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A New Method for tackling Asymmetric Decision
Problems

Peter A. Thwaites®*, Jim Q. Smith”

@School of Mathematics, University of Leeds, LS2 9JT, United Kingdom
bDepartment of Statistics, University of Warwick, Coventry, CV4 7AL, and The Alan
Turing Institute, United Kingdom

Abstract

Chain Event Graphs are probabilistic graphical models designed especially for
the analysis of discrete statistical problems which do not admit a natural prod-
uct space structure. We show here how they can be used for decision analysis
through designation of some nodes as decision nodes, and the addition of utili-
ties. We provide a local propagation algorithm for finding an optimal decision
strategy and maximising expected utility. We also compare CEGs with Influ-
ence diagrams, Valuation Networks, Sequential decision diagrams, Sequential
influence diagrams and Decision circuits for the representation and analysis of
asymmetric decision problems.

Keywords: Asymmetric decision problem; Chain Event Graph; Influence Dia-

gram

1. Introduction

In this paper we demonstrate how the Chain Event Graph (CEG) (see for
example [20, 27, 22, 15, 1]) can be used for tackling asymmetric decision prob-
lems.

Extensive form (EF) decision trees [21] (in which variables appear in the

order in which they are observed by a decision maker) are flexible and expressive
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enough to represent asymmetries within both the decision and outcome spaces,
doing this through the topological structure of the tree. They can however
become unwieldy, and are not convenient representations from which to read
the conditional independence structure of a problem.

Other graphical representations have been developed which to some extent
deal with the complexity issue associated with decision trees, and also allow
for local computation. The most commonly used of these is the Influence dia-
gram (ID). Because of their popularity, ID solution techniques have developed
considerably since their first introduction (see for example [17, 9]). However a
major drawback of the ID representation is that many decision problems are
asymmetric, with different actions resulting in different choices in the future.
IDs are not ideally suited to the representation and analysis of problems of this
type [7]. As decision makers have become more ambitious in the complexity of
the problems they address, standard ID and tree-based methods have proven to
be inadequate, and new techniques (such as those described in this paper) have
become necessary.

There have consequently been many attempts to adapt IDs for use with
asymmetric problems (see for example [16, 11]), or to develop new techniques
which use both IDs and trees [6]. There have also been several new structures
suggested, such as Sequential Decision Diagrams (SDDs) [7] and Valuation Net-
works (VNs) [14]. An overview of many of these developments is given by Bielza
& Shenoy in [4]. They note that none of the methods available is consistently
better than the others. In particular, both VNs and Smith, Holtzman & Math-
esons’ adaptations of IDs [16] require the supplementing of the graph with extra
tables and the introduction of dummy states when problem asymmetry is en-
coded, and this decreases their computational efficiency. If an ID requires fairly
detailed distribution trees for each node to encode the asymmetry adequately,
then the efficiency of an augmented ID is not much greater than that of a deci-
sion tree. Both VN & SDD-methodologies are technically challenging, and these
structures are not really accessible to non-experts. Moreover VNs are unable to

model all possible asymmetries, and SDDs cannot represent probability models



consistently [4]. More recently, asymmetric problems have been tackled using
Decision Circuits [3] and Sequential Influence Diagrams (SIDs) [10]. However
for the practical purposes described in this paper, the former turn out to be a
very unwieldy tool. We argue that only the SID can really be considered as a
competitor to the new methods we describe here.

CEGs are probabilistic graphical models designed especially for the represen-
tation and analysis of discrete statistical problems which do not admit a natural
product space structure. Unlike Bayesian Networks (BNs) they are functions of
event trees, and this means that they are able to express the complete sample
space structure associated with a problem. They are particularly useful for the
analysis of processes where the future development at any specific point depends
on the particular history of the problem up to that point. Such dependencies
can be thought of as context-specific conditional independence properties; and
the structure implied by these properties is fully expressed by the topology of
the CEG. This is a distinct advantage over context-specific BNs, which require
supplementary information usually in the form of trees or conditional proba-
bility tables attached to some of the vertices of the graph. Like BNs, CEGs
provide a suitable framework for efficient local computation algorithms [26].

