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Wavelength Assignment in Hybrid 
Quantum-Classical Networks
Sima Bahrani1,2, Mohsen Razavi1 & Jawad A. Salehi2

Optimal wavelength assignment in dense-wavelength-division-multiplexing (DWDM) systems 
that integrate both quantum and classical channels is studied. In such systems, weak quantum key 
distribution (QKD) signals travel alongside intense classical signals on the same fiber, where the former 
can be masked by the background noise induced by the latter. Here, we investigate how optimal 
wavelength assignment can mitigate this problem. We consider different DWDM structures and various 
sources of crosstalk and propose several near-optimal wavelength assignment methods that maximize 
the total secret key rate of the QKD channels. Our numerical results show that the optimum wavelength 
assignment pattern is commonly consisted of several interspersed quantum and classical bands. Using 
our proposed techniques, the total secret key rate of quantum channels can substantially be improved, 
as compared to conventional assignment methods, in the noise dominated regimes. Alternatively, we 
can maximize the number of QKD users supported under certain key rate constraints.

Quantum networks are no longer a physicist’s fantasy but the emerging reality of today’s complex communica-
tions world. With the first quantum satellite in orbit1,2, and the launch of the 2000-km-long Beijing-to-Shanghai 
quantum key distribution (QKD) network3, quantum technologies have reached a new milestone in supporting 
multiple users at long distances. This trend is boosted by various national and regional programmes in the UK, 
the European Union, the United States, and far east Asia, that aim at bringing the technology to the doorsteps 
of the end users. While the emerging quantum communications technologies would offer future-proof security 
for our data exchange, they are not going to replace the vast investment in high data-rate communications. In 
fact, any commercially sensible solution for quantum networks would rely on its integration with classical infra-
structure4–9. In this paper, we address one of the problems that arise in such integrated networks. We look at a 
dense-wavelength-division-multiplexing (DWDM) setup in which multiple QKD channels are multiplexed with 
several data channels10,11, and will investigate how wavelength assignment in such a setup can affect the amount 
of crosstalk, and consequently the performance of QKD channels.

From the first proposed QKD protocols12 up until now, the field has seen considerable development and pro-
gress. Various QKD protocols and different techniques to address their practical issues have been proposed in 
the literature13–18. For instance, one of the main advancements in the implementation of QKD is the decoy-state 
technique, which relaxes the need for an ideal single-photon source in QKD systems. On the other hand, there 
has been significant enhancement in reach and performance of point-to-point QKD links. The successful demon-
stration of measurement-device-independent QKD over 404 km19 has proven the feasibility of running QKD 
over long optical fibers, although at a very low rate. To cover longer distances, at a high key-exchange rate, and to 
support multiple users, QKD must be implemented over large-scale networks.

The initial steps for the implementation of QKD in a network setting have been carried out successfully20–23. 
The European project SECOQC and the Tokyo QKD network each demonstrated a small quantum network with 
mesh topology. To extend these examples, the first generation of QKD networks are expected to rely on the key 
exchange in a trusted-note architecture. That is, in order to overcome distance limitations of QKD, a set of trusted 
nodes, at the core of the network, can be used to link the two end nodes. The most recent example of such net-
works is the developing link between Beijing and Shanghai with 32 trusted nodes along the way.

Regardless of the topology, one major requirement in the widespread development of QKD networks is their 
integration with the existing fiber-optic classical networks. This is not limited to the current developing QKD 
networks, but also next generations of quantum networks should address this issue due to cost efficiency consid-
erations. In such hybrid networks, weak quantum signals should travel alongside intense classical ones. The latter, 
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in this scenario, would produce some background noise, e.g., Raman scattering and adjacent channel crosstalk, 
which will enter the quantum receivers.

In order to reduce the background crosstalk in hybrid quantum-classical setups, several methods have been 
proposed. For instance, filtering methods in frequency and time domains have been used to suppress the cross-
talk7,8. Another useful approach is the control of launch power of data channels such that it satisfies the receiver 
sensitivity7,8. Furthermore, it has been shown that orthogonal frequency division multiplexing (OFDM) can effec-
tively reduce the crosstalk using an inherent optimal filtering10.

In this paper, we propose optimal wavelength assignment as an additional method of crosstalk reduction 
in a DWDM link at the core of a hybrid network. The problem of optimal wavelength assignment in integrated 
quantum-classical DWDM systems with one quantum and several classical channels has been investigated for cer-
tain QKD systems9. However, the more general scenario, where multiple quantum and multiple classical signals 
are to be transmitted, has not been fully studied yet. Considering the shape of Raman spectrum, a conventional 
solution for this problem is the assignment of higher wavelengths to classical channels, and the lower wavelengths 
to quantum ones. Appropriate wavelength assignment under the constraint of having two separate quantum and 
classical bands has been investigated in an earlier work10. However, it has been shown by the authors that optimal 
wavelength assignment does not necessarily follow this two-band form11. Here, we investigate optimal wavelength 
assignment and propose several methods to approach it in different DWDM setups. We also show that the opti-
mal wavelength assignment can improve the performance of QKD links effectively.

In our optimization problem, we consider two particular scenarios. In the first scenario, our objective is to 
get the maximum aggregate key rate out of a fixed number of quantum channels in the presence of a number of 
classical channels. This scenario is relevant in the settings that all generated keys are to be consumed by our two 
end nodes. That is, the main point of multiplexing several QKD channels is to increase the total key rate. Another 
foreseeable scenario is that each quantum channel represents a different user. In such a case, we have to be able to 
guarantee a minimum key rate for all users. In such a setting, the optimized solution can maximize the number 
of users that can be supported. This may or may not coincide with the total maximum key rate as we show in this 
paper.

In the following, the hybrid quantum-classical DWDM system is described in Sec. 2. In Sec. 3, the key rate 
analysis is presented. The proposed wavelength assignment methods are described in Sec. 4. We present our 
numerical results in Sec. 5, and conclude the paper in Sec. 6.

