
This is a repository copy of Web-based Integrated Development Environment for
Event-Driven Applications.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/113733/

Version: Accepted Version

Proceedings Paper:
Tunc, H, Taddese, A, Volgyesi, P et al. (3 more authors) (2016) Web-based Integrated
Development Environment for Event-Driven Applications. In: SoutheastCon 2016.
SoutheastCon 2016, 30 Mar - 03 Apr 2016, Norfolk, UK. IEEE . ISBN 978-1-5090-2246-5

https://doi.org/10.1109/SECON.2016.7506646

© 2016, IEEE. This is an author produced version of a paper published in SoutheastCon,
2016. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Uploaded in
accordance with the publisher’s self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Web-based Integrated Development Environment for

Event-Driven Applications

Hakan Tunc, Addisu Taddese, Peter Volgyesi, Janos Sallai, Pietro Valdastri, Akos Ledeczi

The Institute for Software Integrated Systems

Vanderbilt University

Nashville, Tennessee 37212

{hakan.tunc, peter.volgyesi, janos.sallai, akos.ledeczi}@vanderbilt.edu

STORM Lab

Department of Mechanical Engineering

Vanderbilt University

Nashville, Tennessee 37212

{addisu.z.taddese, pietro.valdastri}@vanderbilt.edu

of each task at design time. Context switching is another—

yet, relatively small—cost of threads, which affects interrupt

latency and overall responsiveness. Time-triggered systems

employ static periodic scheduling of tasks, thus estimating

the worst-case execution time (WCET) is essential for a

successful design. Due to static scheduling, and the lack of

interrupt-driven behavior, the responsiveness of these systems

is bounded but suboptimal. Conservative over estimation of the

required resources in both models leads to significant waste.

Strictly event-driven software architectures on the other

hand sacrifice system integration and software composition

assurances while aiming at optimal memory, time and power

use. Unfortunately, the event-driven terminology is used lib-

erally for many vaguely similar computational models. In this

paper we use the term for describing software where relatively

short tasks always run to completion, with no preemption and

context switching among tasks. Such tasks can be scheduled

for execution by other tasks or by interrupt service routines.

Interrupts are enabled during task execution and can optionally

be nested. In case there are no pending interrupts or runnable

tasks, the system enters a sleep mode, from which only

new interrupts can wake it up again. Such system can be

implemented by a big loop of task function calls or using

a static array or dynamic queue of task/function pointers.

It is easy to see how this architecture strives to run only

the necessary piece of code as fast as possible in response to

external—including previously scheduled timer—events. The

price of such architectural choice is mostly paid by the system

designer and developer: due to the run-to-completion and non-

blocking requirements the state space of the application has to

be explicitly maintained and because there are no constraints

on function calls from interrupt and tasks (deep call stacks),

the system architect should have a relatively clear picture of

the overall behavior of the entire system.

It is interesting to notice that very similar event-driven

approaches have gained popularity on the other end of the

Abstract—Event-driven programming is a popular method-
ology for the development of resource-constrained embedded
systems. While it is a natural abstraction for applications that
interface with the physical world, the disadvantage is that the
control flow o f a p rogram i s h idden i n t he m aze o f event
handlers and call-back functions. TinyOS is a representative
event-driven operating system, designed for wireless sensor net-
works, featuring a component-based architecture that promotes
code reuse. In this paper, we present a web-based model-driven
graphical design environment for TinyOS that visualizes the
component hierarchy of an application, and captures its event-
based scheduling mechanism. In contrast with existing visual
environments, our representation explicitly captures the control
flow o f t he a pplication t hrough e vents a nd c ommands, which
makes it easier to understand the program logic than studying
the source code. The design environment supports two-way code
generation: mapping the visual representation to TinyOS source
code, as well as building visual models from existing sources.

I. INTRODUCTION

The key building blocks and the enablers of any IoT
(Internet of Things) and most CPS (Cyper-Physical Systems)

applications are compact, low-power, inexpensive, yet respon-

sive sensor and actuator devices with built-in intelligence.