Using CEGs for asymmetric decision analysis overcomes several drawbacks
associated with current graphs and techniques used for this purpose. They are
an advance on decision trees because they encode the conditional independence
structure of problems. They can represent probability models consistently, and
do not require dummy states or supplementing with extra tables or trees. They
can model all asymmetries, and their semantics are straightforward, making
them an appropriate tool for use by non-experts. The CEG approach is very
different from the SID approach, and the choice between them will come down
to their accessibility to individual domain experts, and their compatibility with
the way these experts describe their problems [19]. Our recent experience with
clients drawn from public health professionals, doctors, social scientists and
the military suggests that the representation of the conditional independence

structure provided by a CEG appears to be more transparent than the picture



provided by an SID, although we accept that this might simply be a feature of
the problems we have addressed.

Call & Miller [6] have drawn attention to the value of coalescence in tree-
based approaches to decision problems. They also point out that the difficulties
in reading conditional independence structure from trees have meant that ana-
lysts using them have not fully taken advantage of the idea of coalescence. They
remark that the ability to exploit asymmetry can be a substantial advantage for
trees. If trees could maturally exploit coalescence, the efficiency advantage is
even greater. SDDs go some way towards exploiting this [4], but decision CEGs
use coalescence both as a key tool for the expression of conditional independence
structure, and to power the analysis.

In this paper we demonstrate how CEGs can be used for decision analysis
through designation of some nodes as decision nodes, and the addition of utili-
ties. We illustrate this through a toy example in section 2, and provide a local
propagation algorithm for finding an optimal decision strategy and maximising
expected utility. In order to compare the various methods available (and to
illustrate the practical issues associated with particular methods), we provide a
more sophisticated example in section 3. In this section we also compare CEGs
with IDs, including Smith et al’s [16] augmented IDs. We show how to create
a parsimonious decision CEG (analogous to the parsimonious ID which con-
tains only those variables and dependencies which the decision maker needs to
consider when making decisions); provide a barren node deletion algorithm for
CEGs, and show how the arc reversal needed for ID-based solution is already
explicitly represented in our CEG and is not an additional requirement of the
solution technique. In section 4 we compare the use of decision CEGs with that

of VNs, SDDs, SIDs and Decision Circuits.

2. CEGs and decision CEGs

We start this section with a brief introduction to CEGs — we direct readers

to one of [20, 22] for a more detailed definition. The CEG is a function of a



coloured event tree, so we begin with a description of these graphs.

A coloured event tree 7T is a directed tree with a single root-node.

Each non-leaf-node v has an associated random variable whose state space
corresponds to the subset of directed edges of 7 which emanate from v.
Each edge leaving a node v carries a label which identifies a possible im-
mediate future development given the partial history corresponding to the
node v.

The non-leaf-node set of 7 is partitioned into equivalence classes called
stages: Nodes in the same stage have sets of outgoing edges with the
same labels, and edges with the same labels have the same associated

probabilities.

The edge-set of T is partitioned into equivalence classes, whose members
have the same colour: Edges have the same colour when the vertices from
which they emanate are in the same stage and the edges have the same

label (& hence probability).

The non-leaf-node set of T is also partitioned into equivalence classes
called positions: Nodes are in the same position if the coloured subtrees
rooted in these nodes are isomorphic both in topology and in colouring
(so edges in one subtree are coloured (and labelled) identically with their

corresponding edges in another).

Event trees are generally used to describe the possible histories or developments

which individuals in some population may experience. We can use this fact to

illuminate the meanings of edge probabilities, positions and stages:

An edge probability is the probability of an individual proceeding along
an edge, given that they have arrived at the node from which the edge
emanates.

Two nodes are in the same position when the sets of complete possi-
ble future developments for an individual arriving at either node are the
same, and these possible future developments have the same probability

distribution.



e Two nodes are in the same stage when the sets of immediate possible
future developments for an individual arriving at either node (represented
by the sets of edges emanating from the nodes) are the same, and these
immediate possible future developments have the same probability distri-

bution.

