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Abstract 

Aims: Dysfunction of neurovascular pericytes underlies breakdown of the 

blood-brain barrier, but the molecular mechanisms are largely unknown. In this study, 

we evaluated the role of the TRPM2 channel and autophagy during brain pericyte 

injury in vitro and in vivo. Results: A rapid induction in autophagy in human brain 

vascular pericytes, in zinc oxide nanoparticles (ZnO-NP)-induced cell stress model, 

was paralleled with an increase in the expression of the TRPM2-S truncated isoform, 

which was abolished by treatment with a nitric oxide synthase inhibitor and 

peroxynitrite scavenger. Furthermore, Y1485 in the C-terminus of the TRPM2 protein 

was identified as tyrosine nitration substrate by mass spectrometry. Overexpression of 

the Y1485S TRPM2 mutant reduced LC3-II accumulation and pericyte injury induced 

by ZnO-NP. Consistently, LC3-II accumulation was reduced and pericytes were better 

preserved in intact brain microvessels of the TRPM2 KO mice following 

ZnO-NP-induced vascular injury. Innovation and Conclusions: Our present study 

has revealed a novel mechanism of autophagy disturbance secondary to nitrosative 

stress-induced tyrosine nitration of TRPM2 during pericyte injury.  
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Introduction 

The neurovascular pericytes are critical components of the blood-brain barrier 

(BBB) (27, 52, 54). Over the past decades, studies have concentrated mainly on the 

endothelial cell component. Recently, pericytes have gained increasing attention as 

important contributors to the maintenance of BBB function, vascular remodeling and 

reprogramming (21, 27, 40, 41, 52), and also as potential targets for therapies (40, 54). 

While the pericytes have been strongly implicated in regulating the permeability of 

the BBB and stress-induced pericyte injury (49), the precise underlying mechanisms 

remain elusive. Autophagy is a homeostatic cellular process that serves to control 

protein quality (36, 45). Recently, it has been reported that age-related pericyte 

degeneration might participate in cellular injury and trigger autophagic cell death (12). 

Accumulating evidence suggests that endoplasmic reticulum (ER) stress is a potent 

stimulus for autophagic response and develops prior to autophagy, as pharmacological 

inhibition of ER stress reduces autophagy (10, 31, 57). However, there have been 

conflicting reports regarding involvement of the ER stress-autophagy axis in inducing 

the pro-survival pathway or the pro-death pathway (6, 7, 34). It is important to note 

that the final outcome of the ER stress-autophagy axis highly depends on the strength 

and duration of stress-inducing signals. Therefore, it is necessary to examine the role 

of the ER stress-autophagy axis in particular cells under specific cellular contexts. It 

has been shown that zinc oxide nanoparticles (ZnO-NP)-induced toxicity leads to cell 

injury, which is a useful stress model to mimic the pathophysiological process of ER 
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stress and autophagy (3, 20, 39). 

Recent findings have revealed that pericytes from brain microvessels strengthen 

the barrier integrity in primary cultures of rat brain endothelial cells (35). As a sensor 

of oxidative stress and mediator of Ca2+ entry and apoptosis, the transient receptor 

potential melastatin-related 2 (TRPM2) channels play a crucial role in a variety of 

physiological and pathological processes, such as regulating endothelial barrier 

function, increasing lung microvessel permeability and neutrophil sequestration (16, 

25, 43, 51, 58). However, it is unclear how pericytes are damaged in response to stress 

stimulation and whether TRPM2 is involved in stress-induced pericyte injury.  

The present study aimed to elucidate the molecular mechanism responsible for 

stress-induced pericyte injury. Using the ZnO-NP-induced stress model, in 

combination with genetic and pharmacological approaches, we investigated on the 

role of TRPM2 in the crosstalk that couple autophagy and microvascular pericyte 

injury. Our results from in vitro and in vivo studies provide compelling evidences to 

support a role for nitrosative stress in linking the TRPM2 turnover with disturbance of 

autophagy in brain pericyte injury.  
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Results 

Spatiotemporal changes of autophagy in stress-induced brain pericyte injury 

The autophagic process induced by ZnO-NP is an early event for the evaluation 

of cell injury (20, 39). The size distribution and zeta potential distribution of ZnO-NP 

were determined (Supplementary Fig. S1). We began with monitoring the temporal 

changes in the autophagy-lysosome signaling in cultured human brain vascular 

pericytes treated with ZnO-NP, using western blotting to detect membrane-bound 

LC3-II (the phosphatidylethanolamine-conjugated form). Treatment with ZnO-NP for 

6 h induced a concentration-dependent increase in the LC3-II level (Fig. 1A and B).  

Formation of the double-membrane cistern structures or autophagosomes 

containing cytoplasmic materials or aberrant organelles is an ultrastructural hallmark 

of autophagy (19, 36). Consistently with the biochemical data, transmission electron 

microscopy revealed the formation of double-membrane structures with engulfed 

cytoplasm fractions in pericytes after treatment with ZnO-NP for 6 h (Fig. 1C). 

The accumulation of autophagosomes could indicate the dynamic process of 

autophagy (22). Therefore we next examined ZnO-NP-induced autophagy flux using 

fluorescence confocal microscopy in pericytes transfected with an mRFP-GFP-LC3 

tandem construct, which is based on the concept of lysosomal quenching of GFP in 

GFP-labeled LC3(23, 33). As shown in Figure 1D, exposure to ZnO-NP for 6 h 

induced the formation of GFP-LC3 and mRFP-LC3 puncta, and an increase in 
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accumulation of yellow fluorescent puncta, which is indicative of autophagosome. 

Such effects were ZnO-NP concentration-dependent (Fig. 1D and E). These results 

were confirmed by immunofluorescence staining with the anti-LC3 antibody 

(Supplementary Fig. S2) to show an increase in autophagic vesicle accumulation in 

ZnO-NP-treated pericytes. Taken together, these results provide consistent evidence to 

indicate that autophagy initiation is increased following ZnO-NP-induced pericyte 

injury. Furthermore, time-lapse imaging showed that ZnO-NP induced dynamic 

changes in autophagy flux over a period of 60 min, as indicated by the fluorescence 

switch between GFP-LC3 puncta and mRFP-LC3 puncta (Fig. 1F, Supplementary 

Video 1). Autophagic flux can also be reflected by an elevation in the LC3-II level 

while interrupting the autophagosome-lysosome fusion step. As shown in Figure 1G, 

after inhibition of the lysosome function using bafilomycin A1 (50 nM), the LC3-II 

level in pericytes was further upregulated in response to ZnO-NP stimulation, 

suggesting increases in autophagy induction and autophagic flux (Fig. 1G and H, 

Supplementary Fig. S3). 

TRPM2 knockdown blocks autophagy during brain pericyte injury 

A recent study shows that the TRPM2 channel is important in mediating 

oxidative stress-induced disruption of lung endothelial barrier function (16). In the 

present study, we set out to investigate the role of TRPM2 during brain pericyte injury. 

The temporal changes in the TRPM2 expression in brain pericyte cells after injury 
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were examined using western blotting. Treatment with ZnO-NP induced a 

time-dependent increase in a protein band with a molecular weight of 95 kDa, 

expected for the short TRPM2 protein isoform (TRPM2-S) (Fig. 2A). The expression 

level of TRPM2-S relative to the full-length TRPM2 (TRPM2-L) was increased as the 

exposure was extended from 1 to 9 h (Fig. 2A and B). Therefore, our data indicate that 

ZnO-NP stimulation results in significant effect on the TRPM2 turnover in pericytes.  

A recent study suggests TRPM2-S to be critically involved in reducing the 

HIF-1/2Į level and mitophagy in SH-SY5Y neuroblastoma cells (4). We next 

investigated whether alteration in the TRPM2 protein expression affected the 

autophagy events in pericyte injury by examining the effect of reducing TRPM2 

expression on LC3-II accumulation. Our results show that siRNA-mediated reduction 

in the TRPM2 expression significantly decreased LC3-II accumulation (Fig. 2C and 

D), indicating that ZnO-NP-induced LC3-II formation is TRPM2-dependent. 

Furthermore, we investigated whether ZnO-NP stimulation also disturbed autophagic 

flux in a TRPM2-dependent manner. After exposure to ZnO-NP for 2 h or 6 h, LC3-II 

accumulation was elevated further in pericytes treated with chloroquine (CQ, 25 ȝM) 

as compared with that in cells treated with CQ alone, indicating enhanced autophagic 

flux (Fig. 2E and F). Moreover, siRNA-mediated knockdown of the TRPM2 

expression decreased LC3-II accumulation in pericytes in the absence and presence of 

CQ, indicating that TRPM2 participates in both autophagy induction and enhanced 

autophagic flux during pericyte injury (Fig. 2E and F). 
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TRPM2 knockdown reduces ER stress during brain pericyte injury 

We next addressed the role of TRPM2 in ZnO-NP-induced brain pericyte injury 

using TUNEL staining. ZnO-NP treatment resulted in an increase in the percentage of 

TUNEL positive pericytes, which was almost completely abolished by treatment with 

TRPM2-siRNA (Fig. 3A and B), indicating TRPM2-dependent apoptotic cell death.  