Such requirements and the need for building highly efficient
embedded solutions are in contrast to the developers’ desire to
use structured, composable and scalable software architectures.
In fact, two fundamental computational models are used exten-

sively: software threads with blocking services [1] and time-

triggered threads. Software threads aim at the composability
problem in the memory space (i.e. memory requirements and

separation of state variables), while the time-triggered [2] ap-

proach has nice guarantees in the time domain. Unfortunately,

one cannot mix and match these methods at the same time, and

both sacrifice e fficiency in th eir in tegration do main. Threads

require pre-allocated exclusive memory stacks, which puts the

burden on the system designer to estimate the maximum needs

1

computational spectrum: high-end web servers almost com-

pletely abandoned the thread-per-client design in favor of

event-based processing. In fact, the JavaScript run-time model,

which is at the heart of all modern web applications builds

on asynchronous event-driven scheduling, exclusively. The

previously described burden on the JavaScript developer is also

well-known and somewhat mitigated by function closures—a

highly dynamic language feature which, unfortunately, cannot

be easily adapted to resource constrained platforms.

Thus, the challenge in supporting event-driven software

development is to provide tools and frameworks with zero run-

time overhead or performance penalty. TinyOS improves struc-

tural composition, provides a clear task model and keeps track

of interrupt initiated vs. task-only function contexts to detect

potential race conditions on variable access [3]. However, it

provides little support in the behavioral aspect of the software

components. In this paper we propose a lightweight visual

approach to mitigate this problem and augment TinyOS by

keeping track of the internal control flow within the software

components. The model-based environment is supported by

code generators and parsers for establishing a live connection

between the visual representation and the implementation-level

source code.

The next section reviews the existing similar development

environments and contrasts our tool with them. Section III in-

troduces TinyOS, as well as WebGME, the web-based model-

ing platform that is the foundation of our model-based TinyOS

development environment. Section IV outlines our approach

for depicting event-based programming and TinyOS model

representation. Section V describes the tool we developed in

detail. Section VI develops an example app using the tool.

Section VII reveals planned future work and the shortcomings

of our approach with a conclusion.

II. RELATED WORK

Although a number of TinyOS development environments

are available, most of them are discontinued or not compatible

with recent versions of the operating system.

YETI [4] is an eclipse plugin for TinyOS 2.1. It supports

syntax highlighting, code completion, error detection, refactor-

ing, debugging, and hyperlink navigation across files and to

definitions. Although YETI generates a component graph of

the applications, it does not support visual editing. The plug-in

was last updated four years ago.

Viptos (Visual Ptolemy and TinyOS) [5] is a graphical

development and simulation environment for TinyOS based

Wireless Sensor Network applications. Viptos integrates with

TOSSIM, a TinyOS simulator. Viptos allows developers to

visually build configuration components by dragging and

dropping, as well as by creating connections between them and

transforming them into nesC programs that can be compiled

and downloaded. It can parse existing TinyOS components

and represent them visually. Although Viptos can be used for

configuration development, it is mostly focused on simulation

of TinyOS programs. Viptos supports the earlier version of

TinyOS 1.x and the development of Viptos seems to be

discontinued since 2006.

GRATIS II [6] is a graphical development environment for

TinyOS. It is built on the Generic Modeling Environment

(GME), the predecessor of WebGME, and uses models and

ports to represent components, interfaces and events. The

operating system components are available for reuse. GRATIS

II generates TinyOS source code from a visual representation

of configuration components. It applies constraints specified

in the Object Constraint Language (OCL) to keep the appli-

cations valid. Its latest release supports only TinyOS 1.x.

Tei, et al. [7] have developed a tool to ease the development

process of WSNs. In this tool, a set of predefined components

are used to create applications and TinyOS source code is

generated from template files. However, this tool currently

supports only simple monitoring applications. Moreover, three

different modeling languages are used to create applications,

which presents a steep learning curve for new users.

Our tool differentiates itself from other related tools. For

example, rather than adding multiple abstraction layers, we

focus on creating the a single intuitive abstraction layer on

top of nesC and TinyOS to make it easier to conceptualize

and develop applications.

Since our tool resides on the web, users do not need to

install any applications or set up a toolchain. Web browsers

are more accessible to end users. Unlike desktop programs,

web applications can be used from a wide range of operating

systems and devices. Updates to web applications are quickly

propagated to users as opposed to desktop programs that re-

quire the user to update them regularly. New web technologies

are creating new workflows and ways of collaboration that are

increasing the productivity of developers. Our tool provides the

benefits of new technologies to all users including those new to

TinyOS. We believe that the TinyOS developer community can

benefit from an online collaborative tool that removes some

of the barriers of entry for novice users.