System Description
Consider a DWDM link in the backbone of a quantum-classical network carrying several classical and quantum 
channels. We refer to the two end nodes of the link by Alice and Bob. We consider a general scenario where M 
channels are assigned to the QKD usage, while N forward classical channels (from Alice to Bob) and N backward 
classical channels (from Bob to Alice) transmit classical data. As for the fiber link, we consider two cases of 
full-duplex over a single-mode fiber, and dual-fiber, as shown in Figs. 1(a) and (b), respectively. In the first case, 
we assume that each classical channel is equipped with optical circulators to enable the transmission of signals 
in both directions on the same wavelength. This structure describes some of the existing, and probably future 
high-capacity, full-duplex DWDM systems with both classical and quantum links. In the setup of Fig. 1(b), for-
ward and backward data signals are transmitted via different fibers. This structure is, for example, used in 100 G 
systems. In this case, we assume that the classical and quantum signals are transmitted in the same direction on 
both fiber links. That is, in the forward link, QKD encoders are located on Alice’s side, whereas for the backward 
link, they are on Bob’s side. This assumption is based on the fact that the Raman noise generated in this case is 

Figure 1. Hybrid DWDM link with multiple quantum and classical channels: (a) A full-duplex DWDM system 
over a single-mode fiber. Each classical channel is equipped with optical circulators to enable the transmission 
of signals in both directions on the same wavelength. Quantum signals travel from Alice to Bob. (b) A dual-fiber 
DWDM system, where forward and backward data signals are transmitted via different fibers. Quantum signals 
travel along the same direction as the classical ones.
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smaller than the case of transmitting quantum and classical signals in the opposite directions7, as we will explain 
later.

Let us introduce the notation we use for the employed wavelengths in our hybrid link. The set of available 
wavelengths in the system is denoted by G = {λ1, …, λD}. We denote the channel spacing of the DWDM system 
by Δ. Furthermore, the set of wavelengths assigned to forward and backward classical channels are represented 
by λ λ= …A { , , }A AN1

 and λ λ= …B { , , }B BN1
, respectively. Note that sets A and B, in both structures, could 

be overlapping. All classical signals are assumed to have equal launch power, denoted by I. This launch power is 
assumed to be minimized, considering the receiver sensitivity, to meet a target bit error rate (BER). In the case of 
quantum channels, we introduce two wavelength sets: λ λ= …U { , , }q q1 k1

 represents the channels whose quan-
tum signals travel from Alice to Bob, and λ λ= …

+
U { , , }q q2 k M1

 represents the channels whose quantum signals 
travel from Bob to Alice. In the dual-fiber structure, parameter k will then represent the number of quantum 
channels on the forward link. Note that, U1 and U2 may also be overlapping. In the full-duplex system, k = M, and 
U2 would be an empty set.

In this paper, we use the BB84 protocol with time-bin encoding24 for our QKD channels; see Fig. 2. This 
method is mainly suitable for fiber channels. We also use the decoy-state version of efficient BB8425 to allow for 
weak laser pulses to be used at QKD encoders. In the time-bin encoding, the qubits are encoded on the phase 
difference of two consecutive pulses, r and s, generated by a Mach-Zehnder interferometer (MZI). The encoding 
phase, φA, is chosen from one of the basis sets {0, π}, for X basis, and {π/2, 3π/2}, for Y basis, randomly. At the 
QKD decoder, the decoding phase, φB, of Bob’s MZI is chosen randomly, from the set {0, π/2}. He then interferes 
the received r and s pulses by means of his MZI and infers the transmitted qubit by measuring the output pulses.

The integration of classical and quantum signals on the same fiber results in certain problems that may affect 
the QKD operation. The main challenge is the background noise generated by the classical signals that reaches 
the quantum receivers. Two main sources of this crosstalk noise are the inelastic interactions in an optical fiber 
and nonideal operation of DWDM multiplexers and demultiplexers. In particular, the Raman scattering and 
the power leakage from adjacent channels have been shown to be the dominant sources of noise in such hybrid 
systems26. In the following, the effect of these sources of background noise is described in more detail. We assume 
that our QKD decoders are equipped with narrow-band filters (NBF) to reduce such noises.

Sources of crosstalk noise. Raman noise. Raman scattering occurs due to the inelastic photon-phonon 
interactions in an optical fiber. Because of its wide spectrum, Raman noise can easily leak into quantum channels. 
The Raman noise co-propagating with the data signal is referred to by forward scattering, whereas the Raman 
noise traveling in the opposite direction is known as backward scattering. Backward Raman scattering is known 
to be stronger than the forward one for typical fiber lengths7.

In the DWDM systems shown in Fig. 1, each classical signal induces a certain amount of Raman crosstalk 
noise at the receiver of each quantum link. Consider the quantum channel with wavelength λqm

 for m = 1, …, M, 
and let us calculate the amount of Raman noise induced by the nth, n = 1, …, N, data channel. The data channel 
can include signals traveling in the same direction as the quantum signals in channel m, or the opposite direction. 
Let us denote the wavelength of the former by λ fn

, and the latter by λbn
. For instance, for the full-duplex structure, 

we have λ λ=f An n
 and λ λ=b Bn n

. In the dual-fiber case, if m ≤ k, then λ λ=f An n
, otherwise λ λ=f Bn n

. There 
would be no backward classical channel in the dual-fiber case, hence λbn

 is not defined. With this notation, the 
forward Raman (FR) noise power corresponding to λ fn

, for the mth quantum channel, is given by7,26:

β λ λ λ= ∆α−I Ie L ( , ) (1)nm
L

f q
FR

n m

and, in the full-duplex case, the backward Raman (BR) noise corresponding to λbn
is given by

α
β λ λ λ=

−
∆

α−
I I e(1 )

2
( , ) , (2)nm

L

b q
BR

2

n m

where β(λd, λq) is the Raman cross section (per fiber length and bandwidth) at wavelength λq for a classical pump 
signal at wavelength λd. For our dual-fiber system, =I 0nm

BR . In the above equations, α, L, and Δλ are, respectively, 
the fiber attenuation coefficient, the fiber length, and the bandwidth of the NBF in wavelength unit. In this paper, 

Figure 2. Phase encoded (time-bin) QKD. Alice encodes her key bits by choosing a phase value, φA, from one 
of the bases {0, π} and {π/2, 3π/2}. Each optical pulse passes through the MZI and produces two output pulses 
with the relative phase φA. On the Bob side, another MZI is used to recombine r and s modes, followed by 
photodetection. Active phase and polarization maintenance is assumed to be in place.
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for simplicity, we assume that α is constant across the employed wavelength grid. This is a good approximation 
for wavelengths within 1530 nm and 1565 nm in the C band, which is considered in our numerical results. It 
would be straightforward to use a wavelength dependent α if loss variations are substantial in the grid. Figure 3 
shows measured Raman cross section, β(1550 nm, λ), in a standard single mode fiber26. As can be seen, the 
Raman cross section is slightly higher for wavelengths longer (Stokes regime) than 1550 nm than the ones below 
(anti-Stokes regime) it. That has resulted in a perception that perhaps the best way of allocating wavelengths to 
quantum and classical signals is to use the higher wavelengths for data channels and the lower ones for quantum. 
We refer to this solution as the conventional method, and will investigate how far or close it is to the optimum 
assignment we find in this paper.