ER stress is a hallmark of cell injury, reflecting the extent of protein aggregation 

and promoting cell injury (48). The downstream ER stress markers, such as CHOP, 

JNK and PERK, are known to be involved in the ER stress-mediated autophagy and 

apoptosis pathway (42, 48). To further validate the observation that TRPM2 is 

involved in pericyte injury, we examined such ER stress signaling proteins. Indeed, 

exposure to ZnO-NP led to time-dependent up-regulation of CHOP, phospho-JNK 

(Thr183/Tyr185) and phospho-PERK (Thr981) in pericytes (Supplementary Fig. S4). 

Moreover, ZnO-NP-induced upregulation of ER stress-associated signaling activity in 

pericytes was significantly inhibited by treatment with TRPM2-siRNA (Fig. 3C-F).  

To confirm that the observed TRPM2 turnover and ER stress-autophagy axis 

were causatively related to the severity of pericyte injury, ER stress-related signaling 

protein expression was examined. In contrast with the control cells, pericytes treated 

with ZnO-NP showed a significant increase in CHOP, phospho-JNK (Thr183/Tyr185) 

and phospho-PERK (Thr981) and again TRPM2 silencing decreased 

ZnO-NP-induced elevation in such ER stress signaling proteins in the presence of CQ 

(Fig. 3G, Supplementary Fig. S5). We further examined whether TRPM2 silencing 
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had a protective effect on the severe damage induced by prolonged exposure to 

ZnO-NP. Treatment with TRPM2-siRNA resulted in a significant protective effect in 

pericytes even after treatment with ZnO-NP for 24 h, as revealed by the 

downregulation of p-JNK and CHOP, along with the reduction in the degradation of 

IRE-1Į and PERK (Fig. 3H). These results show that siRNA-mediated knockdown of 

the TRPM2 expression effectively reduces ZnO-NP-induced severe cell injury in 

pericytes. 

We performed further experiments to determine whether autophagy events 

correlate with pericyte injury. As shown above, ZnO-NP treatment resulted in an 

increase in the percentage of TUNEL positive pericytes. In contrast, siRNA 

knockdown of ATG5 expression reduced the number of apoptotic cells (Fig. 4A and 

B), confirming that disturbance of autophagy promoted pericyte cell injury. Moreover, 

siRNA knockdown of ATG5 or TRPM2 significantly increased the cell viability and 

suppressed the activation of caspase-8 during brain pericyte injury (Fig. 4C-H).  

Nitrosative stress associates with TRPM2-dependent autophagy  

To better understand the molecular mechanisms underpinning TRPM2-dependent 

autophagy during pericyte injury, we examined the possible involvement of the 

nitrosative stress. It is known that peroxynitrite modifies tyrosine residues in proteins, 

which accounts for the effects of endogenously produced NO by oxidation and 

nitration reactions (14, 47). As shown in Figure 5A, western blotting analysis of 
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nitrotyrosine indicates that significant peroxynitrite formation was observed at 3 h 

after exposure to ZnO-NP and maintained throughout the treatment up to 12 h. To 

gain mechanistic insights, confocal imaging was used to detect the change in 

fluorescence intensity of NP3, an ONOO- probe in pericytes during treatment with 

ZnO-NP (Fig. 5B). There was significant increase in the NP3 fluorescence intensity in 

response to treatment with ZnO-NP, which was blunted by treatment with 200 ȝM 

uric acid, an ONOO- scavenger, prior to and during treatment with ZnO-NP (Fig. 5B). 

The autophagic flux can be morphologically traced with the mRFP-GFP-LC3 tandem 

construct. As shown above, the autophagic flux was increased following 6 h treatment 

with ZnO-NP. In contrast, treatment with uric acid led to barely discernible 

accumulations of yellow and red puncta upon during pericyte injury (Fig. 5C). 

Of note, inhibition of nitric oxide synthase using N(G)-nitro-L-arginine methyl 

ester (L-NAME, 100 ȝM) was also capable of inhibiting ZnO-NP-induced elevation 

in the TRPM2-S expression in pericytes (Fig. 5D-F). Pretreatment of pericytes with 

uric acid alone or together with L-NAME led to similar results (Fig. 5D-F). Next, we 

assessed the functional relevance of ONOO- formation with autophagy signaling 

during pericyte injury. Exposure to ZnO-NP for 6 h led to 4~5-fold increases in ER 

signaling proteins (Fig. 5G-I). To elaborate our finding, the ONOO- was used to 

further clarify the role of nitrosative stress during pericyte injury. Treatment with 

ONOO- induced a pronounced increase in ER signaling proteins and excessive 

autophagy in pericytes (Supplementary Fig. S6). While a pronounced decrease in ER 
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signaling proteins (namely CHOP and phospho-JNK), and LC3-II was detected in 

ZnO-NP-exposed cells treated with L-NAME, uric acid or both (Fig. 5D-I), and in 

these cells, fewer apoptotic cells were observed by TUNEL staining (Supplementary 

Fig. S7). On the basis of these data, we conclude that there is a requirement for 

nitrosative stress signaling in engagement of the autophagy during pericyte injury.  

In vitro nitration of TRPM2 protein 

The TRPM2-L protein contains several tyrosine residues located in the 

C-terminal region. The assessment of TRPM2 nitration and identification of the 

nitration sites should provide critical information in unraveling the mechanisms of 

TRPM2-mediated autophagy and pericyte injury. To directly confirm that nitrosative 

stress was indeed responsible for protein tyrosine nitration of TRPM2, we treated a 

human TRPM2 peptide composed of a majority of the C-terminus (residues 

1206-1504) with ONOO-. Examination using MS/MS demonstrated that nitration 

caused a mass shift of +45 Da in 3-nitrotyrosine-containing peptides, and further 

identified that tyrosine nitration occurred at Y1485 residue (Fig. 6).  

Mutation of the nitration site in the TRPM2 attenuates pericyte injury 

To reinforce the crucial role of TRPM2 protein nitration in mediating pericyte 

injury, we mutated Y1485 to serine (Y1485S) and transfected pericytes with the 

plasmid encoding the TRPM2-Y1485S mutant protein (Fig. 7A). Western blotting 

revealed that CHOP and phospho-JNK were substantially higher in cells transfected 
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with the empty plasmid following 6 h exposure to ZnO-NP but not in cells transfected 

with TRPM2-Y1485S (Fig. 7B-F). In line with this, overexpression of the 

TRPM2-Y1485S mutant construct significantly attenuated excessive LC3-II 

formation during pericyte injury (Fig. 7B-F), as well as ER stress and autophagy in 

ONOO--treated pericytes (Fig. 7G-J). These results provide clear evidence to support 

that ZnO-NP-induced insult promotes activation of the ER stress-autophagy axis and 

pericyte injury and that these events are dependent of tyrosine nitration of TRPM2 at 

Y1485.  

Nitrosative stress affects the TRPM2 channel function 

We considered the possibility that tyrosine nitration of the TRPM2 protein 

regulated the TRPM2 channel function. To test this, ADP-ribose (ADPR)-induced 

TRPM2 channel currents were recorded in tetracycline-inducible TRPM2 expressing 

HEK293 cells (Fig. 8A). To examine whether the TRPM2 channel modulation could 

occur under nitrosative stress, we used SIN-1, a donor of ONOO- and a potent inducer 

of cell apoptosis as well as ZnO-NP. Treatment with SIN-1 and ZnO-NP resulted in 

significant decrease in ADPR-induced current amplitude (Fig. 8). The decrease 

induced by ZnO-NP or SIN-1 in the ADPR-induced current amplitude was prohibited 

by treatment with L-NAME or uric acid (Fig. 8A and B). Similar down-regulation by 

ZnO-NP or SIN-1 were observed for the wild-type TRPM2 channel but not the 

TRPM2-Y1485S mutant channel transiently expressed in HEK293 cells observed  
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(Supplementary Fig. S8).  Taken together, these results suggest functional 

downregulation of the TRPM2 channels via nitration of tyrosine 1485.  

Deletion of the TRPM2 reduces pericyte injury in mice 

Pericytes are embedded within the basement membrane of microvessels (1, 12) 

and exhibit a number of characteristics for vessel maintenance and formation (52). To 

explore the pathophysiological significance of TRPM2-autophagy crosstalk identified 

from the in vitro studies described above, we extended our investigation to the brain 

pericytes in vivo. We examined pericyte injury in the cerebral vessels in the wild-type 

and age-matched TRPM2 KO mice following ZnO-NP injection, using 

immunofluorescent confocal imaging of Į-SMA, one of the widely-accepted pericyte 

markers in brain microvessels (8) and laminin in the vascular-specific basal 

membrane (1). Pericytes were embedded within basement membranes with a 

continuous and patchy pattern in the capillaries. Double-labeling with Į-SMA and 

laminin revealed more Į-SMA-positive cells in the TRPM2 KO mice than in the 

wild-type mice following neurovascular insult (Fig. 9).  

To provide further evidence to support the notion that excessive autophagy is 

associated with pericyte injury, adenovirus carrying mRFP-GFP-LC3 construct were 

injected into the mice brain to visualize the role of autophagy during ZnO-NP-induced 

pericyte injury. In addition to the weak fluorescence of LC3-GFP in the control mice, 

more mRFP-LC3 puncta were observed in the brain pericytes in the mice after 
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neurovascular insult (Fig. 10), indicating the increased autophagic process and flux 

activities. Moreover, the accumulation of autophagic vesicle was partially reduced in 

the vessels in the TRPM2 KO mice after neurovascular insult (Fig. 10). Therefore, the 

TRPM2 in pericytes has an important role in mediating excessive autophagy upon 

neurovascular insult.  
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Discussion 

Pericytes dynamically respond to stress induced by injury in brain diseases. 