To produce a CEG C from our tree T, nodes in the same position are combined
(as in the coalesced tree), and all leaf-nodes are combined into a single sink-node.
We note that for CEGs used for decision problems it is often more convenient
to replace the single sink-node by a set of terminal utility nodes, each of which
corresponds to a different utility value. We return to this idea in Example 2 in
Section 3.

So the nodes of our CEG C are the positions of the underlying tree 7. We
transfer the ideas of stage and colour from T to C, and it is this combination
of positions and stages that enables the CEG to encode the full conditional
independence structure of the problem being modelled [20]. The simplicity of
the tree-to-CEG conversion is illustrated in Example 1.

Many discrete statistical processes are asymmetric in that some variables
have quite different collections of possible outcomes given different developments
of the process up to that point. It was for these sorts of problem that the CEG
was created, and one area where they have proved particularly useful is that of
causal analysis [27, 22]. In much causal analysis the question being asked is If
I make this manipulation, what are the effects?, but graphical models set up to
answer such questions can also be readily used for questions such as If I want to
mazximise my utility over this process, what are the manipulations (decisions) I
need to make?

In attempting to answer this second question, we notice that there are usually
only certain nodes or positions in the CEG which can actually be manipulated.
We concentrate in this paper on manipulations which impose a probability of
one onto one edge emanating from any such node (equivalent to making a firm

decision). Hence the probabilistic nature of these nodes is removed — they



become decision nodes, represented here by squares.

We draw our CEG in EF order — as with decision trees this is necessary
in order to calculate optimal decision rules. If two decision nodes in T are in
the same position, then the optimal strategy is the same for the decision maker
(DM) at each of the two decision nodes: it is conditionally independent of the
path taken to reach the decision node. A similar interpretation can be given to
two chance nodes in the same position.

The only other modification that is required to use the CEG for decision
analysis is the addition of utilities. This can be done in two ways (1) adding
utilities to edges (see Example 1 and Figure 2), or (2) expanding the sink-node
Woo 1nto a set of utility nodes, each corresponding to a distinct utility value (see
Example 2). We make our terminal nodes diamond-shaped whether they are

leaf nodes or a single sink-node.

Example 1 (inspired by the oil wildcatter’s problem of [12]). Note that the
description here and a modified version of Figure 1 (without probabilities) also
appear in [23], where they constitute a brief introduction to the Decision CEG,
before the narrative turns to discussion of how these graphs can be used for the
representation and analysis of Games.

We have an option on testing some ground for oil. We can either take up
this option, at a cost of 10, or pass it on to another prospector for a fee of
20. Whoever does the testing, the outcomes are good or bad, with probabilities
independent of who does the testing. If we have passed on the testing and the
test result is good then we lose the option for drilling and get nothing. If it is
bad then the other prospector will not drill and the option for drilling reverts
to us. If we do the test and the result is good, then we can either drill, for a
cost of 30, or sell the drilling rights for a fee of 40. If the result is bad, then
regardless of who does the test, we can either drill ourselves, again for a cost of
30, or sell the drilling option for a fee of 10. If we drill and find oil we gain
100.



To fully complete the numerical specification of the decision problem requires
various probabilities. Here we have P(0il) = 0.6, P(test result good | 0il) = 0.9,
and P(test result good | no oil) = 0.3. Applying Bayes’ rule to these gives the
edge-probabilities in Figure 1.

pass

drill -30 1o o <> 0

no drill

drill -30
-10

no drill
bad

0.34 100

drill -30

Figure 1: Coloured Tree for Example 1, showing conditional independence structure

Note the asymmetry in the problem when a good test result is obtained. If
we do the test then we can drill ourselves or sell the option to drill, but if we
have passed the option to test then we can do no more. The probability of there
being oil in the ground is independent of who does the test given the test result,
but if the test result is good and we have passed on the option of testing this
probability is irrelevant.