The average Raman photon counts corresponding to λ fn
 and λbn

, at the detectors of the mth quantum receiver 
is, respectively, given by

λ η λ β λ λ= =p I T hc C/(2 ) ( , ), (3)nm nm q d d
f

q f q
FR FR

m m n m

and

λ η λ β λ λ= =p I T hc C/(2 ) ( , ), (4)nm nm q d d
b

q b q
BR BR

m m n m

where Cf and Cb are wavelength-independent parameters, given by

λ η= ∆α−C Ie L T hc/(2 ), (5)
f L

d d

and

α
λ η=

−
∆ .

α−
C I e T hc(1 )

2
/(2 ) (6)

b
L

d d

2

In the above equations, h and c are, respectively, the Planck constant and the speed of light in the vacuum, Td 
is detectors’ gate interval, and ηd denotes their quantum efficiency. Note that, in the dual-fiber case, =p 0nm

BR . The 
(1/2) factor in above equations account for the loss in the passive decoder of Fig. 2.

Adjacent channel crosstalk. The DWDM multiplexers and demultiplexers can also introduce some crosstalk 
noise because of their nonideal operation. Insufficient channel isolation can cause some power leakage from data 
channels to copropagating quantum channels. Furthermore, there may be some back reflection from data signals 
transmitted in the opposite direction to quantum signals, into the quantum receivers. In general, the power leak-
age from a classical channel into the two immediately adjacent channels is higher than that of the non-adjacent 
ones. Moreover, with the use of appropriate NBFs at the quantum receivers, the nonadjacent channel crosstalk can 
be suppressed effectively. In this paper, we only then consider the adjacent channel crosstalk. We denote the adja-
cent channel isolation of the DWDM module in dB by γa. Furthermore, the average value of the transfer function 
of the NBF at the passband of the adjacent channels is denoted by the coefficient ga. Then, the power leakage 
corresponding to λ fn

 and mth quantum channel can be expressed as

λ λ

λ λ
=








| − | = ∆

| − | > ∆
.

α γ− −

I
g Ie 10

0 (7)
nm

a
L

f q

f q

FC
( /10)a

n m

n m

Similarly, in the full-duplex case, the power leakage corresponding to λbn
 at the mth quantum receiver is given 

by

Figure 3. Measured Raman cross section with respect to a central wavelength of 1550 nm in a standard single 
mode fiber26.
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λ λ ∆

λ λ ∆
=








| − | =

| − | >

χ−

I
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(8)
nm

a b q

b q

BC
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where χa represents the directivity of the DWDM multiplexer. The indices “FC” and “BC” represent “Forward 
Crosstalk” and “Backward Crosstalk”, respectively. In the dual-fiber case, =I 0nm

BC . The average photon counts 
corresponding to Inm

FC and Inm
BC are, respectively, obtained by

λ η=p I T hc/(2 ), (9)nm nm q d d
FC FC

m

and

λ η= .p I T hc/(2 ) (10)nm nm q d d
BC BC

m

In our analysis, we neglect any crosstalk noise from quantum channels on each other. One possible source of 
such a noise can be the synchronization signals sent by the QKD systems. The rate at which such signals are sent 
is often very low and can be neglected. Alternatively, one/some of the classical channels can be used for time syn-
chronization as well as other classical tasks that QKD systems require. Finally, we can also use time-multiplexing 
techniques to separate the quantum and synchronization signals on QKD channels. In the latter case, we assume 
that the time synchronization signals are transmitted simultaneously on all QKD channels to avoid any crosstalk 
noise on QKD signals.

Key Rate Analysis
In this section, the secret key generation rate of the QKD links in the DWDM systems of Fig. 1 is analyzed. We 
consider the mth QKD channel, as an example, and investigate its performance in the presence of classical chan-
nels. Denoting the average number of photons for the main signal state, in the employed efficient decoy-state 
protocol, by μ, the secret key rate per transmitted pulse in the QKD channel, in the limit of an infinitely long key, 
is lower bounded by P Ymax[0, ( )]0 , where14

= − − .μ μP Y Q h e fQ h E( ) (1 ( )) ( ) (11)0 1 1

Here, = − − − −h p p p p p( ) log (1 )log (1 )2 2  is the Shannon binary entropy function and  f  denotes the error 
correction inefficiency. In (11), μQ , μE , Q1, and e1, respectively, represent the overall gain, the quantum BER 
(QBER), the gain of the single photon state, and the error rate of the single photon states. The overall gain, μQ , 
and the QBER, μE , are, respectively, given by

= − −µ
ηµ−Q Y e1 (1 ) (12)0

and

= + −µ
ηµ

µ
−E Y e e Q( /2 (1 ))/ , (13)d0

whereas the gain and the error rate of the single photon states are, respectively, as follows:

μ= μ−Q Y e , (14)1 1

and

η= + .e Y e Y( /2 )/ (15)d1 0 1

Here, Y0 represents the probability of having detector clicks at Bob’s end without transmitting any photons, and 
Y1 is the yield of a single-photon state. Furthermore, for time-bin encoding, parameter ed models the error 
probability due to relative phase distortions between r and s pulses. The parameter η represents the total 
transmissivity of the link, and is given by

η η= .α−e1
2 (16)d

L

The coefficient 1/2 represents the loss associated with the decoder setup in Fig. 2. Denoting the repetition 
period of the QKD system by Ts, the secret key generation rate of the mth QKD channel is given by

=R P Y Tmax [0, ( )/ ], (17)m s0

where

= − − + .Y p p1 (1 ( )) (18)m0 dc
2

In the above equation, pdc = γdcTd, where γdc denotes the dark count rate of a single-photon detector and pm 
denotes the total crosstalk photon count, due to Raman noise and adjacent channels, on the mth quantum channel, 
given by
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∑= + + + .
=

p p p p p( )
(19)m

n

N

nm nm nm nm
1

FR BR FC BC

As explained in Sec. II, in the DWDM structure of Fig. 1(b), pnm
BR and pnm

BC are both zero.