Recent studies provide compelling evidences that pericytes are essential for the 

preservation of the BBB function during ischemic stroke and Alzheimer's disease (40, 

54). In this study, we have revealed a previously unrecognized role for the TRPM2 

channel in promoting autophagy in pericytes and defined a novel mechanism of 

autophagy disturbance secondary to nitrosative stress-induced tyrosine nitration of 

TRPM2 protein during stress-induced pericyte injury. 

In this study, we demonstrate that TRPM2-dependent autophagy is critically 

involved in the pathological process of pericyte injury. TRPM2 is a potentially 

important pharmacological target for inhibiting the pathological increase in 

endothelial barrier function (17). The importance of TRPM2 in mediating autophagy 

pericytes is supported by our finding that knockdown of TRPM2 partially inhibits 

ZnO-NP-induced LC3-II accumulation. Control experiments showed that TRPM2 

knockdown did not significantly affect the LC3-II as well as ER stress protein levels 

during starvation (Supplementary Fig. S9). A recent study has reported that 

interference with TRPM2-L function modulates HIF-1/2Į, mitochondrial function and 

mitophagy (4). Other studies have shown that overexpression of TRPM2-L confers 

protection against oxidative stress-induced cell death (5). A dramatic increase in the 

TRPM2-S was observed following pericyte injury. Zhang et al reported that 

TRPM2-S plays an important role in many tissues because it can modulate Ca2+ influx 
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and cellular responses to oxidative stress (56). Recently, Hecquet et al have shown 

that TRPM2-S expression during oxidative stress may mitigate endothelial cell 

apoptosis and vascular injury and inflammation (17, 18). 

To search for a link between TRPM2-dependent autophagy and pericyte injury, 

we investigated if TRPM2 or autophagy inhibition can affect cell survival after 

subjected to ZnO-NP-induced insult. Here, we showed that either downregulation of 

endogenous TRPM2 expression in pericytes by siRNA in vitro or TRPM2 knockout in 

mice consistently reduced LC3-II accumulation and pericyte injury. Of particular note, 

we found that siRNA knockdown of ATG5 markedly attenuated pericyte apoptosis, 

indicating that autophagy serves as an important cell death mechanism. In this study, 

we also demonstrated that autophagy during pericyte injury strongly depends on ER 

stress, which was confirmed by the finding that treatment with salubrinal, a selective 

inhibitor of ER stress significantly blocked ZnO-NP-induced LC3II formation 

(Supplementary Fig. S10). Moreover, siRNA-mediated knockdown of TRPM2 

significantly blunted tunicamycin-induced ER stress and LC3II formation in pericytes 

(Supplementary Fig.  S11). In addition, our data showed that autophagy and 

ER-stress signaling were Ca2+-dependent and inhibited by a TRPM2 blocker 

(Supplementary Fig.  S12). Thus, our data suggest that autophagy changes as a 

regulator of pericyte injury, TRPM2 lies upstream of the ER stress-autophagy axis and 

autophagy is functioning primarily as a cytotoxic response to excess ER stress.  

How does stress stimulation induce TRPM2-dependent autophagy and 



JIANG ET AL. 

18 
 

subsequently pericyte injury? We have further explored the upstream regulation of 

TRPM2 channel function underlying pericyte injury. The present study demonstrated 

that nitrosative stress is an important element in the induction of TRPM2 turnover and 

the autophagy response. We previously reported that Ca2+/calmodulin-dependent 

nitrosative stress initiated early cerebrovascular injury and subsequent neuronal 

damage, indicating that brain microvessels are the most vulnerable and sensitive 

cellular components of ONOO- (13, 46, 48). In the present study, the Ca2+ sensor 

protein calmodulin was identified as one of the TRPM2-interacting proteins using a 

proteomic approach. Immunoprecipitation confirmed that TRPM2 and calmodulin 

associate, whereas this association was decreased in the presence of ZnO-NP 

(Supplementary Fig. S13). We hypothesize that ongoing nitrosative stress induces the 

TRPM2 turnover, and subsequently induces ER stress to initiate the autophagy 

pathway. The above process is, at least in part, dependent on nitration of TRPM2 at 

Y1485. TRPM2 nitration does not directly trigger autophagy and instead activates ER 

stress that provides the critical link to the increased autophagy. In the present study, 

overexpression of the TRPM2 Y1485S construct significantly reduced the LC3II 

formation in tunicamycin-treated pericytes (Supplementary Fig. S14). The autophagy 

induced by the TRPM2 turnover is likely through ER signaling and the consequent 

cascade of reactions related to the unfolded protein response (15, 24, 38). Our data 

suggested that nitration of TRPM2 at Y1485 might contributes to TRPM2-S 

formation because both the NOS inhibitor (L-NAME) and peroxynitrite scavenger 
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(uric acid) significantly reduced TRPM2-S formation and restored the TRPM2-L 

channel function. These results further support the notion that a nitrosative 

stress-dependent mechanism might regulate the TRPM2 turnover during pericyte 

injury. These steps were in parallel with an inhibition of CHOP and phospho-JNK 

(Thr183/Tyr185), and an increase in the level of LC3-II in the same context.  

The neurovascular unit is the primary target of nitrosative stress in 

cardiovascular diseases, stroke, and neurodegenerative disorders (2, 46, 47). The 

toxicity of superoxide is greatly increased by reacting with nitric oxide to form 

peroxynitrite (44, 47). Here, combined treatments with L-NAME and uric acid did not 

further reduce anti-nitrosative stress efficacy following ZnO-NP insult, indicating that 

the nitrosative stress pathway is specifically involved in the pathological process of 

pericyte injury. Further support for this conclusion is provided by the observation that 

overexpression of the TRPM2-Y1485S mutant was sufficient to inhibit the ER stress, 

coinciding with the inhibitory effect on the elevation of LC3-II accumulation during 

pericyte injury. Our results together with these observations suggest that inhibition of 

TRPM2 protein tyrosine nitration protects against pericyte injury via inhibition of 

autophagy. 

A number of studies demonstrate that pericyte-endothelial cell communication is 

essential to regulate the capillary blood flow and maintain the function of the BBB (9, 

11, 37). Indeed, pericytes are a key component of the neurovascular unit, which wrap 

around the endothelial cells in the microvessels, eliciting a protective effect on 
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endothelial barrier function (9, 16). To assess the translational relevance in vivo, we 

addressed the role of pericyte TRPM2 channel during ZnO-NP-induced neurovascular 

injury. Interestingly, the decreased abundance of pericyte LC3 puncta at 24 h after 

neurovascular injury in the TRPM2 KO mice coincided with reduced pericyte injury 

in brain microvessels. Taken together, these genetic and biochemical results support 

the idea that TRPM2-dependent autophagy plays a crucial role in mediating 

nitrosative stress-induced pericyte injury in mice. Moreover, our study also raises 

interesting questions regarding the interrelationships between pericyte-specific 

TRPM2 channels and other neurovascular components in the pathological process of 

neurovascular injury. However, this hypothesis remains to be tested in the future.  

In summary, our study has established a previously unrecognized mechanism for 

nitrosative stress-induced TRPM2 protein tyrosine nitration and subsequent 

disturbance of autophagy leading to pericyte injury. More importantly, our results 

provide clues for developing more effective neurovascular therapeutic strategies by 

targeting nitrosative stress. Ultimately, a full understanding of the molecular 

mechanisms of pericyte injury is crucial to the development of therapeutic strategies 

to treat neurovascular dysfunction-related pathologies.   
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Innovation 

Our study is the first demonstration that TRPM2-dependent autophagy is 

critically involved in the pathological process of pericyte injury. Our findings further 

have identified nitrosative stress as an important element in the induction of TRPM2 

tyrosine nitration at Y1485 and the autophagy response. Mutational prevention of this 

significantly reduced the elevation of ER apoptotic proteins and LC3-II accumulation 

during pericyte injury. LC3 accumulation was reduced and brain pericytes were better 

preserved in the TRPM2 KO mice upon vascular injury. A full understanding of the 

molecular mechanisms of pericyte injury is crucial to the development of therapeutic 

strategies to treat neurovascular dysfunction-related pathologies. 
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Materials and Methods  

Reagents  

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless 

otherwise specified. 

Characterization of the size, morphology and zeta potential for zinc oxide 

nanoparticles 

Zinc oxide nanoparticles (Sigma, 721077) suspension stock was prepared in 

phosphate buffer saline (PBS) at 10 mg/ml and treated with ultrasound to make 

uniform distribution. The particles size and zeta potential distribution were 

determined with a Zetasizer (3000HS, Malvern Instruments, UK) after the prepared 

dispersion performed 100-fold dilutions with distilled water. The particle size and 

surface morphologies were further characterized using a transmission electronic 

microscope (JEM-1230, JEOL, Japan). The samples were placed on copper grids for 

viewing. 

Culture of human brain pericytes  

Human brain vascular pericytes (#1200) were purchased from ScienCell Research 

Laboratories (Carlsbad, CA, USA) and cultured in pericyte growth medium (contains 

growth factors, hormones and proteins, ScienCell Research Laboratories, Catalog 

#1252) in a humidified atmosphere containing 5% CO2 at 37°C. Cells between 
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passages 3 and 7 were used in this study. 