The problem can be represented by the EF tree in Figure 1 (which has both
utilities on edges and utility leaf nodes). In this tree we have already identified
the nodes which can be manipulated (by Os), and removed any probabilities
that may have been associated with their emanating edges. We have added
utilities to edges where appropriate, and represented all leaf-nodes by ¢s. Note
that there is no problem with making these adaptations at this stage rather

than after the CEG is formed.



In Figure 1 the first two chance nodes are in the same stage — their emanat-
ing edges have the same labels (good and bad) and the same probabilities (0.66
and 0.34). Similarly the first and third oil chance nodes are in the same stage.

Figure 1 also shows that there are some subtrees that are isomorphic in
structure, in probability distribution, and in the assignment of utilities; for
example those rooted in the first and third drilling decision nodes. These two

nodes are in the same position (as also are the first and third oil chance nodes).

good 0.66

no drill +40

no oil 0.182

0il 0.176 +100

nodrill +10

Figure 2: Type 1 CEG for Example 1

The CEG is constructed from the coloured tree as described above. So
nodes which are in the same position are merged into single nodes, and their
outgoing edges similarly merged (according to common colour if the nodes are
chance nodes). In Figure 1 for example the 1st & 3rd drilling decision nodes
are merged so that there is one subtree rooted in a single decision node which
succeeds edges labelled bad. The CEG resulting from applying this process
to Figure 1 is given in Figure 2 (where all utilities from the tree have been
transfered to edges of the CEG). We will call this form of CEG where utilities
are added to edges, and where there is a single sink node w., a Type 1 decision

CEG. Like the tree-representation in Figure 1, the CEG-representation is EF, in



that variables appear in the order that they are observed by the decision maker
(the result of the test is not known until the test has been done, but is known
before the decision of whether to drill is made; knowledge of whether there is
oil or not only occurs once drilling has happened).

The positions and stages of a CEG portray the conditional independence
structure of a problem (not obvious in a decision tree representation). So in
Figure 2 we can read that the optimal strategy given that the test result is bad
is independent of whether we tested or passed on the testing option. Getting
a good test result is independent of whether we tested or passed on the testing
option, but the future development of the problem from testing depends on this
earlier choice. The utility of not drilling depends on whether the test result was
good or bad, but if we drill the utilities of oil and no oil are independent of all

previous choices and outcomes of chance variables.

oil 0.818

(100) <>

0l 0.176

:
s

no oil
17.6 0.824

nodrill +10

Figure 3: CEG for Example 1, showing intermediate utility values associated with

positions during the local computations, and sub-optimal paths crossed out

Our propagation algorithm is illustrated in Table 1 — at the end of the local
message passing, the root node will contain the maximum expected utility, and

the optimal decision strategy will consist of the subset of edges that have not

10



been marked as being sub-optimal. In the pseudocode we use C' & D for the
sets of chance & decision nodes, p represents a probability or weight, and u a
utility. The utility part of a position w is denoted by w|u|, the probability part
of an edge by e(w,w’)[p] etc. The set of child nodes of a position w is denoted
by ch(w). Note that there may be more than one edge connecting two positions,

if say two different decisions have the same consequence.

Table 1: Local propagation algorithm for finding an optimal decision sequence

e Find a topological ordering of the positions. Without loss of generality
call this wy,ws, ..., w,, so that w; is the root-node, and w, is the
sink-node.

e Initialize the utility value w,[u] of the sink node to zero.

e Iterate: for ¢ = n — 1 step minus 1 until ¢ = 1 do:

— If w; € C then

wilt] = 3 conuws) | Deuwsw) [€(Wi w)[p] * (wlu] + e(wi, w)[u))]]
— If w; € D then

wilu] = maxy ecn(uw,) [ MXe(u, ) [(wlu] + e(wi, w)[u])]]

e Mark the sub-optimal edges.

Note that when we choose to confine utilities to terminal utility nodes, this
algorithm is much simplified since both the initializing step and the e(w;, w)[u]
components are no longer required.