Optimal Wavelength Assignment
Wavelength assignment in our setting can significantly improve the performance of QKD links. From Fig. 3 and 
eqs. (1), (2), (7), and (8), we can infer that the crosstalk noise induced by a classical channel onto a quantum one 
depends on the difference between their corresponding wavelengths. Therefore, the key rate of QKD channels 
is dependent on the location of quantum and classical channels, with respect to each other, in the wavelength 
grid. In this section, we investigate the optimal wavelength assignment that maximizes the total key rate of QKD 
channels, in the DWDM systems shown in Fig. 1, under a minimum key rate per channel constraint. To this end, 
we define an optimization problem that aims to find the sets U1, U2, A, and B, such that the total key rate of QKD 
channels is maximized. This problem can be formulated as

∑ . . > = …
⊂ =

R R R m Mmax , s t , 1, , ,
(20)A B U U Gm

M

m m
, , , 1

th
1 2

where Rm denotes the key rate of the mth quantum channel given by (17), and Rth is the minimum required value 
for Rm. The parameter Rth has been defined to take into account quality-of-service considerations for QKD links. 
In a multi-user setup, where a minimum key rate needs to be guaranteed for each QKD user, Rth would specify 
this minimum rate. If we are only interested in maximizing the total key rate with no constraints on individual key 
rates, we can simply use a negative value for Rth in our formulation. Given that Rm, by definition, is non-negative, 
choosing a negative value for Rth would remove any constraints on guaranteeing a minimum key rate per channel. 
Note that this is only for notational convenience, and otherwise a negative threshold value has no physical impli-
cations. In the following sections, we consider both scenarios.

In order to solve the optimization problem in (20), one can simplify it by investigating the dependence of Rm 
on pm. According to the key rate analysis presented in Sec. 3, it can be concluded that Rm is a descending function 
of pm. In Appendix A (Supplementary Information), we have shown that this curve can be approximated with rea-
sonable accuracy by a line. As an example, Fig. 4 shows the secret key rate of a single QKD channel as a function of 
the total crosstalk photon count, and its linear approximation, for the system parameters outlined in Table 1 and a 
fiber length of 45 km. With this approximation, the optimization problem in (20) can be expressed as

∑ . . < = …
⊂ =

p p p m Mmin , s t , 1, , ,
(21)A B U U Gm

M

m m, , , 1
th

1 2

where pth denotes the crosstalk photon count that results in Rm = Rth and is dependent on the fiber length and the 
QKD system parameters. Negative Rth values can then be modeled by infinitely large values of pth, which equiv-
alently remove any constraints on pm. In principle, the above formulation will lead to a near-optimal solution.

In the following, we examine this optimization problem for each DWDM structure shown in Fig. 1. Note that 
if the NBFs at the quantum receivers suppress the adjacent channel crosstalk effectively, the Raman noise will 
be the dominant source of crosstalk noise. Otherwise, the adjacent channel crosstalk should also be taken into 
account. In the following subsections, we use the criteria in (21) to find near-optimal wavelength assignments in 
each case.

Full-duplex system. In this section, we examine the problem of wavelength assignment for the DWDM 
system shown in Fig. 1(a). In this case, using (19), the cost function in (21) can be rewritten as

∑ ∑ ∑ ∑ ∑ ∑λ β λ λ λ β λ λ= + + + .
= = = = = =

C C C p p( , ) ( , ) ( )
(22)

b

n

N

m

M

q b q
f

n

N

m

M

q f q
n

N

m

M

nm nm
1 1 1 1 1 1

FC BC
m n m m n m

Parameter Value

Average number of photons per signal pulse, μ 0.48

Quantum efficiency of single-photon detectors 0.3

Receiver dark count rate, γdc 1E-7 ns−1

Error correction inefficiency, f 1.16

Phase-distortion error probability, ed 0.015

Laser pulse repetition interval, Ts 250 ps

Time gate interval, Td 100 ps

Channel loss coefficient, α 0.046 km−1

Table 1. Nominal values used for QKD system parameters.
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Raman-noise-only scenario. In this case, we assume that the NBF used at the QKD receivers can remove the 
noise from adjacent channels and make them negligible. Equation (22) is then simplified to

= +C C Z C Z , (23)b f
1 2

where

∑ ∑ λ β λ λ=
= =

Z ( , ),
(24)n

N

m

M

q b q1
1 1

m n m

and

∑ ∑ λ β λ λ= .
= =

Z ( , )
(25)n

N

m

M

q f q2
1 1

m n m

In the above equations, λ ∈ Bbn
 and λ ∈ Afn

, for n = 1, ..., N. Since Cb and Cf are wavelength-independent, Z1 
and Z2 should be minimized. In general, the set A and B can be two different sets. However, in the following, we 
show that in the Raman-noise-only case, the wavelengths allocated to forward and backward classical channels 
should be identical in the optimal scenario.

Lemma 1 For the optimal solutions to (23), we have A = B.

Proof 1 Suppose in the optimum solution A ≠ B. Without loss of generality, assume Z1 > Z2. Then, if one uses the set 
A instead of B for the backward channels, the resulting value for Z1 would be lower. Similarly, if Z1 < Z2, we can use B 
instead of A for forward channels to reduce the value of Z2. This implies that A = B in the optimum setting.

Algorithm 1. Near-Optimal Wavelength Assignment Algorithm.