Treatment of human pericytes with ZnO-NP 

Human pericytes were plated in six-well plates at a density of 2 × 106 cells per 

well in a final volume of 2 mL. An appropriate aliquot of ZnO-NP was added to 

achieve a desired concentration. L-NAME (100 ȝM) or chloroquine (25 ȝM) was 

added into the well with ZnO-NP (10 ȝg/ml) at the same time and the cells were 

incubated for 6 h. Uric acid (200 ȝM) was added 3 h prior to addition of ZnO-NP (10 

ȝg/ml). Cells treated with indicated concentrations of ZnO-NP for 6 h were used for 

western blotting or immunocytochemistry, and cells that were not exposed to ZnO-NP 

were used as control. 

RNA interference 

Human pericytes were cultured in 6-well plates in growth medium. Transfection 

with either double-stranded siRNA targeting TRPM2, ATG5 or a control scramble 

siRNA using Lipofectamine RNAiMAX (Invitrogen, 13778075) was conducted 

according to the manufacturer’s instructions. siRNA of TRPM2 (sense: 

5’-UGAUCCAGCAGAAACUGAGCGUGUU-3’ and anti-sense: 

5’-AACACGCUCAGUUUCUGCUGGAUCA-3’) and control scramble siRNA were 

purchased from Thermo Fisher Scientific. siRNA of ATG5 (sc-41445) were purchased 

from Santa Cruz Biotechnology. The gene-silencing efficacy of siRNA are depicted in 

supplementary Figure S15. 
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Mice 

The TRPM2 KO mice were generated in the C57BL/6 background as detailed in 

our previous studies (53, 58). Both wild-type (C57BL/6 strain) and TRPM2 KO mice 

were housed under standard conditions with a 12/12 h light/dark cycle and free access 

to food and water. 8 to 12-week-old male mice weighing 22–25 g were used in the 

study and were randomly assigned to each group. All animal use procedures were 

approved by the Committees at Zhejiang University and Leeds University for the Care 

and Use of Laboratory Animals. All the experiments were performed at room 

temperature or specifically indicated.  

CCK-8 assays   

A Cell Counting Kit-8 (CCK-8) assay (Dojindo, CK04) was used to measure cell 

viability. Human pericytes were seeded in 96-well plates at a density of 2.5 × 103 cells 

per well and incubated overnight to allow for cells to settle down, before being 

transfected with siRNA-ATG5 or negative control for 48 h. Furthermore, the culture 

medium was changed to 100 ȝl fresh medium containing ZnO-NP (10 ȝg/ml) with or 

without Z-VAD-FMK (a caspase inhibitor, 10 ȝM) and incubated for further 6 h. Cells 

in each well were incubated for one hour with 110 ȝl fresh medium containing 10 ȝl 

CCK-8 reagent. Finally, the cell viability was determined by measuring the optical 

absorbance at 450 nm using a multimode reader (Beckman Coulter, DTX880). 

Injection of ZnO-NP in mice  
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The procedures were approved by the Committee on Animal Experiments at 

Zhejiang University, and conformed to the Guide for the Care and Use of Laboratory 

Animals published by the US National Institutes of Health (NIH Publication No. 

85-23, revised 1996). The male mice were injected with 0.1 mL of 0.5 mg/ml ZnO-NP 

via the tail vein. The control mice were injected with a same volume of vehicle. For 

immunohistochemical analysis, mice were anesthetised through diethyl ether 

inhalation in a chamber 24 h post-injection, and their brains were removed for 

analysis.  

Injection of adenovirus vector carrying mRFP-GFP-LC3 in mice  

Adenovirus vector carrying mRFP-GFP-LC3 construct (Hanbio Biotechnology, 

Shanghai, China) was injected into the bilateral ventricle over a 10-min duration using 

a Hamilton microsyringe with the coordinates of 0.5 mm caudal to the bregma, 1 mm 

lateral to the midline, and 3 mm depth from the skull surface under the guidance of a 

stereotaxic instrument. Two weeks following injection, the male mice were injected 

with 0.1 mL of 0.5 mg/ml ZnO-NP via the tail vein. The adenovirus batches used for 

experiments had comparable titres ranging from 1 × 1010 to 1 × 1011 integration 

units/ml. Virus suspensions were stored at -80°C until use and were briefly 

centrifuged and kept on ice immediately before injection.  

Western blotting  

Western blotting was carried out by SDS polyacrylamide gel electrophoresis 
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(SDS-PAGE) as described previously (48). Briefly, cells were homogenized in the 

homogenizing buffer containing 50 mM Tris-HCl (pH 7.4), 0.5% Triton X-100, 4 mM 

EGTA, 10 mM EDTA, 1 mM Na3VO4, 30 mM sodium pyrophosphate, 50 mM NaF, 

100 nM calyculin A, 50 µg/ml leupeptin, 25 µg/ml pepstatin A, 50 µg/ml trypsin 

inhibitor and 1 mmol/L dithiothreitol. For TRPM2 detection, membrane fractionation 

from cell lysates was performed as we previously described (29). The following 

primary antibodies were used: nitrotyrosine (1:1000, Merck Millipore, 05-233), 

TRPM2 (1:1000Abcam, ab11168), LC3 (1:5000, Sigma Aldrich, L7543), 

Phospho-SAPK/JNK(Thr183/Tyr185) (1:2000, Cell Signaling Technology, 4668), 

JNK (1:2000Santa Cruz Biotechnology, sc-571), IRE1Į (1:1000, Cell Signaling 

Technology, 3294), Phospho-PERK (Thr981) (1:1000, Santa Cruz Biotechnology, 

sc-32577), PERK (1:1000, Cell Signaling Technology, 5683), CHOP (1:500, Cell 

Signaling Technology, 5554), caspase 8 (1:1000, active form, Biovision, 3258), 

caveolin-1 (1:5000, Cell Signaling Technology, 32667) and ȕ-actin (1:5000, Sigma 

Aldrich, A5441).  Protein intensities were analyzed by Image J software (NIH), and 

normalized against the ȕ-actin or caveolin-1 band in the matched experiments. For 

immunoprecipitation, cells were lysed in the lysis buffer (10 mM Tris-HCl, pH7.5, 

0.5% NP-40, 150 mM NaCl, 1 mM EDTA) supplemented with a complete protease 

inhibitor cocktail (Roche). Cell lysates were incubated with 2 ȝg of indicated 

antibodies for overnight at 4°C, followed by incubation at 4°C with protein 

A/G-agarose beads for 4 h. Immunoprecipitated samples were washed six times with 
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lysis buffer, electrophoresed on SDS-PAGE, and subjected to Western blot analysis as 

described above. All full unedited blot are displayed in Supplementary Fig. S16.  

Transmission electron microscopy 

The ultrastructures of human pericytes was determined using transmission 

electron microscopy. Cells were washed twice with PBS and fixed in 2.5% 

glutaraldehyde in PBS (pH 7.4). The fixed cells were detached by gentle scraping, 

pelleted, fixed in 1% osmium tetroxide and imaged using a Philips Tecnai 10 

transmission electron microscope (Philips, Holland).  

Immunofluorescence confocal microscopy 

Immunolocalization and changes in LC3 in pericytes were examined by confocal 

microscopy. Briefly, after indicated treatment, cells seeded on coverslips were washed 

3 times in PBS and fixed in 4% formaldehyde. To quantify LC3-positive vesicles, 

cells were transfected with mRFP-GFP-LC3 plasmid or were fixed and stained with 

anti-LC3 antibody (Cell Signaling Technology, 2775). Images were acquired using a 

Nikon A1R confocal microscope with a ×60 oil immersion lens at 1024×1024 pixel 

resolution. The average number of GFP- or mRFP-LC3 puncta per cell was 

determined by using an Imaris Imaging Software (Bitplane) (50). For time-lapse 

confocal imaging of live cells, after transfected with mRFP-GFP-LC3 plasmid, human 

pericytes were cultured on glass-bottomed dishes overnight, and incubated with or 

without ZnO-NP (15 ȝg/ml). The changes in GFP and mRFP fluorescence intensity 
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were captured by Olympus IX-81 confocal microscope for 120 min which equipped 

with a ×60 oil-immersion lens, a polychrome IV light source (Till Photonics), a 505 

DCXR beam splitter, and a CCD camera (ANDOR iXon3). 

To immunolabel the mouse brain sections, slices were incubated with antibodies 

against LC3 (1:200, Cell Signaling Technology, 2775), alph-smooth muscle actin 

(1:250, Abcam, ab7817) and laminin (1:200, Abcam, ab11575) overnight at 4°C. After 

washing, the slices were incubated with Alexa fluor 488-conjugated anti-rabbit IgG 

(Invitrogen, A-21206) and/or Alexa fluor 594-conjugated anti-mouse IgG (Invitrogen, 

A-21203) in Tris-NaCl-blocking buffer (1:400). NP3, a fluorescent switch-on probe 

was used to examine the ONOO- formation, as previously reported (26). To minimize 

nonspecific staining, the experiments include a negative control using the IgG with no 

primary antibody (Supplementary Fig. S17). Immunofluorescence was captured using 

a Zeiss LSM 510 confocal microscope. The number of the disconnected patchy parts 

were analyzed by Imaris Imaging Software (Bitplane). The 3D filled plots were 

processed by using ImageJ v1.45 with the accompanied ‘Interactive 3D Surface Plot’ 

plug-in. 