Another important differentiation of our tool is the revision

control system. WebGME’s revision control capabilities are

mentioned in Section III. WebGME also has a constraint

mechanism which makes it possible to enforce domain, as

well as TinyOS related constraints. In addition, it can be used

to enforce design patterns and conventions envisioned by those

who developed the corresponding components.

III. TINYOS & WEBGME

A. TinyOS

TinyOS is an event-driven operating system for small de-

vices. Its primary design objectives were support for complex,

concurrent programs, e.g. sensing and forwarding messages

at the same time, as well as promoting code reuse through

defining a component model.

At its core, TinyOS is a classical event-driven operating

system. Once booted, the scheduler runs the event loop that

dispatches tasks from the event queue. Tasks are non-periodic,

and always run to completion, i.e. there is no preemption other

than interrupts. Tasks are posted (i.e the deferred execution of

2

the task is requested) by interrupt service routines or other

tasks. A task is implemented as a function, and posting a task

is essentially equivalent to adding the tasks function pointer

to the event queue.

What makes TinyOS stand out from the crowd is the way

application code is structured. The source code of tasks,

functions, callbacks, and static variables that are logically

related are organized into a module. Modules interact through

bidirectional interfaces, that include commands, which are

function calls, such as SendMsg.send(), as well as events,

which are callbacks, such as SendMessage.sendDone(). Mod-

ules may provide and/or use a given interface. When a module

uses an interface, it can call the interface’s commands and

must implement the event handlers (callbacks) defined in the

interface. Conversely, when a module provides an interface, it

must implement the corresponding commands, and may signal

(call) the events the interface defines.

To promote code reuse, as well as programming abstrac-

tions, TinyOS allows for composing modules into configura-

tions. Configurations are comprised of multiple components

(modules or configurations), that interact through their inter-

faces. Configurations specify wirings that connect the provided

interface of one subcomponent to the used interface of another.

Alternatively, an interface of a subcomponent may be exposed

by the enclosing component, as well.

In TinyOS, operations that one may request through an

interface, e.g sending a radio message, are often split phase.

The completion event of an operation is signaled in a new

task or interrupt context. This has two important implications.

First, since the stack is unrolled by the time the event is called

back, local variables are not retained between command and

event invocations. Second, the logical control flow within a

module is not linear, but rather a series of command, event,

and task invocations.

TinyOS applications are programmed in the nesC language,

a superset of C that supports modules, configurations, wiring,

interfaces, commands, events, tasks as first class language

elements. A TinyOS application is always specified as a

top-level configuration that is a hierarchical composition of

modules and configurations, most of which come from a

library of components that is shipped with the OS, while the

rest are custom modules and configurations that implement the

application-specific logic and glue code.

The nesC compiler is a source-to-source compiler that,

in essence, traverses the component hierarchy, resolves the

wirings, and emits a monolithic platform-specific C source file

which will be compiled to a binary image by a C compiler.

As a side product of the compilation process, nesC can

optionally output an XML file with detailed information on

the component structure of the TinyOS application, as well

as custom nesC annotations, variables, event and command

invocations.

B. WebGME

Our tool is based on WebGME [8], an online collaborative

environment for designing complex computational systems.

WebGME benefits from the features that web and cloud

infrastructures, modern web browsers and HTML5 offer. In

addition, it provides most of the necessary infrastructure on

which we have built our design environment.

WebGME is a visual design environment for model driven

development [9]. It uses meta-models, which specify a vi-

sual domain-specific language and corresponding model. The

model represents the structure and behaviour of the systems

being designed. Every object and connection, which in itself is

an object, is represented by a graphical object in the WebGME

canvas. WebGME provides different perspectives to manipu-

late models and meta-models. In addition, WebGME allows

custom domain-specific visualizations and plugins which we

have utilized for our custom TinyOS design environment.

WebGME has a built-in revision control mechanism. Cre-

ation of new components, changes of attributes and even

position changes of objects are versioned. Since all changes

are stored in a cloud database, users can revert their project to

an earlier version or explore its development history. WebGME

also provides an easy-to-use branching mechanism, which,

combined with the overall revision control system, gives users

an opportunity to experiment without the risk of losing their

progress. It is especially useful for novice users since they

know they can revert their changes any time or they can create

an experimentation branch.