Input: P, M, N, D, Xth
Output:
Vector q containing the indices of the elements of G assigned to quantum channels
Vector c containing the indices of the elements of G assigned to classical channels
if ( ) ( )D

N
D
M≤  then

Z = P
A = matrix of all size-N subsets of {1…D}; each row represents one valid subset

4:  else
Z = PT

A = matrix of all size-M subsets of {1…D}; each row represents one valid subset
end if

8:  t = 1000
for i = min ( ) ( )D

N
D
M,







do

b = A(i,:)
j Dy Z( , 1: )j b= ∑ ∈

12:  [d, index] = sort(y)
if ( ) ( )D

N
D
M≤  then

= ∑ =s dj
M

j1
if s < t and d(M) < Xth then

16:  =t s
Mq index(1: )=

c = b
end if

20:  else
= ∑ =s dj

N
j1

= ∑ ∈ jw Z b( , )j Nindex(1: )
if <s t  and Xwmax( ) th<  then

24:  t = s
q = b
c = index(1:N)

end if
28:  end if

end for

Using the above result, our optimization problem reduces to the case where all data channels are bidirectional. 
With this constraint, the optimization problem can be expressed as
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∑ ∑ λ β λ λ
⊂ = =

min ( , ),
A U U Gn

N

m

M

q f q
, , 1 1

m n m
1 2

∑λ β λ λ. . <
=

t Xs ( , ) ,
(26)n

N

q f q
1

thm n m

where Xth = pth/(Cf + Cb).
To solve the optimization problem in (26), we propose a matrix-based algorithm. We define a D × D matrix, 

P, with elements given by

λ β λ λ
=






≠

∞ =
.

i j
i j

P
( , )

(27)
ij

j i j

The elements of P are defined based on the summands in (26). Pij represents the Raman cross section cor-
responding to λi, as the data channel wavelength, and λj, as the quantum channel wavelength, multiplied by λj. 
Since classical and quantum channels have different wavelengths, we have chosen Pij = ∞ for i = j. The optimiza-
tion problem in (26) can be interpreted as finding N rows and M columns of matrix P such that the summation 
of elements at the intersection of these rows and columns is minimum (the diagonal elements of P will auto-
matically be excluded because of their infinitely high value), and the constraint in (26) is satisfied. The proposed 
optimization algorithm is presented in Algorithm 1, which is self explanatory. It should only be mentioned that in 
line 12, d is the sorted version of c in the ascending order, and index is the vector of corresponding indices. This 
matrix-based algorithm is also applicable to other scenarios we consider in our work. In each case, we just need 
to find the relevant matrix P and apply Algorithm 1 to it.

Raman + Adjacent channel crosstalk scenario. In this case, we consider all the terms in (22) to determine the 
optimum wavelength pattern. Note that pnm

FC and pnm
BC are only present for λ λ| − | = ∆f qn m

 and λ λ| − | = ∆b qn m
, 

respectively. Hence, we use the results of the previous case and propose a suboptimal wavelength assignment 
method that assumes bidirectional data channels. With this constraint, (22) reduces to

∑ ∑ λ β λ λ= + + + .
= =

{ }C C C p p( ) ( , )
(28)n

N

m

M
b f

q f q nm nm
1 1

BC FC
m n m

This problem can also be solved by Algorithm 1. In this case, the elements of matrix P are given by

λ β λ λ
=








+ + + ≠

∞ =

C C p p i j
i j

P
( ) ( , )

,
(29)

ij

f b
j i j ij ij

BC FC

and Xth = pth.

Dual-fiber system. Now let us consider the dual-fiber system in Fig. 1(b). In this scenario, the optimization 
problem in (21) can be split into two problems, one for each employed fiber. In this case, the number of classical 
channels per fiber is fixed to N but we have to decide how many, out of M, quantum channels need to be allocated 
to each fiber. Suppose M = 1. Then, it does not matter which fiber we use for the QKD channel, but we need to 
find the optimum wavelength assignment that minimizes the crosstalk noise. This way we find λq1

. Now, if M = 2, 
we can use the same wavelength assignment but on the other fiber and the total key rate is expected to be higher 
than the case where both QKD channels are on the same fiber. We can keep adding QKD channels to the game, 
but it can be seen that the optimum assignment should have = ⌊ ⌋k M/2  QKD channels on one fiber and M − k 
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Figure 4. Secret key generation rate versus crosstalk photon count (blue solid curve) and its linear 
approximation (red dashed curve).
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channels on the other. Now that we have a fixed number of QKD channels on each link, we can solve the two 
optimization problem, corresponding to forward and backward links, separately. Using (19), the cost function in 
(21) for each optimization problem is given by

∑ ∑ ∑ ∑λ β λ λ= +
= ∈ = ∈

C C p( , ) ,
(30)

f

n

N

m S
q f q

n

N

m S
nm

1 1

FC
m n m

where S = {1, ..., k} for the forward fiber link, and S = {k + 1, ..., M} for the backward one. Note that if M is an 
even number, k = M/2. In this case, the two optimization problems are identical and achieve similar wavelength 
assignment patterns.

Raman-noise-only scenario. In this case, the cost function in (30) reduces to

∑ ∑ λ β λ λ= .
= ∈

C ( , )
(31)n

N

m S
q f q

1
m n m

Comparing (31) and (26), it is concluded that this optimization problem can be solved by Algorithm 1 for 
M = k (and k + 1 for odd values of M), with the matrix P described in (27), and the threshold Xth = pth/Cf.

Raman + Adjacent channel crosstalk scenario. In this case, the optimization problem in (30) should be solved. 
Here again, Algorithm 1, for M = k (and k + 1 for odd values of M), at Xth = pth, can be used with matrix P defined 
as

λ β λ λ
=








+ ≠

∞ =
.