The optimal decision strategy is shown on the CEG in Figure 3: We should
test; if the result is bad we should sell the drilling option, if it is good we should
drill. The value 27.6 attached to the root-node is the expected utility for pur-
suing this strategy.
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3. Representing and solving asymmetric decision problems using ex-

tensive form CEGs

We concentrate here on how CEGs compare with IDs (and in particular the
augmented IDs of Smith, Holtzman & Matheson [16]) for the representation and
solution of asymmetric decision problems. We show that the ID-based solution
techniques of barren-node deletion [13] and parsimony have direct analogues in
the CEG-analysis, and that arc-reversal [13] is not required for the solution of
EF CEGs. The distribution trees [16] added to the nodes of IDs to describe the
asymmetry of a problem can simply be thought of as close-ups of interesting
parts of the CEG-depiction, where they are an integral part of the representation
rather than bolt-on as is the case with IDs.

We first consider what is meant by conditional independence statements
which involve decision variables.

The statement X ITY | Z is true if and only if we can write P(x | y, 2)
as a(zx, z) for some function a of z and z, for all values x,y, 2z of the variables
X,Y,Z [8]. So clearly, for chance variables X,Y,Z and decision variable D,
where the value taken by X is not known to the DM when she makes a decision
at D, we can write statements such as X II D | Z and X II'Y | D since the
expressions P(z | d,z) = a(x,2) and P(x | y,d) = a(z,d) are unambiguous in
these situations (d representing a value taken by D).

Note that P(d | y, z) has no sensible meaning, except perhaps as the proba-
bility which an external observer assigns to the event that the DM chooses the
action D = d given the observed values Y = y, Z = z. So conditional indepen-
dence is no longer a symmetric property when we add decision variables to the
mix. In the appendix we give an example of where an expression DII R | @ has
an unambiguous meaning, but we will not make use of such expressions in the
body of the paper.

By a slight abuse of notation we can also write U 11 (Y, Dy) | (Z, Ds) if
Uy, z,d1,d2) = U(z,ds) for all values y, z,d1,ds of the chance variables Y, Z

and decision variables D1, Ds.
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8.1. Example 2 — specification and ID representation

Patients suffering from some disease are given one of a set of possible treatments.
There is an initial reaction to the treatment in that the patient’s body either
accepts the treatment without problems or attempts to reject it. After this initial
reaction, the patient responds to the treatment at some level measurable by their
doctor, and this response is independent of the initial reaction conditioned on
which treatment has been given. The patient’s doctor has to make a second
decision on how to continue treatment.

There is also the possibility of the patient having some additional condi-
tion which affects how they will respond to the treatment. Whether or not they
have this condition will remain unknown to the doctor, but she can estimate the
probability of a patient having it or not (conditioned on their response to their
particular treatment) from previous studies.

The doctor is concerned with the medium-term health of the patient following
her decisions, and knows that this is dependent on whether or not the patient
has the additional condition, how they respond to the first treatment, and the

decision made regarding treatment continuation.

Table 2 summarises this information in the form of a list of variables and rela-

tionships.

Table 2: Variables & relationships; plus U as a function of C3, D2 and C2

D¢: Choice of treatment Cs Cy Dy | U
C1: Initial reaction 1 1 1 A
C3:  Response to treatment — Cy I Cy | Dy 1 1 2 | A
Ds:  Decision on how to continue treatment 1 2 1 B
C53:  Condition affecting response to 1 2 2 | C
treatment and medium-term health 2 1 1|4
Can estimate P(Cs5 | D1,C3) 2 1 2 | A
U: Medium-term health, a function of 2 2 1 | D
Cs, Dy and Cj 2 2 2 | B

13



To avoid making the problem too complex for easy understanding we let all
variables be binary except U, and introduce only two asymmetric features: So
suppose that if a patient fails to respond to the first treatment (Cy = 1), then
the patient will inevitably have the lowest medium-term health rating (U = A).
We can express this as UIT(C3, D3) | (Cy = 1) (see Table 2). Suppose also that
if D1 =2 (Treatment 2 is given) then C; takes the value 1 (the patient’s body

always accepts the treatment).