IV. REPRESENTATION

Among the other integrated development tools for TinyOS,

there is very little tool support for event-based architecture.

On the other hand, we model this aspect of the operating

system in an informative visual representation so developers

have an alternative view to the source code for their appli-

cation’s implementation logic. In addition, we show the local

variables used in a module as well as their read-write accesses

from the interfaces. This gives another view to evaluate the

implementation of a system.

The component based nature and hierarchical structure of

TinyOS fits harmoniously with WebGME’s modeling frame-

work. First, we devised a visual representation of the TinyOS

language (nesC) using the WebGME meta-modeling language.

We then added extra modeling concepts to emphasize the

event-based aspects of TinyOS and to show variable access

patterns. In the following sections, we present more details

about the formalism.

A. How to represent event based programming

We visualize the program flow in TinyOS using states

and transitions between states triggered by events or com-

mands. The states are represented as components and they

are connected together through ports representing either events

or commands. Connections indicate the possible ways to

transition to another state.

In TinyOS, the logic of the applications is implemented

in module components. The events of used interfaces and

the commands of provided interfaces of a module are imple-

mented as functions written in nesC. These functions can be

3

Fig. 1. Simple Event Triggered Call

invoked with the keywords signal and call, respectively. The

component and interface based structure of TinyOS has great

advantages in representing the flow of an application visually.

Since all of the functionality and flow of an application is

stated with interfaces, we capture the ’uses and provides’

interfaces as states. The command and event functions of the

interfaces are represented as the ports of the interfaces.

In Fig. 1, we show a simple state flow between two

interfaces. Yellow boxes, blue ports, and red ports represent

interfaces, commands, and events respectively. When Timer0’s

timer fires, TinyOS dispatches the fired event. This event calls

the led0Toggle function of the Leds interface. This visual

representation makes TinyOS programming logic easier to

understand and modify. The visual representation is an easy

way to conceptualize the call graph of a module compared to

examining the source code and following event dispatches and

function calls.

B. Meta Model

We capture the nesC grammar specifications with We-

bGME’s meta modeling capabilities. Our goal is to come up

with the most natural set of visual elements while capturing

every necessary detail of the language specification. Most of

the elements are represented as objects while some of them

are included as attribute fields. In some cases, more than one

object represents a language component in order to provide a

better understanding of the application in a visual view. For

example, we use two different base types for uses interface

and provides interface instead of using an attribute field to

choose the type. In this way, it is easier to create the object

and make it visually different.

In Fig. 2, we show the meta language of fundamental

entities of nesC in WebGME’s meta language representation.

WebGME uses Unified Modeling Language (UML) class

diagrams for language definitions. The red lines with triangle

arrows represent inheritance, black lines with diamonds rep-

resent the containment relationships, blue lines with arrows

represent pointers (associations). By convention, if an object

has both a source (src) and a destination (dst) pointer, it is

visualized as a connection in the modeling language. Objects

with gray titles are abstract types. We cropped some parts of

the language in this figure to save space, but the complete meta

language can be studied from the project web page. This figure

Fig. 2. Meta Language for nesC

should be used as a reference to understand the meta level

relations between objects for the remainder of this section.

Each configuration, module, and interface-definition of

TinyOS, in addition to uses and provides interfaces, is rep-

resented by a WebGME object in a visual canvas. Within a

configuration or module, there are uses and provides interfaces,

configuration and module components, and link and equate

connections (wires). These interfaces, components, and wires

are designated by color. Uses and provides interfaces are

yellow and green. Configuration and module components are

light blue and orange. Link and equate wirings are continuous

blue and dashed red lines, respectively.

Interfaces that belong to a particular configuration or mod-

ule are shown as ports on a WebGME object along with

its name. Components’ interfaces are visible as ports. Con-

nections between the interfaces and ports indicate wiring.

WebGME supports prototypical inheritance for models. Here

model instances are utilized to refer to components instantiated

elsewhere in the object hierarchy. Clicking on instances takes

the user to the original interface or component definition.

As an example, visual representation of the MainC con-

figuration can be seen in Fig. 5. While SoftwareInit and

Boot interfaces are exported for applications, TinySchedulerC

and PlatformC are wired to provide implementation of the

interfaces Scheduler and PlatformInit.