C p i j
i j

P
( , )

(32)
ij

f
j i j ij

FC

Numerical Results
In this section, the proposed wavelength assignment methods are investigated in more detail. Our example 
DWDM system uses the wavelength grid ranging from 1530 nm to 1565 nm in the C-band with a nominal 0.2 dB/
km loss across the grid (corresponding to α = 0.046/km). The nominal values for QKD systems are listed in 
Table 1, and other system parameters are summerized in Table 2. These parameters are chosen based on certain 
practical considerations. We assume that, in the full-duplex DWDM system, the classical channels use on-off 
keying with the data rate of 10 GHz. The launch power of the data laser is controlled by the receiver sensitivity, 
which is assumed to be −28 dBm, corresponding to a bit error rate of 10−12. As for the dual-fiber structure, we 
assume that 100G coherent systems are used in the data links. The power of the received classical signal in both 
structures is chosen to be −25 dBm. We consider different cases of “Raman noise only” and “Raman + Adjacent 
channel crosstalk”, based on the bandwidth of the NBF used, for full-duplex and dual-fiber DWDM systems. We 
consider two cases for the bandwidth of the NBF at the quantum receivers: 15 GHz, and 125 GHz. We assume 
that in the first case, the adjacent channel crosstalk is suppressed effectively so that it can be neglected. As for the 
125 GHz NBF, we assume that a Gaussian shaped filter is used, which causes an attenuation of about 16 dB at the 
passband of adjacent channels.

Parameter Value

Channel spacing, Δ 200 GHz

Adjacent channel isolation of DWDM module, γa 30 dB

Directivity of DWDM module, χa 50 dB

Bandwidth of NBF, Δλ 15, 125 GHz

Table 2. Nominal values used for the DWDM system parameters.

Figure 5. Rate enhancement at (a) L = 50 km and (b) L = 65 km for the full-duplex system at Rth = 0.
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In order to obtain the Raman cross section β(λd, λq) in (27), (29) and (32) for different values of λd and λq, we 
use the measurement results shown in Fig. 3. The results in Fig. 3 are, however, for the specific case of λd = 1550 
nm. In order to use the same measurement results for an arbitrary λd, we use two tricks. First, we find wavelength 
λδ such that

λ λ λ
− = −

δ

1
1550 nm

1 1 1 ,
(33)d q

that is, the frequency difference between λδ and 1550 nm is the same as that of λq and λd. β(λd, λq) is then expected 
to be proportional to β(1550 nm, λδ), which can be obtained from Fig. 3. Given that the Raman cross section is 
known to be proportional to (1/λq)4 as well27, we assume that

β λ λ
λ
λ

β λ=











.δ

δ( , ) (1550 nm, )
(34)

d q
q

4

Our numerical results indicate that the term in power 4 has little effect on our final results.
In the following, our numerical results are presented. We investigate the performance of our proposed wave-

length assignment methods in terms of their key rate enhancement and optimality. Furthermore, the wavelength 
patterns obtained by these schemes are examined.

Rate Enhancement. In this section, we compare our proposed methods with the conventional approach of 
assigning the lower part of the wavelength grid to the quantum and the longer wavelengths to the classical chan-
nels. We define a rate enhancement measure, denoted by RE, as follows:

=
−

×RE
R R

R
100,

(35)
pr co

co

where Rpr and Rco are the total key rate obtained by the proposed and the conventional methods, respectively.
First, we consider the case of “Raman noise only” for the full-duplex system. We choose Rth = 0, i.e, all quan-

tum channels are required to have a positive key rate. The rate enhancement parameter, RE, for different values 
of M and N, is shown in Figs. 5(a) and (b), for L = 50 km and L = 65 km, respectively. It can be seen that, our 
proposed method can improve the total key rate significantly, especially for large N and small M. The rate can 
be improved by over 100%, as shown in Fig. 5(b), if we are in a region that the system is sensitive to the amount 
of the background noise. At L = 65 km, the channel loss is higher, hence the resilience of the QKD system to the 
background noise would be lower than that of L = 50 km. To further investigate the rate enhancement at different 
fiber lengths, Table 3 summarizes the secret key rate of the proposed and conventional methods for N = 12 and 
M = 1. It can be seen that, as fiber length increases, the rate enhancement increases as well. In particular, at L = 60 
km, while the key rate of the conventional approach is zero, we can still obtain positive secret key rates by using 
our proposed method. This implies that our near-optimal wavelength assignment technique could increase the 
maximal security distance of QKD systems.

In order to further investigate the performance of our proposed methods, we define another measure, denoted 
by Nmax, as the maximum possible number of classical channels that can be integrated with M quantum channels 
such that all of them have a positive key rate. We compare this parameter for the proposed and the conventional 
methods. Our numerical results show that, depending on the fiber length, Nmax can often be improved by one or 
two channels. This means that by the use of optimal wavelength assignment higher data traffic can be supported.

We have also considered other cases of “Raman noise only” for dual-fiber systems and “Raman + Adjacent 
channel crosstalk” for full-duplex and dual-fiber DWDM systems. Our numerical results show that the conclu-
sions drawn in this section can be extended to these cases as well.

Near-optimal Wavelength Patterns. In this section, the wavelength assignment patterns obtained by the 
proposed near-optimal methods are investigated. We assume that Rth < 0, which corresponds to the case that the 
total key rate is maximized with no constraint on the individual key rates. We particularly look at the cases where 
substantial gain can be achieved by optimizing the wavelength assignment, i.e., when a small number of quan-
tum channels are present. Here, we choose M = 1 and M = 3 and examine the wavelength patterns, first, in the 
Raman-noise only case. Figures 6(a) and (b) depict the proposed wavelength assignment for, respectively, M = 1 
and M = 3 quantum channels and different values of classical channels, N, for a 200 GHz full-duplex DWDM 
system. Note that these figures also provide the proposed wavelength assignment for each individual fiber in 
a dual-fiber system for, respectively, M = 2 and M = 6 quantum channels. In each figure, each row shows the 

Fiber length (km) 40 45 50 55 60 65

Rpr (bit/s) 1.49E7 1.02E7 6.29E6 2.93E6 4.5E4 0

Rco (bit/s) 1.41E7 9.33E6 5.27E6 1.79E6 0 0

RE (%) 5.5 9.69 19.35 63 ∞ 0

Table 3. Secret key rate of the proposed and conventional methods for N = 12 and M = 1 at different fiber 
lengths.
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proposed locations for the quantum, represented by “°”, and classical, represented by “*”, channels for each given 
number of classical channels. As can be seen, the proposed pattern for each N is not necessarily compatible with 
the conventional method of having two separate quantum and classical bands at the two ends of the wavelength 
grid even if we only have one quantum channel. This pattern is, in general, consisted of multiple interspersed 
quantum and classical bands. For example, in Fig. 6(a), we can see that the QKD channel is between two classical 
bands for N ≥ 3. This result can be explained by referring to Fig. 3. According to this figure, the Raman noise 
takes its smallest values in regions S1 and S2, in Fig. 3, on the two sides of the pump laser wavelength. In the 
Raman-noise only scenario, our optimum wavelength assignment, then benefits from this low-noise regions to 
improve performance. For instance, in the case of N = 1, where the classical channel is assigned to 1564.4 nm, the 
Raman noise at 1562.8 nm is 2.2E-5, while it is 3.2E-5 at 1530.8 nm. In the case of N = 2, where the two classical 
channels are assigned to 1564.4 nm and 1562.8 nm, the Raman noise at 1561.2 nm is 4.46E-5, while it is 6.48E-5 
at 1530.8 nm.