Figure 4: Influence Diagram for Example 2

The problem can be represented by the ID in Figure 4. The doctor knows
the values taken by the variables D1, Cy and Cs before making a decision on how
to continue treatment (Dz), but does not know the value taken by C3. Hence
there are information arcs from D1, C; and Cs into D3, but not one from Cj
into Dy. C3 does however affect Cy and so there is an arrow from C3 to Cs.

To express the asymmetry of our problem we can add distribution trees to the
nodes C7 and U as in Figure 5. These have been drawn in a manner consistent
with the other diagrams in this paper, rather than with those in [16].

The ID in Figure 4 is not the most parsimonious representation of the prob-
lem. If we can partition the parents of a decision node D (those nodes with
arrows into D) into two sets Q4 (D), QP (D) such that UIIQ® (D) | (D, Q4(D)),
then the set QB (D) can be considered irrelevant for the purposes of maximising

utility, and the edges from nodes in QB(D) into D can be removed from the

14



Figure 5: Distribution trees for nodes C1 and U

ID [18]. Here we find that C; € QP(Ds), and so the edge from C; to Ds can
be removed from the ID. The node C is now barren, so it can also be removed
(together with the edge D1 — C4).

IDs, like decision trees (and indeed BNs and CEGs) can be constructed in
different ways. Graphs used simply to describe a situation can be drawn in
temporal order, so in Example 1 the oil is actually in the ground (or not) before
we start testing and drilling, so we could draw a tree or an ID with this as our
first variable. The ID in Figure 4 gives some idea of the temporal ordering of
the problem, but does not tell us that C3 precedes D; in this ordering. We can
see that C5 affects Cy, and that the outcome of C5 is known by the doctor when
they make a decision at D, but the doctor does not know the outcome of Cj.
If we now wish to solve our decision problem we need to reorder the variables
so that only those whose outcomes are known to the doctor before making any
decision occur before this decision in our sequence of variables. This requires
C3 to come after Dy, which in turn requires a couple of further modifications to
the graph, described in the next paragraph. As we have changed the ordering of
the variables, some form of Bayesian updating of probabilities is inevitable. For
decision trees and IDs (and indeed CEGs) such updating can be automated.

Once we have our parsimonious ID we can use one of the standard solution

methods to produce an optimal decision strategy and expected utility for this

15



strategy. We use Shachter’s method [13] for transparency. If we do this we
find that we cannot remove Dy first because there exists an edge from Cs to
U, but C5 is not a parent of Dy;. We cannot immediately remove C3 either
because there exists a path C3 — Cy — Dy — U. To get around this we do arc-
reversal on C'5 — C5. C3 then inherits the parents of Cs, and solution proceeds

straightforwardly to give an expression for the maximum expected utility of:
I%B;X [CZP(CQ | Dl) {I%azx [CZP(Cg | Dl, CQ) U(CQ, Cg,Dg)}}}
2 3

which does not however reflect the asymmetries in the problem. These can be
built into the solution technique, but since the principal asymmetry concerns
U(Cs,C5, D3), a term embedded at the heart of the expression, any advantage

conveyed by the compactness of the ID is lost in the messy arithmetic.

8.2. Example 2 — CEG representation

We now turn our attention to a CEG-representation of the problem. As was
the case with the ID, we could construct our CEG in several different orders. For
example we could put the variables in a temporal order Cs, D1,Cy,Cs, Do, U,
or in any order consistent with the direction of the edges in Figure 4. If we did
so, we could read off these CEGs the same conditional independence properties
that we can read off the ID in Figure 4. This is discussed further in section 3.3.
However, as we wish to solve the decision problem, we construct the CEG in
EF order.

There are two EF orderings of the variables: Dy, Cs, C1, D2, C3,U and one
where C7 & C5 are interchanged. Note that Dy precedes C3 since the value of
Cj3 is not known to the doctor when she comes to make a decision at Dy. The
first ordering leads to a slightly more transparent graph.