4

Fig. 3. Meta Language for nesC Modules

Uses interface and provides interface inherit from interface

type object. Interface type is defined as an abstract type. Thus,

it is not possible to create an instance of it while developing

a model. We defined a pointer from interface type to interface

definition named interface in order to be able to reference

the original definition. In Fig. 5, there are uses interface

‘SoftwareInit’ and provides interface ‘Boot’. The interface

reference is represented as a small icon on the top right of

these two objects. When a user double clicks this icon, the

user is taken to the definition of the used or provided interface.

The internal structure of a module is the most versatile

among the models we have used. The meta language definition

of modules can be seen in Fig. 3. Modules include interfaces,

tasks, variables, a call graph (call, signal, post), and variable

access patterns.

Uses and provides interface objects reference an interface-

definition object in order to have access to the function

declarations of the interface. Within module implementations,

uses and provides interfaces show the function declarations

(events and commands) as ports as can be seen in Fig. 1.

If a module component has any tasks defined, they are also

represented as WebGME objects which are displayed using a

’gear’ icon inside the module visualizations. To capture the

call graph of a module, different types of connections can be

created between function objects. Function objects are either

ports of interfaces or tasks. There are three types of function

calls: call for commands, signal for events, and post for tasks.

They are all visualized as black lines with an arrow and they

represent the call graph of a module. The type of connection

is labeled with these names. An example can be seen in Fig. 4.

Local variables used in a module are represented by a

circle. These variables are connected to the tasks or interface

functions (commands or events) with connections: read, write

or readwrite. The connection type is based on whether or not

the variables are accessed, assigned, or both. We modified the

TinyOS compiler to retrieve call graphs and variable accesses

of modules.

When a module has a slightly complex internal structure

with a number of variables, the representation of the module

has many connections which may lead to a complicated

view. We have used WebGME’s aspect feature to define two

additional views for a modules’ internal structure: call graph

and variables. Aspects allow us to define which subsets of

contained objects to show together. Within a module, it is

very easy to toggle between the three aspects defined: all

(which is the default view and shows everything), call graph

and variables.

Under the hood, we heavily use the inheritance functionality

of WebGME while defining the meta-model of the modeling

language. For instance, configuration and module directly

inherit from component which has the field safe, while both

component and interface definition inherit from nesc file which

has path and source fields. By relying on inheritance, the

meta-model development becomes more maintainable without

repetition and it is less error prone.

When an object is selected in WebGME, its pointers can

be accessed from the property editor. The property editor is

located on the bottom right of the window as can be seen

in Fig. 4. In addition to TinyOS components, we defined a

Folder object in WebGME to be able to keep the original folder

structure of the TinyOS source code (TOS). As a result, the

Fig. 5. Visual Representation of MainC

5

Fig. 4. Visual Representation of a Module: SenseAndSendC

objects can be browsed in the TOS structure and experienced

developers can easily find the desired components.

The visual editor allows an intuitive representation of the

components and the connections between them. It increases

readability and understandability of applications with eas-

ier conceptualization. In addition, the WebGME constraint

checking mechanism prevents wiring between incompatible

interfaces which eliminates some of the possible compile time

errors. It is not only helpful for novice users but also for

experienced users because it allows them to strictly focus on

their design.

V. SOFTWARE DESIGN ENVIRONMENT

We extended WebGME with plugins, software components

that provide domain-specific features, and a custom decorator

to enhance the visualization of TinyOS applications. The

Fig. 6. Development and Build Workflow

plugins are triggered from the user interface and are easy

to use. The development and build workflow are shown in

Fig. 6. All computation that need to use the TinyOS toolchain

is handled on the server side and the resulting binaries are sent

to the client. The XML output of the nesC compiler, mentioned

earlier, has been used to access the information of an appli-

cation’s structure whenever necessary. The following sections

cover the different aspects of the design environment [10].

A. Decorators

We extended the WebGME built-in decorators to serve our

needs for visualization and functionality. Custom additions to

the tool allow users to run plugins, open the editor, edit the

source code, compile and download the app as seen in Fig. 7.