Next, we investigate the wavelength assignment patterns in the “Raman + Adjacent channel crosstalk” case 
for the full-duplex system. The proposed wavelength assignment for M = 3 is shown in Fig. 6(c). As can be seen, 
the wavelength assignment patterns are different from the “Raman noise only” case. With the chosen system 
parameters, the adjacent channel crosstalk can be more than the Raman noise. Hence, the wavelength assignment 
method avoids the allocation of a quantum and a classical channel to adjacent wavelengths. This would result, 
especially when N is large, in the optimum solution converging to the conventional one as can be seen for N > 
16 in Fig. 6(c). More generally, our results imply that if the adjacent channel crosstalk is the dominant source of 
noise and Rth < 0, the wavelength assignment pattern converges to the conventional method solution, when the 
capacity of the system is almost fully used.

Figure 6. Proposed wavelength assignment patterns in a 200 GHz full-duplex system in (a) “Raman noise 
only” case for M = 1, (b) “Raman noise only” case for M = 3, and (c) “Raman + Adjacent channel crosstalk” 
case for M = 3 at L = 50 km. Each row depicts the optimum location of quantum and classical channels in the 
wavelength grid, where (red) * represents a classical channel and (blue) ° represents a quantum one.
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It is interesting to study the dependence of the optimal wavelength pattern on the transmission distance, or, 
effectively, the channel loss. In our formulation, the key parameters that are distance dependent are Cf and Cb, 
which affect the cost function, as well as Rm, whose value must satisfy our optimisation constraint Rm > Rth. In all 
cases that there are no constraints on the key rate, i.e., when Rth < 0, the latter dependence on the distance does 
not matter. As for the former, it turns out that in the “Raman-noise-only” scenarios, the cost function can be made 
independent of the fiber length by eliminating Cf and Cb as in (26) and (31). Hence, for Rth < 0, the achieved wave-
length assignment patterns in the Raman-noise-only scenarios, e.g. the result in Fig. 6(a) and (b), would be inde-
pendent of transmission distance. In all other cases, the optimal wavelength pattern can, in principle, depend on 
the channel loss. However, in the particular cases we have considered for our numerical results, e.g. in Fig. 6(c), 
we have verified that up to L = 120 km the obtained wavelength patterns remain the same.

Optimality. In this section, we compare the proposed near-optimal method, based on (21), with the opti-
mum approach that maximizes the total key rate in (20). We have found the solution to the latter by an exhaustive 
search. First, we choose Rth < 0. In this case, our numerical results show that, for low fiber lengths, e.g., L = 45 km, 
the proposed methods generally lead to the same wavelength assignment patterns, hence, the same total key rates, 
that the optimum solution offers. There are a few exceptions. However, even in those few cases, the percentage of 
the relative difference in the total key rate for the optimal and near-optimal solutions is below 0.001%.

As the fiber length increases, and for sufficiently large values of M and N, the proposed and the optimum 
solutions may lead to different total key rates. The reason is mainly because of the linear approximation we use to 
convert maximizing the key rate criterion into minimizing the background noise. At large distances, QBER for 
some channels may be very large resulting in zero key rates for them. In fact, when M is sufficiently large, the opti-
mum solution may include some quantum channels with zero key rates. Our noise-based solution will instead try 
to distribute the noise almost equally among all channels, which, in certain cases, would result in lower total key 
rates than that of the optimum solution. As an example, Fig. 7 shows the total key rate for N = 8 classical channels 
at L = 62 km for different values of M. As can be seen, when Rth < 0, for M > 5 the optimum solution remains the 
same because new QKD channels will have zero key rates. Our proposed method, however, achieves a lower total 
key rate by supporting a larger number of users with positive key rates. It can be concluded that, for each N and 
L, there is a specific value of M for which the maximum total key rate is achieved. Increasing M beyond that value 
does not increase the total key rate and only quantum channels with zero key rates are added. This is an important 
observation if maximizing the total key rate is the key objective of the operator.

Next, we consider the case of Rth = 0, i.e., when we need to guarantee a positive key rate for each quantum 
channel. From Fig. 7, it can be seen that, the proposed method has a reasonable accuracy in this case, since the 
linear approximation method used is more accurate in this positive-key region. Here, we again see that the price 
of supporting a larger number of quantum users could be a lower total key rate. It depends on which criterion, 
number of users versus total key rate, is more important for the operator in order to decide on the right working 
point. Our analysis, in any case, enables the operators to plan wisely for their resource allocation.

Conclusions
In this paper, we considered the problem of wavelength assignment in a hybrid quantum-classical network. We 
exploited the reconfigurability of optical networks to improve the performance of QKD links by appropriate 
wavelength allocation. We considered two system setups, namely, full-duplex and dual-fiber, and investigated 
the optimum wavelength assignment method that maximizes the total key rate of QKD channels in each case. 
In our analysis, two main sources of crosstalk, Raman noise and adjacent channel crosstalk were considered. 
We used linear approximations to propose efficient near-optimal wavelength assignment methods for these 
cases. Furthermore, various simulations and numerical investigations were carried out to examine the proposed 
methods. Our numerical result showed that the conventional wavelength assignment method of two separate 
quantum and classical bands would not necessarily be the optimum solution. Instead, the optimal wavelength 
allocation pattern could include several quantum and classical bands interspersed among each other. We showed 
that in most cases our proposed wavelength assignment methods were nearly identical to the optimum method. 
Furthermore, we showed that our proposed method could significantly improve the total key rate of the DWDM 
system especially in the noise dominated regimes. We found that for any given number of classical channels, there 
would exist an optimum number of quantum channels for which the total key rate would be maximum. It is worth 
mentioning that since our proposed methods minimize the total crosstalk noise, they can be used for different 
QKD protocols.