TUNEL assay 

Apoptotic cell death was assessed using a terminal deoxynucleotidyl transferase 

dUTP nick end labeling (TUNEL) staining (30, 48). Images were recorded after 

counterstaining with DAPI, and pericytes were identified by phase image. Five 
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random fields were examined on each coverslip, and the experiments were repeated 4 

times. Apoptotic cell death was presented as the percentage of TUNEL+ cells in the 

total number of cells identified by DPAI staining. In addition, the caspase 8 activity 

assay kit (Abcam, ab39700) were also used to study the effect of siRNA mediated 

knockdown of Atg5 or TRPM2 expression on cell death. Collected the cell samples 

with indicated conditions and suspended cells in 50 µL of ice cold cell lysis buffer 

provided by assay kit. Incubated with reaction buffer and IETD-pNA substrate after 

transfer the supernatant. Detected on a microplate reader (Beckman Coulter, DTX880) 

at OD 405 nm as described in instructions. 

Propidium iodide flow cytometry analysis 

Flow cytometric assays to evaluate cell death by propidium iodide (PI) 

(Sigma-Aldrich, P4170) staining were performed essentially as previously described, 

following the manufacturer’s instructions. Briefly, human pericyte cells, after treated 

with indicated conditions, were incubated in solutions containing (50 ȝg/ml PI, 100 

ȝg/ml RNase A, 0.2% Triton X-100) at room temperature for 30 min in the dark. At 

least 1 × 104 cells were analyzed for each sample using a FACS-Calibur flow 

cytometer (BD Biosciences) 

In vitro protein nitration of TRPM2 and mass spectrometry analysis 

A 10 g portion of recombinant TRPM2 was reacted with 100 M ONOO- for 1 

h in 50 mM phosphate buffer (pH 7.4) containing 0.1% Lauryl-ȕ-D-maltoside (28, 46). 
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The mixture was treated with 9% of ethanol at 40°C for 10 min and centrifuged at 

75,600 g for 30 min. The ONOO--treated TRPM2 (10 ȝg/lane) was subjected to 

SDS-PAGE and silver staining. The protein band with a size corresponding to that of 

the recombinant TRPM2 peptide was excised and further prepared for mass 

spectrometry analysis. Sequence information from the MS/MS data was processed 

using the Mascot 2.0 active perl script with standard data processing parameters (28, 

46). Database was searched with MASCOT 2.0 (Matrix Science, Boston, MA). As 

compared to the protein untreated with ONOO-, a nitrated peptide was determined by 

a mass shift of +45 Da to the corresponding y and b ions. 

Site-directed mutagenesis, plasmid constructs and transfection 

PCR-based site-directed mutagenesis was performed as detailed previously (58). 

In brief, the full-length human TRPM2 sequence with C-terminal Glu-Glu tag in 

pcDNA3.1 vector was used as a DNA template (32). The forward and reverse primers 

used were 5'-AGG CGC ATC CCA CTC TCT GCG AAC CAC AAG ACC-3' and 

5'-GGT CTT GT GGT TCG CAG AGA GTG GGA TGC GCC3', respectively. The 

mutation was confirmed by sequencing.  

Human pericytes cultured in six-well plates in growth medium were transfected 

with plasmid encoding the wild-type and Y1485S mutant TRPM2 protein, or an 

empty plasmid as control using Lipofectamine 3000 (Invitrogen, L3000-015) 

(Supplementary Fig. S18 A and B). The transfection medium was replaced with fresh 
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growth medium 6 h later, and the cells were collected for experiments 2 days after 

transfection. For electrophysiological study shown in Supplementary Figure S8, the 

wild-type and Y1485S mutant TRPM2 channels were transiently expressed in 

HEK293 cells as described in our previous study (55). 

Whole-cell patch clamp recording  

Whole-cell patch-clamp recordings were performed using Axonpatch 200B 

amplifier as previously described, from tetracycline-inducible HEK293 cells stably 

expressing human TRPM2 (hTRPM2) channel, induced with 1 ȝg/ml tetracycline for 

12-24 h, and also from HEK293 cells transiently transfected with the wild type or 

Y1485S mutant human TRPM2 channel (Supplementary Fig. S18 C and D). Before 

recording, cells were exposed to ZnO-NP (10 ȝg/ml) with or without 

3-morpholinosydnonimine (SIN-1, 0.5 mM), L-NAME (100 ȝM) and uric acid (UA, 

200 ȝM). Change of the extracellular solutions was performed by using a RSC-160 

system (Biologic Science Instruments). The membrane potential was held at 0 mV. 

Voltage ramps with 500-ms duration from -100 mV to 100 mV were applied every 5 s. 

Data were acquired at 10 kHz and filtered offline at 50 Hz. For analysis, the mean of 

the first three ramps before channel activation was used for leak-subtraction of all 

subsequent current records.  

Statistical analysis 

Results are shown as mean ± S.E.M., where appropriately. For all Western-blot, 
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immunohistochemistry, cell viability assay and patch clamp recording experiments 

unless otherwise specified below, one-way ANOVA followed by Tukey’s post hoc test 

were used for comparisons among three or more groups. For TUNEL assay and other 

experiments, unpaired two-tailed Student’s t-test was used for comparisons between 

two groups. Statistical analyses were carried out using GraphPad Prism 6 (GraphPad 

Software). And P < 0.05 was considered to be statistically significant. 



JIANG ET AL. 

33 
 

Acknowledgments 

This work was supported in part by National Natural Science Foundations of China 

(81120108023, 81573411, 81473202, 31471118); National Basic Research Program 

of China (2013CB910204, 2014CB910300); The Zhejiang Province Program for 

Cultivation of High-level Health Talents and New Century 151 Talent Project of 

Zhejiang Province; Department of Education, Henan Province and University of 

Leeds-Zhejiang University Strategic Collaboration Partnership Programmer. 

 

Author Disclosure Statement 

No potential conflicts of interest were disclosed. 



JIANG ET AL. 

34 
 

List of Abbreviations 

Baf-A1, Bafilomycin A1 

BBB, blood-brain barrier  

CaM, Calmodulin 

CQ, chloroquine 

DAPI, 4’,6-diamidino-2-phenylindole dihydrochloride  

ER, endoplasmic reticulum  

LC3, microtubule-associated protein 1 light chain 3  

PBS, phosphate buffer solution  

RNS, reactive nitrogen species  

SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis 

siRNA, small interference RNA 

TEM, transmission electron microscopy 

TRPM2, transient receptor potential melastatin-related 2  

PI, propidium iodide 



JIANG ET AL. 

35 
 

References: 
 1. Armulik A, Genove G and Betsholtz C. Pericytes: developmental, physiological, 

and pathological perspectives, problems, and promises. DEV CELL 21: 193-215, 
2011. 

 2. Calabrese V, Sultana R, Scapagnini G, Guagliano E, Sapienza M, Bella R, 
Kanski J, Pennisi G, Mancuso C, Stella AM, and Butterfield DA. Nitrosative 
stress, cellular stress response, and thiol homeostasis in patients with Alzheimer's 
disease. Antioxid Redox Signal 8: 1975-1986, 2006. 

 3. Chen R, Huo L, Shi X, Bai R, Zhang Z, Zhao Y, Chang Y, and Chen C. 
Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier 
biomarker for nanotoxicological evaluation. ACS NANO 8: 2562-2574, 2014. 

 4. Chen SJ, Hoffman NE, Shanmughapriya S, Bao L, Keefer K, Conrad K, Merali S, 
Takahashi Y, Abraham T, Hirschler-Laszkiewicz I, Wang J, Zhang XQ, Song J, 
Barrero C, Shi Y, Kawasawa YI, Bayerl M, Sun T, Barbour M, Wang HG, 
Madesh M, Cheung JY, and Miller BA. A splice variant of the human ion 
channel TRPM2 modulates neuroblastoma tumor growth through 
hypoxia-inducible factor (HIF)-1/2alpha. J BIOL CHEM 289: 36284-36302, 
2014. 

 5. Chen SJ, Zhang W, Tong Q, Conrad K, Hirschler-Laszkiewicz I, Bayerl M, Kim 
JK, Cheung JY, and Miller BA. Role of TRPM2 in cell proliferation and 
susceptibility to oxidative stress. Am J Physiol Cell Physiol 304: C548-C560, 
2013. 

 6. Ciechomska IA and Kaminska B. ER stress and autophagy contribute to 
CsA-induced death of malignant glioma cells. AUTOPHAGY 8: 1526-1528, 
2012. 

 7. Deegan S, Saveljeva S, Logue SE, Pakos-Zebrucka K, Gupta S, Vandenabeele P, 
Bertrand MJ, and Samali A. Deficiency in the mitochondrial apoptotic pathway 
reveals the toxic potential of  autophagy under ER stress conditions. 
AUTOPHAGY 10: 1921-1936, 2014. 

 8. Dore-Duffy P, Wang S, Mehedi A, Katyshev V, Cleary K, Tapper A, Reynolds C, 
Ding Y, Zhan P, Rafols J, and Kreipke CW. Pericyte-mediated vasoconstriction 
underlies TBI-induced hypoperfusion. NEUROL RES 33: 176-186, 2011. 

 9. Fisher M. Pericyte signaling in the neurovascular unit. STROKE 40: S13-S15, 
2009. 

10. Fouillet A, Levet C, Virgone A, Robin M, Dourlen P, Rieusset J, Belaidi E, 
Ovize M, Touret M, Nataf S, and Mollereau B. ER stress inhibits neuronal death 
by promoting autophagy. AUTOPHAGY 8: 915-926, 2012. 

11. Goritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, and Frisen J. A 
pericyte origin of spinal cord scar tissue. SCIENCE 333: 238-242, 2011. 

12. Gu X, Liu XY, Fagan A, Gonzalez-Toledo ME, and Zhao LR. Ultrastructural 
changes in cerebral capillary pericytes in aged Notch3 mutant transgenic mice. 
ULTRASTRUCT PATHOL 36: 48-55, 2012. 



JIANG ET AL. 

36 
 

13. Han F, Chen YX, Lu YM, Huang JY, Zhang GS, Tao RR, Ji YL, Liao MH, 
Fukunaga K, and Qin ZH. Regulation of the ischemia-induced 
autophagy-lysosome processes by nitrosative stress in endothelial cells. J 
PINEAL RES 51: 124-135, 2011. 

14. Han F, Shirasaki Y and Fukunaga K. Microsphere embolism-induced endothelial 
nitric oxide synthase expression mediates disruption of the blood-brain barrier in 
rat brain. J NEUROCHEM 99: 97-106, 2006. 

15. Hart LS, Cunningham JT, Datta T, Dey S, Tameire F, Lehman SL, Qiu B, Zhang 
H, Cerniglia G, Bi M, Li Y, Gao Y, Liu H, Li C, Maity A, Thomas-Tikhonenko 
A, Perl AE, Koong A, Fuchs SY, Diehl JA, Mills IG, Ruggero D, and Koumenis 
C. ER stress-mediated autophagy promotes Myc-dependent transformation and 
tumor growth. J CLIN INVEST 122: 4621-4634, 2012. 

16. Hecquet CM, Ahmmed GU and Malik AB. TRPM2 channel regulates 
endothelial barrier function. ADV EXP MED BIOL 661: 155-167, 2010. 

17. Hecquet CM, Ahmmed GU, Vogel SM, and Malik AB. Role of TRPM2 channel 
in mediating H2O2-induced Ca2+ entry and endothelial hyperpermeability. 
CIRC RES 102: 347-355, 2008. 

18. Hecquet CM, Zhang M, Mittal M, Vogel SM, Di A, Gao X, Bonini MG, and 
Malik AB. Cooperative interaction of trp melastatin channel transient receptor 
potential (TRPM2) with its splice variant TRPM2 short variant is essential for 
endothelial  cell apoptosis. CIRC RES 114: 469-479, 2014. 

19. Jiang P and Mizushima N. Autophagy and human diseases. CELL RES 24: 69-79, 
2014. 

20. Johnson BM, Fraietta JA, Gracias DT, Hope JL, Stairiker CJ, Patel PR, Mueller 
YM, McHugh MD, Jablonowski LJ, Wheatley MA, and Katsikis PD. Acute 
exposure to ZnO nanoparticles induces autophagic immune cell death. 
NANOTOXICOLOGY 9: 737-748, 2015. 

21. Karow M, Sanchez R, Schichor C, Masserdotti G, Ortega F, Heinrich C, Gascon 
S, Khan MA, Lie DC, Dellavalle A, Cossu G, Goldbrunner R, Gotz M, and 
Berninger B. Reprogramming of pericyte-derived cells of the adult human brain 
into induced neuronal cells. CELL STEM CELL 11: 471-476, 2012. 

22. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo AA, 
Adachi H, Adams CM, Adams PD, Adeli K, Adhihetty PJ, Adler SG, Agam G, 
Agarwal R, Aghi MK, Agnello M, Agostinis P, Aguilar PV, Aguirre-Ghiso J, 
Airoldi EM, Ait-Si-Ali S, Akematsu T, Akporiaye ET, Al-Rubeai M, Albaiceta 
GM, Albanese C, Albani D, Albert ML, Aldudo J, Algul H, Alirezaei M, Alloza 
I, Almasan A, Almonte-Beceril M, Alnemri ES, Alonso C, Altan-Bonnet N, 
Altieri DC, Alvarez S, Alvarez-Erviti L, Alves S, Amadoro G, Amano A, 
Amantini C, Ambrosio S, Amelio I, Amer AO, Amessou M, Amon A, An Z, 
Anania FA, Andersen SU, Andley UP, Andreadi CK, Andrieu-Abadie N, Anel A, 
Ann DK, Anoopkumar-Dukie S, Antonioli M, Aoki H, Apostolova N, Aquila S, 
Aquilano K, Araki K, Arama E, Aranda A, Araya J, Arcaro A, Arias E, Arimoto 



JIANG ET AL. 

37 
 

H, Ariosa AR, Armstrong JL, Arnould T, Arsov I, Asanuma K, Askanas V, 
Asselin E, Atarashi R, Atherton SS, Atkin JD, Attardi LD, Auberger P, Auburger 
G, Aurelian L, Autelli R, Avagliano L, Avantaggiati ML, Avrahami L, Awale S, 
Azad N, Bachetti T, Backer JM, Bae DH, Bae JS, Bae ON, Bae SH, Baehrecke 
EH, Baek SH, Baghdiguian S, and Bagniewska-Zadworna A, et al. Guidelines 
for the use and interpretation of assays for monitoring autophagy (3rd edition). 
AUTOPHAGY 12: 1-222, 2016. 

23. Klionsky DJ, Codogno P, Cuervo AM, Deretic V, Elazar Z, Fueyo-Margareto J, 
Gewirtz DA, Kroemer G, Levine B, Mizushima N, Rubinsztein DC, Thumm M, 
and Tooze SA. A comprehensive glossary of autophagy-related molecules and 
processes. AUTOPHAGY 6: 438-448, 2010. 

24. Lepine S, Allegood JC, Park M, Dent P, Milstien S, and Spiegel S. 
Sphingosine-1-phosphate phosphohydrolase-1 regulates ER stress-induced 
autophagy. CELL DEATH DIFFER 18: 350-361, 2011. 

25. Li C, Meng L, Li X, Li D, and Jiang LH. Non-NMDAR neuronal 
Ca(2+)-permeable channels in delayed neuronal death and as potential 
therapeutic targets for ischemic brain damage. Expert Opin Ther Targets 19: 
879-892, 2015. 

26. Li X, Tao RR, Hong LJ, Cheng J, Jiang Q, Lu YM, Liao MH, Ye WF, Lu NN, 
Han F, Hu YZ, and Hu YH. Visualizing peroxynitrite fluxes in endothelial cells 
reveals the dynamic progression of brain vascular injury. J AM CHEM SOC 137: 
12296-12303, 2015. 

27. Lindahl P, Johansson BR, Leveen P, and Betsholtz C. Pericyte loss and 
microaneurysm formation in PDGF-B-deficient mice. SCIENCE 277: 242-245, 
1997. 

28. Liu B, Tewari AK, Zhang L, Green-Church KB, Zweier JL, Chen YR, and He G. 
Proteomic analysis of protein tyrosine nitration after ischemia reperfusion injury: 
mitochondria as the major target. Biochim Biophys Acta 1794: 476-485, 2009. 

29. Lu YM, Gao YP, Tao RR, Liao MH, Huang JY, Wu G, Han F, and Li XM. 
Calpain-Dependent ErbB4 Cleavage Is Involved in Brain Ischemia-Induced 
Neuronal Death. MOL NEUROBIOL 53: 2600-2609, 2016. 

30. Lu YM, Huang J, Shioda N, Fukunaga K, Shirasaki Y, Li XM, and Han F. 
CaMKIIdeltaB mediates aberrant NCX1 expression and the imbalance of 
NCX1/SERCA in transverse aortic constriction-induced failing heart. PLOS 
ONE 6: e24724, 2011. 

31. Luan Q, Jin L, Jiang CC, Tay KH, Lai F, Liu XY, Liu YL, Guo ST, Li CY, Yan 
XG, Tseng HY, and Zhang XD. RIPK1 regulates survival of human melanoma 
cells upon endoplasmic reticulum stress through autophagy. AUTOPHAGY 11: 
975-994, 2015. 

32. Mei ZZ, Xia R, Beech DJ, and Jiang LH. Intracellular coiled-coil domain 
engaged in subunit interaction and assembly of melastatin-related transient 
receptor potential channel 2. J BIOL CHEM 281: 38748-38756, 2006. 



JIANG ET AL. 

38 
 

33. Mizushima N, Yoshimori T and Levine B. Methods in mammalian autophagy 
research. CELL 140: 313-326, 2010. 

34. Muller C, Salvayre R, Negre-Salvayre A, and Vindis C. Oxidized LDLs trigger 
endoplasmic reticulum stress and autophagy: prevention by HDLs. 
AUTOPHAGY 7: 541-543, 2011. 

35. Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y, 
and Niwa M. Pericytes from brain microvessels strengthen the barrier integrity in 
primary cultures of rat brain endothelial cells. CELL MOL NEUROBIOL 27: 
687-694, 2007. 

36. Ng S, Wu YT, Chen B, Zhou J, and Shen HM. Impaired autophagy due to 
constitutive mTOR activation sensitizes TSC2-null cells to cell death under 
stress. AUTOPHAGY 7: 1173-1186, 2011. 

37. Niu F, Yao H, Zhang W, Sutliff RL, and Buch S. Tat 101-mediated enhancement 
of brain pericyte migration involves platelet-derived growth factor subunit B 
homodimer: implications for human immunodeficiency virus-associated 
neurocognitive disorders. J NEUROSCI 34: 11812-11825, 2014. 