B. Integration of Visual and Text Editor

1) Code Generation: Code generation is an integral part

of the tool. Although the configurations and applications

can be designed with the visual interface, we need to feed

the compiler with an error-free nesC code to compile the

application. In addition, the code generation plugin allows

a user to generate nesC code of a component to study its

source code. The code generation plugin parses the WebGME

objects and uses a template engine to generate its source code.

The generated source code is stored as an attribute of the

corresponding component.

2) Model Generation: Users who prefer working on the

source code can use the text editor view of the tool as can be

seen in Fig. 7. We want to make it possible for users to use

both graphical and classical ways of developing an application.

6

Fig. 7. Source Editor

Each user, expert or novice, can switch between text and visual

modes as they are developing their application and continue

their work by updating the corresponding representation of the

component. Users can update the visual or textual editor by

using the buttons at the bottom of the editor.

For module components, model generation is a one-way

transformation from the source code to WebGME model. The

visual representation of modules is read-only and helps users

understand the program logic of the component.

The model generation plugin creates the module, (lo-

cal) variables and their access patterns from the interfaces

within the module representation. The access pattern is shown

whether it is read, write or read-write. This visual represen-

tation makes it easy to detect undesired variable modifica-

tion. Since a TinyOS program’s states are captured with its

components and their local variables, local variable analysis

will give us the chance to get statistics about how resources

are consumed from individual components. In that way, the

developer can update their code to use the resources more

efficiently; this is particularly important for embedded systems

due to limited amount of memory.

C. Build System - Compilation

Our tool allows users to compile and download the app from

their web browsers without installing any toolchains. The tool

compiles the applications on the cloud and sends back a zipped

collection of artifacts which can be downloaded by the user

and installed on the target device. Once the user compiles the

app from the editor, Download the App button appears. If the

user recompiles the app after any changes, the tool updates

the version number of the downloadable. The installation of

the downloaded files onto the target device requires device

specific tools to be available on the users computer. This is

a limitation of our tool that we are currently working on to

address by way of providing a hardware platform compatible

with available technologies that allow programming of devices

from web browsers.

1) TinyOS Populator: In order to create the WebGME

representation of TinyOS library, we wrote a script which

utilizes the XML output of nescc (compiler for nesC). Since

there are many platforms and hundreds of TinyOS elements

(components and interfaces) for each platform, the WebGME

representations of the objects are created for a specific plat-

form by the script. As a result, each TinyOS component and

interface is represented by a corresponding WebGME object

in the original folder structure of the source code. This library

of TinyOS components is available in the object browser and

does not need to be generated by the user.

2) App Importer: This plugin is used to import existing

TinyOS applications into our tool. It works in a similar

fashion to the TinyOS Populator in terms of creating WebGME

objects. This plugin can be used with an empty project as it

creates the used TinyOS objects during the import process.

7

VI. EXAMPLE: SENSE AND SEND APPLICATION

To create an app, a user must create a configuration object in

a user space, e.g., apps folder under the ROOT object. TinyOS

source code is accessible with every project as a library. When-

ever a user needs to use a TinyOS component or interface,

they need to locate the component in the object browser and

create an instance of it in the user’s configuration object.

WebGME will automatically create the full-fledged component

with its interfaces. Wiring is indicated by connecting ports of

components or interfaces with a mouse click.

As an example, we are using a sense and send applica-

tion we have developed to test our hardware and software

environments. It is a simple yet typical medical capsule robot

application that senses its environment and sends the collected

data through a radio. We used the AppImporter plugin to

import the helper components and convert the project to

the WebGME environment. To create an app, we create a

configuration object and name it SenseAndSendAppC. We

create a module of SenseAndSendC within the app object.

Since the SenseAndSendC component is using a number of

interfaces, we create instances of components that provide

these interfaces. Then, we connect the interfaces through

the ports of components with link wires. At this point, we

can compile and download the application by opening the

SenseAndSendAppC editor.

Visual representation of the SenseAndSendC module call

graph can be seen in Fig. 4. Although this representation is

view only, it provides an easier to understand overview of the

application with the call graph. In Fig. 4, we only show the

call graph aspect of the model to highlight the business logic.

VII. CONCLUSION & FUTURE WORK

Currently, the visual representation of autogenerated mod-

ules does not adequately reflect the business logic of the corre-

sponding application. It will be useful for the users if the tool

creates a smarter layout which do not necessarily require the

users to move objects to understand the flow of the application.