References
 1. Liao, S.-K. et al. Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017).
 2. Ren, J.-G. et al. Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017).
 3. Visit, http://usa.chinadaily.com.cn/china/2017-09/30/content_32669867.htm.
 4. Peters, N. A. et al. Dense wavelength multiplexing of 1550nm QKD with strong classical channels in reconfigurable networking 

environments. New J. Phys. 11, 045012 (2009).
 5. Chapuran, T. E. et al. Optical networking for quantum key distribution and quantum communications. New J. Phys. 11, 105001 

(2009).
 6. Qi, B., Zhu, W., Qian, L. & Lo, H.-K. Feasibility of quantum key distribution through a dense wavelength division multiplexing 

network. New Journal of Physics 12, 103042 (2010).
 7. Patel, K. A. et al. Coexistence of high-bit-rate quantum key distribution and data on optical fiber. Phys. Rev. X 2, 041010 (2012).
 8. Patel, K. et al. Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks. Applied Physics Letters 104, 

051123 (2014).
 9. Kumar, R., Qin, H. & Alléaume, R. Coexistence of continuous variable QKD with intense DWDM classical channels. New Journal of 

Physics 17, 043027 (2015).

http://usa.chinadaily.com.cn/china/2017-09/30/content_32669867.htm


www.nature.com/scientificreports/

13SciEntific REPORtS |  (2018) 8:3456  | DOI:10.1038/s41598-018-21418-6

 10. Bahrani, S., Razavi, M. & Salehi, J. A. Crosstalk reduction in hybrid quantum-classical networks. Scientia Iranica D 23, 2898–2906 
(2016).

 11. Bahrani, S., Razavi, M. & Salehi, J. A. Optimal wavelength allocation in hybrid quantum-classical networks. In Signal Processing 
Conference (EUSIPCO), 2016 24th European (Institute of Electrical and Electronics Engineers(IEEE), 2016).

 12. Bennett, C. H. & Brassard, G. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of IEEE International 
Conference on Computers, Systems, and Signal Processing, 175–179 (IEEE, New York, Bangalore, India, 1984).

 13. Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991).
 14. Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).
 15. Ma, X., Fung, C.-H. F. & Lo, H.-K. Quantum key distribution with entangled photon sources. Physical Review A 76, 012307 (2007).
 16. Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).
 17. Panayi, C., Razavi, M., Ma, X. & Lütkenhaus, N. Memory-assisted measurement-device-independent quantum key distribution. 

New Journal of Physics 16, 043005 (2014).
 18. Lo Piparo, N., Razavi, M. & Panayi, C. Measurement-device-independent quantum key distribution with ensemble-based memories. 

Selected Topics in Quantum Electronics, IEEE Journal of 21, 138–147 (2015).
 19. Yin, H.-L. et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Physical Review Letters 117, 

190501 (2016).
 20. Peev, M. et al. The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009).
 21. Sasaki, M. et al. Field test of quantum key distribution in the Tokyo QKDNetwork. Opt. Exp. 19, 10387–10409 (2011).
 22. Wang, S. et al. Field and long-term demonstration of a wide area quantum key distribution network. Opt. Exp. 22, 21739–21756 

(2014).
 23. Tang, Y.-L. et al. Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X 6, 

011024 (2016).
 24. Ma, X. & Razavi, M. Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 062319 

(2012).
 25. Lo, H.-K., Chau, H. F. & Ardehali, M. Efficient quantum key distribution scheme and a proof of its unconditional security. Journal 

of Cryptology 18, 133–165 (2005).
 26. Eraerds, P., Walenta, N., Legre, M., Gisin, N. & Zbinden, H. Quantum key distribution and 1 Gbps data encryption over a single 

fibre. New Journal of Physics 12, 063027 (2010).
 27. Islam, M. N. Raman amplifiers for telecommunications 1: physical principles (Springer, 2007).

Acknowledgements
This work is partly funded by the UK EPSRC Grant EP/M013472/1. All data generated in this paper can be 
reproduced by the provided methodology and equations.

Author Contributions
S.B. and M.R. wrote the main manuscript. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-21418-6.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-21418-6
http://creativecommons.org/licenses/by/4.0/

	Wavelength Assignment in Hybrid Quantum-Classical Networks
	System Description
	Sources of crosstalk noise. 
	Raman noise. 
	Adjacent channel crosstalk. 


	Key Rate Analysis
	Optimal Wavelength Assignment
	Full-duplex system. 
	Raman-noise-only scenario. 
	Raman + Adjacent channel crosstalk scenario. 

	Dual-fiber system. 
	Raman-noise-only scenario. 
	Raman + Adjacent channel crosstalk scenario. 


	Numerical Results
	Rate Enhancement. 
	Near-optimal Wavelength Patterns. 
	Optimality. 

	Conclusions
	Acknowledgements
	Figure 1 Hybrid DWDM link with multiple quantum and classical channels: (a) A full-duplex DWDM system over a single-mode fiber.
	Figure 2 Phase encoded (time-bin) QKD.
	Figure 3 Measured Raman cross section with respect to a central wavelength of 1550 nm in a standard single mode fiber26.
	Figure 4 Secret key generation rate versus crosstalk photon count (blue solid curve) and its linear approximation (red dashed curve).
	Figure 5 Rate enhancement at (a) L = 50 km and (b) L = 65 km for the full-duplex system at Rth = 0.
	Figure 6 Proposed wavelength assignment patterns in a 200 GHz full-duplex system in (a) “Raman noise only” case for M = 1, (b) “Raman noise only” case for M = 3, and (c) “Raman + Adjacent channel crosstalk” case for M = 3 at L = 50 km.
	Figure 7 Comparison between the total key rate of the optimal and near-optimal methods for N = 8 and L = 62 km.
	Table 1 Nominal values used for QKD system parameters.
	Table 2 Nominal values used for the DWDM system parameters.
	Table 3 Secret key rate of the proposed and conventional methods for N = 12 and M = 1 at different fiber lengths.