38. Qin L, Wang Z, Tao L, and Wang Y. ER stress negatively regulates 
AKT/TSC/mTOR pathway to enhance autophagy. AUTOPHAGY 6: 239-247, 
2010. 

39. Roy R, Singh SK, Chauhan LK, Das M, Tripathi A, and Dwivedi PD. Zinc oxide 
nanoparticles induce apoptosis by enhancement of autophagy via 
PI3K/Akt/mTOR inhibition. TOXICOL LETT 227: 29-40, 2014. 

40. Sagare AP, Bell RD, Zhao Z, Ma Q, Winkler EA, Ramanathan A, and Zlokovic 
BV. Pericyte loss influences Alzheimer-like neurodegeneration in mice. NAT 
COMMUN 4: 2932, 2013. 

41. Sava P, Cook IO, Mahal RS, and Gonzalez AL. Human microvascular pericyte 
basement membrane remodeling regulates neutrophil recruitment. 
MICROCIRCULATION 22: 54-67, 2015. 

42. Sheng R, Liu XQ, Zhang LS, Gao B, Han R, Wu YQ, Zhang XY, and Qin ZH. 
Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. 
AUTOPHAGY 8: 310-325, 2012. 

43. Syed MS, Wang L, Li D, and Jiang LH. TRPM2 Channel-Mediated 
ROS-Sensitive Ca(2+) Signaling Mechanisms in Immune Cells. Front Immunol 
6: 407, 2015. 

44. Szabo C, Ischiropoulos H and Radi R. Peroxynitrite: biochemistry, 
pathophysiology and development of therapeutics. NAT REV DRUG DISCOV 6: 
662-680, 2007. 

45. Tan SH, Shui G, Zhou J, Shi Y, Huang J, Xia D, Wenk MR, and Shen HM. 
Critical role of SCD1 in autophagy regulation via lipogenesis and lipid 
rafts-coupled AKT-FOXO1 signaling pathway. AUTOPHAGY 10: 226-242, 
2014. 

46. Tao RR, Huang JY, Shao XJ, Ye WF, Tian Y, Liao MH, Fukunaga K, Lou YJ, 



JIANG ET AL. 

39 
 

Han F, and Lu YM. Ischemic injury promotes Keap1 nitration and disturbance of 
antioxidative responses in endothelial cells: a potential vasoprotective effect of 
melatonin. J PINEAL RES 54: 271-281, 2013. 

47. Tao RR, Ji YL, Lu YM, Fukunaga K, and Han F. Targeting nitrosative stress for 
neurovascular protection: new implications in brain diseases. CURR DRUG 
TARGETS 13: 272-284, 2012. 

48. Tao RR, Wang H, Hong LJ, Huang JY, Lu YM, Liao MH, Ye WF, Lu NN, Zhu 
DY, Huang Q, Fukunaga K, Lou YJ, Shoji I, Wilcox CS, Lai EY, and Han F. 
Nitrosative stress induces peroxiredoxin 1 ubiquitination during ischemic insult  
via E6AP activation in endothelial cells both in vitro and in vivo. Antioxid Redox 
Signal 21: 1-16, 2014. 

49. Winkler EA, Sagare AP and Zlokovic BV. The pericyte: a forgotten cell type 
with important implications for Alzheimer's disease? BRAIN PATHOL 24: 
371-386, 2014. 

50. Wong CH, Heit B and Kubes P. Molecular regulators of leucocyte chemotaxis 
during inflammation. CARDIOVASC RES 86: 183-191, 2010. 

51. Yang W, Manna PT, Zou J, Luo J, Beech DJ, Sivaprasadarao A, and Jiang LH. 
Zinc inactivates melastatin transient receptor potential 2 channels via the outer 
pore. J BIOL CHEM 286: 23789-23798, 2011. 

52. Yao Y, Chen ZL, Norris EH, and Strickland S. Astrocytic laminin regulates 
pericyte differentiation and maintains blood brain barrier integrity. NAT 
COMMUN 5: 3413, 2014. 

53. Ye M, Yang W, Ainscough JF, Hu XP, Li X, Sedo A, Zhang XH, Zhang X, 
Chen Z, Li XM, Beech DJ, Sivaprasadarao A, Luo JH, and Jiang LH. TRPM2 
channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 
pyramidal neuronal death after transient global ischemia. CELL DEATH DIS 5: 
e1541, 2014. 

54. Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, and Dalkara T. 
Pericyte contraction induced by oxidative-nitrative stress impairs capillary 
reflow despite successful opening of an occluded cerebral artery. NAT MED 15: 
1031-1037, 2009. 

55. Yu W, Jiang LH, Zheng Y, Hu X, Luo J, and Yang W. Inactivation of TRPM2 
channels by extracellular divalent copper. PLOS ONE 9: e112071, 2014. 

56. Zhang W, Chu X, Tong Q, Cheung JY, Conrad K, Masker K, and Miller BA. A 
novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J 
BIOL CHEM 278: 16222-16229, 2003. 

57. Zhang X, Yuan Y, Jiang L, Zhang J, Gao J, Shen Z, Zheng Y, Deng T, Yan H, Li 
W, Hou WW, Lu J, Shen Y, Dai H, Hu WW, Zhang Z, and Chen Z. Endoplasmic 
reticulum stress induced by tunicamycin and thapsigargin protects against 
transient ischemic brain injury: Involvement of PARK2-dependent mitophagy. 
AUTOPHAGY 10: 1801-1813, 2014. 

58. Zou J, Ainscough JF, Yang W, Sedo A, Yu SP, Mei ZZ, Sivaprasadarao A, 



JIANG ET AL. 

40 
 

Beech DJ, and Jiang LH. A differential role of macrophage TRPM2 channels in 
Ca(2)(+) signaling and cell death in early responses to H(2)O(2). Am J Physiol 
Cell Physiol 305: C61-C69, 2013. 

 



JIANG ET AL. 

41 
 

Figure legends 

Figure 1. Changes in autophagy-lysosome signaling during pericyte injury.  

(A) Representative western blots showing the changes of LC3-I and LC3-II in 

pericytes after treatments with indicated concentrations of ZnO-NP for 6 h. (B) 

Quantitative analyses of results, as shown in (A), and presented the bar graph as the 

densitometry ratio of control, from 3 independent experiments. **P < 0.01, ***P < 

0.001 versus control. (C) Representative electron microscopic images showing 

autophagy vacuoles in control pericytes and cells treated with 10 ȝg/ml ZnO-NP for 6 

h. Double arrows, autophagosome; single arrow, lysosome. (D) Representative 

confocal microscopic images showing LC3 puncta in cells under indicated conditions. 

The autophagy flux was examined in cells after ZnO-NP exposure for 6 h. (E) The 

average number of LC3 puncta per cell in control cells and cells treated with ZnO-NP. 

n = 37 cells analyzed for each condition. ***P < 0.001 versus control. (F) 

Representative images at indicated time points of pericytes transfected with 

mRFP-GFP-LC3 without (control, upper panel) or with exposure to 15 ȝg/ml 

ZnO-NP (bottom panel) for 60 min. The inserts showing magnified images of 

GFP-LC3 and mRFP-LC3 puncta.  (G) ZnO-NP induced autophagy by enhancing 

autophagosome formation. ZnO-NP treatment increased the relative level of LC3-II 

and Bafilomycin A1 (Baf-A1) caused a further increase. The inserts showing 

magnified images of GFP-LC3 and mRFP-LC3 puncta. (H) The average number of 

GFP-LC3 or RFP-LC3 puncta per cell in control cells and ZnO-NP-treated cells. n = 

27 cells analyzed for each condition. ***P < 0.001 versus control; ###P < 0.001 versus 

ZnO-NP treatment alone. 

Figure 2. TRPM2 knockdown blocks disturbance of autophagy flux during 

pericyte injury. 

(A) Representative western blots showing the change in TRPM2 protein levels in 



JIANG ET AL. 

42 
 

pericytes after treatment with 10 ȝg/ml ZnO-NP for indicated durations. Note that an 

increase in the expression of TRPM2-S revealed upon short exposure. (B) 

Quantitative analyses of the resultsas shown in (A) and presented in the bar graph as 

the densitometry ratio of the control from 3 independent experiments. *P < 0.05, and 
***P < 0.001 versus control. (C) Representative western blot showing 

ZnO-NP-induced LC3-II accumulation in control pericytes or cells transfected with 

scramble-siRNA (siScramble) or TRPM2-siRNA (siTRPM2). Cells were exposed to 

10 ȝg/ml ZnO-NP for 6 h. (D) Quantitative analyses of the results, as shown in (C), 

and presented in the bar graph as the densitometry ratio of the control from 3 

independent experiments. ***P < 0.001 versus control; ###P<0.001 versus ZnO-NP 

treatment alone. (E) Representative western blot showing ZnO-NP-induced LC3-II 

accumulation in pericytes treated with indicated conditions. Cells were exposed to 

ZnO-NP or chloroquine for indicated time. (F) Quantitative analyses of the result as 

shown in (E) and presented in the bar graph as the densitometry ratio of the control 

from 3 independent experiments. *P < 0.05, **P < 0.01 and ***P < 0.001 versus control; 
##P < 0.01 when compared with the indicated group.  

Figure 3. TRPM2 knockdown reduces apoptosis and ER stress during pericyte 

injury.  