As we are comparing CEGs and IDs here, we do not put any utilities onto
edges, but restrict them to terminal utility nodes. We also separate out our
single utility node into distinct utility nodes for each value taken by U. In more
complex decision problems this can lead to greater transparency. We call this

form of CEG without utilities on edges, and with separated utility nodes, a

16



Type 2 decision CEG. The Type 2 CEG for the ordering D1, C5, C1, Do, C3, U
is given in Figure 6, where we have also coloured chance nodes in the same stage

for illustrative convenience.

Figure 6: Initial EF CEG for Example 2

Conditional independence structure in a CEG can be read from individual
positions, from stages, and from cuts through these [20]. Recall that nodes
in the underlying tree are coalesced into positions when the sets of complete
future developments from each node are the same and have the same probability

distribution. So for example, the position w,, yields the information that
(C5,U)II(C1,Ds) | (D1 =1,05=1) (3.1)

The position w, similarly yields (C3,U) I Cy | (D1 =1,C2 =2,Dy =1).
Recall also that chance nodes in a CEG are in the same stage if their sets of
outgoing edges carry the same labels and have the same probability distribution.
The positions w, & w, are in the same stage (indicated by the colouring), and so
the probabilities on the edges leaving these positions have the same distibution,

and hence

C3 11 (C1, D7) | (D1 =1,C2 =2) (32)

17



The expressions (3.1) & (3.2) result from the fact that in our EF CEG
ordered Dy, Cs,C1, Do, Cs,U, the variable C3 is dependent on D; and Cy. This
cannot be read from the ID in Figure 1, but is reflected in the expression for
U7lmal Now the form of this expected utility expression is a consequence of the
arc-reversal required for successful ID-based solution of our problem. So this
arc-reversal is already explicitly represented in the original EF CEG, and is not
(as with IDs) an additional requirement of the solution technique.

A cut through a CEG is a set of positions or stages which partitions the set
of root-to-sink/leaf paths. So the set of positions {wy,, we, Wy, Wy, Wy, ws} is a
cut of our CEG. A conditional independence statement associated with a cut
is the union of those statements associated with the component positions (or

stages) of the cut. So the cut through {wy,, we, wy, wy, w,, ws} gives us that
UNC | (D1,Co,Dy)

which is clearly of the form U I1 Q(DZ) | (D2, Q(D3')), and tells us that C is
irrelevant to Do for the purposes of maximising utility.

We can read the cuts of the CEG in Figure 6 to give us those conditional inde-
pendence properties readable off the ID produced by reversing the arc Cs — Cs
and adding an arc D; — C3. In general, cuts of a CEG provide statements read-
able from the equivalent ID, and more context-specific properties can be read
from individual positions and stages.

For a Type 2 CEG drawn in EF order, two (or more) decision nodes are in
the same position if the sub-CEGs rooted in each decision node have the same
topology, equivalent edges in these sub-CEGs have the same labels and (where
appropriate) probabilities, and equivalent branches terminate in the same utility
node. So in Figure 6, the nodes w; & w; are in the same position, as are the
nodes wy, & wj;. Decision nodes in the same position can simply be coalesced,
giving us the first graph in Figure 7.

For a Type 2 EF decision CEG with all positions coalesced (as in this graph),
a barren node is simply a position w for which ch(w) (defined as in section 2)

contains a single element. Barren nodes can be deleted in a similar manner to
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Figure 7: First and second simplifications

those in BNs — see Table 3 (where pa(w) denotes the set of parent nodes of w).

Table 3: Barren node deletion algorithm (Type 2 decision CEGs)

e Choose a topological ordering of the positions excluding the terminal
utility nodes: wy,ws, ..., wy,, such that w; is the root-node.

e Iterate: for i = 2 step plus 1 until ¢ = m do:

If ch(w;) contains only one node then

Label this node wy;

For each node w~; € pa(w;)

Replace all edges e(w<;, w;) by a single edge e(w~;, we;)

Delete all edges e(w;, ws;) & the node w;.

