate cilia. The best studied in this regard is kif7, a
kinesin-4 family member, which localizes to cilia and plays a role
in hedgehog signaling but not in cilia morphogenesis (reviewed in
ref. 55). Although its fly homolog, Costal2, has been hypothesized
to function primarily as a scaffolding factor,56 several lines of
evidence suggest that Kif7 may contribute to the transport of
cargo along the ciliary axoneme. Support for this idea is provided
by crystal structure studies, showing that the Kif7 motor domain
is highly related to that of conventional kinesins.57 Moreover,
although mutations in the mouse kif7 gene do not affect cilia
morphology, they do impair the translocation of Gli proteins to
cilia tips.58 In addition, cell culture assays reveal that fly Costal2
displays microtubule-dependent mobility.59 Given that most fly
tissues do not differentiate cilia, and IFT is hypothesized to have
its evolutionary origins in the cytoplasm,60,61 the cytoplasmic
mobility of Costal2 may be related to Kif7-mediated ciliary
transport. To put it differently, some cilia-related transport
phenomena may take place in the cytoplasm of cells that do not
differentiate cilia. Finally, in planarians, the single homolog of
kif7/kif27 displays a much broader function as it is essential not
only for cilia-related signaling but also for cilia formation.62 Thus
in broad terms, vertebrate kif7 and kif17 display related functional
characteristics as both of these kinesins are necessary to localize
components of signal transduction pathways, a CNG channel and
Gli3 respectively, but are largely dispensable for cilia morpho-
genesis. In other phyla, however, homologs of kif7 and kif17
contribute to cilia formation and thus are likely to transport a
much broader assortment of protein cargo.

Finally, it has to be noted that apart from their role in
intraflagellar transport, kinesins may regulate cilia formation,
maintenance, and function via other mechanisms, such as
centriole assembly, for example. This is the case for Kif24 which
interacts with centrosomal proteins CP110 and Cep97, remodels
centriolar microtubules, and thereby affects the formation of
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cilia.63 It is safe to assume that future studies will reveal additional
kinesins that function in various aspects of vertebrate ciliogenesis.
If C. elegans data are of any predictive value, as they should be, the
functional relationships between vertebrate ciliary kinesins are
likely to be even more complex than these already described for
kinesin-II in zebrafish. The interactions of ciliary kinesins may
turn out to be as diverse as cilia themselves, and although a
common theme may emerge in the function of all ciliary transport
mechanisms, multiple models will be required to explain protein
transport in vertebrate cilia. There are then many drivers on

diverse ciliary highways, and it will still take some time to learn
who they all are and what exactly each of them does.
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