Furthermore, using an existing component requires finding its

location in TinyOS using the object browser. We would like to

develop a functionality that searches the existing components

and gives the chance to create them right from the visual editor.

It would be very useful for users to be able to list and search

interfaces, for instance, without looking through the object

browser.

Future work also includes improving the static error detec-

tion and prevention mechanism of the visual editor. With an

improved approach, users will get immediate feedback on their

application reducing development time. One use case of this

is the prevention of incorrect wirings in configurations.

In TinyOS, once an application is developed, the application

can be compiled easily to other platforms, as long as the

components are supported by the hardware. However, in our

tool, the user directly uses the specific platform’s component

implementations while they are developing their application.

Therefore, porting the application to different platforms is not

as easy as it is in the classical TinyOS development process. It

will be possible to address this by automatically repopulating

the TinyOS library and the application components with a

plugin for the desired platform.

The design environment needs to be further improved by

giving the user messages from the TinyOS toolchain. This

will help the user with debugging his application. It might be

more beneficial if the user has access the warnings and errors

as he develops his application.

We have described the design and implementation of a web

based development environment for TinyOS applications. We

believe this design environment reduces the barrier of entry for

novice users while offering benefits to advanced users in terms

of convenience and higher level abstractions not available

directly in TinyOS. While the advantages of this design

environment are clear from the authors’ experience, more work

is needed to quantify its utility for users. Metrics for assessing

the success of this tool on novices and advanced users need

to be defined and methods for obtaining such metrics from

users need to be devised. Additionally, models that provide

even higher levels of abstraction in various domains need to

be supported to seed the growth of the repository of models

that will later be supported by the community.

VIII. ACKNOWLEDGMENT

This material is based upon work supported by the Na-

tional Science Foundation under grants number CNS-1239355

and IIS-1453129, as well as an NSF Graduate Fellowship.

Any opinions, findings and conclusions or recommendations

expressed in this material are those of the authors and do

not necessarily reflect the views of the National Science

Foundation.

REFERENCES

[1] E. Lee, “What’s ahead for embedded software?,” Computer, vol. 33,
pp. 18–26, Sep 2000.

[2] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings

of the IEEE, vol. 91, pp. 112–126, Jan 2003.
[3] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,

D. Gay, J. Hill, M. Welsh, E. Brewer, et al., “Tinyos: An operating
system for sensor networks,” in Ambient intelligence, pp. 115–148,
Springer, 2005.

[4] N. Burri, R. Flury, S. Nellen, B. Sigg, P. Sommer, and R. Wattenhofer,
“Yeti: an eclipse plug-in for tinyos 2.1,” in Proceedings of the 7th

ACM Conference on Embedded Networked Sensor Systems, pp. 295–
296, ACM, 2009.

[5] E. Cheong, E. A. Lee, and Y. Zhao, “Viptos: a graphical development
and simulation environment for tinyos-based wireless sensor networks,”
in SenSys, vol. 5, pp. 302–302, 2005.

[6] P. Völgyesi, M. Maróti, S. Dóra, E. Osses, and A. Lédeczi, “Software
composition and verification for sensor networks,” Science of Computer

Programming, vol. 56, no. 1, pp. 191–210, 2005.
[7] K. Tei, R. Shimizu, Y. Fukazawa, and S. Honiden, “Model-driven-

development-based stepwise software development process for wireless
sensor networks,” Systems, Man, and Cybernetics: Systems, IEEE Trans-

actions on, vol. 45, no. 4, pp. 675–687, 2015.
[8] M. Maróti, T. Kecskés, R. Kereskényi, B. Broll, P. Völgyesi, L. Jurácz,

T. Levendoszky, and Á. Lédeczi, “Next generation (meta) modeling:
Web-and cloud-based collaborative tool infrastructure,” Proceedings of

MPM, p. 41, 2014.
[9] A. Lédeczi, A. Bakay, M. Maroti, P. Völgyesi, G. Nordstrom, J. Sprin-

kle, and G. Karsai, “Composing domain-specific design environments,”
Computer, vol. 34, no. 11, pp. 44–51, 2001.

[10] Pillforge, “Tinyos development environment.” https://github.com/
pillforge/mcr ide, 2015.

8