(A) Representative images showing TUNEL (green) and DAPI staining (blue) in 

pericytes under indicated conditions. Pericytes were transfected with TRPM2 siRNA 

(siTRPM2) and then treated with 10 ȝg/ml ZnO-NP for 6 h. (B) Mean percentage of 

TUNEL positive pericytes under indicated conditions from 4 independent experiments. 
***P < 0.001 versus ZnO-NP treatment alone, using unpaired Student’s t-test. (C) 

Representative western blot showing ZnO-NP-induced ER stress signaling in control 

pericytes or cells transfected with scramble-siRNA (siScramble) or TRPM2-siRNA 

(siTRPM2). Cells were exposed to 10 ȝg/ml ZnO-NP for 6 h. Densitometry of 

phospho-JNK (D), phospho-PERK (E) and CHOP (F) levels in cells under indicated 
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conditions. Cells were treated with 10 ȝg/ml ZnO-NP for 6 h. ***P < 0.001 versus 

control; ###P < 0.001 versus ZnO-NP treatment alone. (G) Representative western blot 

showing ZnO-NP-induced ER stress signaling in pericytes treated with indicated 

conditions. Cells were exposed to ZnO-NP or chloroquine for indicated time. 

TRPM2-dependent ER stress-autophagy axis disturbance associates with 

ZnO-NP-induced pericyte injury. (H) Representative western blot showing TRPM2 

knockdown reduced pericyte injury following treatment with 10 ȝg/ml ZnO-NP for 24 

h.  

Figure 4. ATG5 knockdown reduces ZnO-NP-induced apoptosis.  

(A) Representative images showing double staining with TUNEL (green) and DAPI 

(blue) in pericytes after treatment with ZnO-NP (10 ȝg/ml) for 6 h. (B) Mean 

percentage of TNUL positive pericytes under indicated conditions from 3 independent 

experiments. ***P < 0.001 versus ZnO-NP treatment alone, using unpaired Student’s 

t-test. Apoptosis was dramatically reduced following transfection with ATG5 siRNA 

(siATG5) in cells after ZnO-NP treatment. (C) Summary of the mean cell viability 

under indicated conditions determined in CCK8 assays from 4 independent 

experiments. The effect of Z-VAD-FMK, a caspase inhibitor, on cell viability also 

examined. ***P < 0.001 versus control; ###P < 0.001 versus ZnO-NP treatment alone. 

(D) Representative western blot showing ZnO-NP-induced caspase-8 cleavage and 

LC3-II accumulation in control pericytes or cells transfected with ATG5-siRNA 

(siATG5). Cells were exposed to 10 ȝg/ml ZnO-NP for 6 h. (E) Quantitative analyses 

of the results as shown in (D) and presented in the bar graph, from 3 independent 

experiments. **P < 0.01 versus control; ##P < 0.01 versus ZnO-NP treatment alone. 

Ctrl, control. Error bars represent mean ± S.E.M.. (F) Relative caspase-8 activity as 

measured by optical density (O.D.) at 405 nm in control pericytes or cells transfected 

with scramble-siRNA (siScramble), TRPM2-siRNA (siTRPM2) and ATG5-siRNA 

(siATG5). Cells were exposed to 10 ȝg/ml ZnO-NP for 6 h. Data were from 3 
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independent experiments. ***P < 0.001 versus control; ###P < 0.001 versus ZnO-NP 

treatment alone. (G) Representative flow cytometric dot plots of apoptotic cells under 

indicated conditions after ZnO-NP treatment with or without transfection. Pericytes 

were treated with ZnO-NP for 6 h after transfection with siRNA for TRPM2 or ATG5. 

Cells were stained with PI and analyzed by FACS. (H) Quantitative analyses of the 

results as shown in (G) and presented in the bar graph, from 3 independent 

experiments. ***P < 0.001 versus control; #P < 0.05; ##P < 0.01 versus ZnO-NP 

treatment alone. 

Figure 5. Nitrosative stress associates with autophagy during pericyte injury. 

(A) Representative western blot showing temporal changes in peroxynitrite 

production in pericytes after treatment with 10 ȝg/ml ZnO-NP (6 h) for indicated 

durations. (B) Representative confocal images showing peroxynitrite production 

under indicated conditions. Measurement using NP3 of ONOO- formation in pericytes 

upon ZnO-NP treatment. Treatment with 200 ȝM UA, an ONOO- scavenger, reduced 

ZnO-NP-induced increase in NP3 fluorescence. Data were representatives of 3 

independent experiments. (C) Representative confocal images showing effects of 200 

ȝM UA on autophagic flux in pericytes following treatment with 10 ȝg/ml ZnO-NP. 

The inserts showing magnified images of GFP-LC3 and mRFP-LC3 puncta. (D) 

Inhibition of nitrosative stress-induced TRPM2-S formation and LC3-II formation. 

ZnO-NP induced an elevation in the TRPM2-S (E), which was attenuated by 

treatment with 100 ȝM L-NA and 200 ȝM UA. UA, uric acid; L-NA, L-NAME; L+U, 

L-NAME and uric acid. (F) Densitometric analysis of LC3B-II, normalized to ȕ-actin 

(ACTB). Data shown in (E) and (F) were from 3 independent experiments. **P < 0.01, 
***P < 0.001 versus control; ##P < 0.01, ###P < 0.001 versus ZnO-NP treatment alone. 

(G) Effects of nitrosative stress inhibition on ER-associated apoptosis proteins. 

ZnO-NP-induced increase in phospho-JNK (H) and CHOP (I) were attenuated by 

treatment with L-NAME or uric acid. The data are expressed as percentages of values 



JIANG ET AL. 

45 
 

of the control. ***P < 0.001 versus control; ###P < 0.001 versus ZnO-NP treatment 

alone. 

Figure 6. Tandem mass spectrum identification of the nitration residue in the 

TRPM2 protein.  

The protein was digested with 20 ng/ȝl trypsin and subjected to Nano-LC/MS/MS 

analysis. The sequence-specific ions are labeled as y and b ions on the spectra. The 

peptide (1236-1503) was identified to be nitrated. The peptide contained 

3-nitrotyrosine at Y1485. The fragmentation of ions showing the diagnostic mass shift 

of +45 Da is indicated.  

Figure 7. TRPM2 Y1485S mutation reduces pericyte injury. 

(A) A schematic showing the location of Y1485 in the C-terminus of the TRPM2 

protein. (B) Pericytes expressing the TRPM2 Y1485S mutant exhibited lower 

ZnO-NP (10 ȝg/ml)-induced autophagy events and ER stress. Cells were transfected 

with the plasmid encoding the TRPM2 Y1485S mutant or an empty vector as negative 

control. Quantitative analysis of the protein levels for LC3-II formation (C), CHOP 

levels (D), phospho-JNK (E) and phospho-PERK (F) was performed by densitometry. 

The mean data, expressed as the densitometry ratio of the control, were from 3 

independent experiments. ***P < 0.001 versus control; ##P < 0.01, ###P < 0.001 versus 

ZnO-NP treatment alone. (G) Expression of the TRPM2 Y1485S mutant reduced 

ONOO--induced ER stress and autophagy in pericytes. (H-J) Quantitative analysis of 

the protein levels for (G) was performed by densitometry, from 3 independent 

experiments. ***P<0.001 versus control; ##P<0.01, ###P<0.001 versus ZnO-NP 

treatment alone. Ctrl, control.  

Figure 8. Nitrosative stress downregulates the TRPM2 channel function. 

(A) Representative patch clamp recordings of ADPR-induced whole-cell currents in 

tetracycline-induced HEK-293 cells expressing hTRPM2. Cells were pretreated with 
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either 10 ȝg/ml ZnO-NP or 0.5 mM SIN-1. Currents were evoked by 0.5 mM ADPR 

contained in the pipette solution after obtaining the whole-cell (WC) configuration. 

Extracellular application of 10 ȝM N-(p-amylcinnamoyl) anthranilic acid (ACA) was 

gived at the end of the recording to block the TRPM2 channel currents. (B) The mean 

ADPR-induced current amplitude in cells treated with indicated conditions. n = 4 cells 

recorded for each condition. *P < 0.05 versus control; #P < 0.05 versus ZnO-NP 

treatment alone. 

Figure 9. Changes of Į-SMA in microvessels in wild-type and TRPM2 KO mice 

during neurovascular injury. 

(A) Fluorescent immunohistochemical staining of Į-SMA and laminin in the 

microvessels after ZnO-NP injection in wild type (WT) and TRPM2 KO mice. 

Anti-laminin (red) and Į-SMA (green) staining were performed at 24 h after ZnO-NP 

injection. (B) ZnO-NP injection lead to an increase in the number of the disconnected 

patchy parts of Į-SMA-positive cells in the WT mice, which was attenuated in the 

TRPM2 KO mice. n = 4 mice for each condition. ***P < 0.001 versus WT; ## P < 0.01 

versus WT+ZnO-NP.  

Figure 10. Aberrant autophagy signaling was associated with the pericyte injury.  

(A) Visualization of the brain cortex of animals injected with adenovirus carrying 

mRFP-GFP-LC3 treated or not with ZnO-NP (left panel). The pericytes were stained 

with anti-Į-SMA antibody (pink). Scale bar, 10 ȝm. The insets of panels show high 

magnification Z-stack images of brain microvessel staining. (B) Quantification data 

shown that accumulation of mRFP-positive puncta was partially reduced in the 

vessels from the TRPM2 KO mice after neurovascular insult. n = 4 mice for each 

group. 
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