Four iterations of the algorithm applied to the first graph in Figure 7 yield
the second graph in Figure 7. Further iterations will remove the first two Dq
nodes and the first two C3 nodes to give the parsimonious CEG in Figure 8.

We can clearly see that Cy is irrelevant for maximising U, and moreover if
Cy = 1 then both Dy and C5 are also irrelevant for this purpose (so the DM
actually only needs to make one decision in this context). This latter property of
the problem is not one that can be deduced directly from an ID-representation,

although it could be worked out from the second distribution tree in Figure 5.
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Figure 8: Parsimonious CEG

It is however obvious in the parsimonious CEG.
Solution follows the method described in section 2 (the process obviously
being simpler as there are no rewards or costs on the edges), and results in an

expression for the maximum expected utility of:

max [P(Cy =1 | Dy =1)Ua+ P(C2 =2 | Dy =1)x

max[P 03:1|D1=1,Cg=2)UB+P(03:2|D1:1,CQZ2)UD,

Co=1|D1=2)Us+P(Cy=2| Dy =2)x

(

(

P(C3=1|D1=1,Co=2)Uc+ P(C5 =2| D; =1,C; = 2)Ug]|,

(

max [P(C3 =1 | Dy =2,Co =2)Up + P(C3 =2 | Dy =2,C5 = 2)Up,
(

P(C3=1| Dy =2,0y=2)Uc+P(C3 =2 | Dy = 2,0, = 2)Ug]].

This expression is obviously more complex than that given for the ID, but
it is much more robust since it has been produced using the asymmetry of the

problem to power the analysis, rather than treating it as an added complication.

3.3. CEGs and IDs

Theorem 1. Any (discrete) ID can be represented as a decision CEG.
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A proof of this for the case where the ID has only one (terminal) utility node
is given in the appendix. Not all decision CEGs can be represented adequately
as an ID. There are a number of reasons for this, mainly stemming from the fact
that many decision problems are asymmetric, with different actions resulting in
different choices in the future. We list the principal reasons here. There are par-
tial solutions to each drawback, but as our problems become more asymmetric,

the compromises necessary become ever more cumbersome.

1. Decision CEGs may have root-to-leaf paths of different lengths. This oc-
curs when certain outcomes of some chance variables and/or certain deci-
sion strategies lead to possible developments where the DM will encounter
fewer future chance variables and/or fewer occasions on which he/she will

be required to choose an action.

e A partial solution to this when using IDs involves the addition of
extra nodes to paths in the underlying tree to make them all the
same length. This has the effect of introducing dummy values to

some vertex-variables of the ID.

2. Decision CEGs may have different numbers of edges emanating from nodes
in the same cut: Given different partial histories a chance variable may
have fewer possible outcomes or a DM have fewer possible actions to choose

from.

e A partial solution to this when using IDs involves adding extra out-
comes/actions at some vertex-variables of the ID, but giving these

zero probability.

3. Decision CEGs may have paths on which one encounters a totally different
set of variables to those encountered on some other paths. Or they may

have paths where the variables are encountered in a different order.

e A partial solution to the former when using IDs is to add extra nodes
to paths in the underlying tree as above, which again has the effect
of introducing dummy values to vertex-variables of the ID. Solution

of the latter problem is more problematic.
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The augmented ID of Smith et al [16] is an attempt to overcome the many
drawbacks, by supplementing the graph of the ID with additional information
to represent the asymmetric aspects of the model.

Theorem 1 has a number of immediate consequences, some of which are
described in the remainder of this section.

Any probability manipulation required when using a CEG (such as Bayesian
updating when changing the order of variables) would also be necessary when
using an ID. And as with IDs, these manipulations do not need to be done man-
ually. Automatable algorithms exist for these purposes (see for example [26]),
based on those existing for decision trees and analogous to algorithms used with
BNs and IDs. Since this is the case, there is no extra work (compared with
BNs/IDs) when we move to larger models. That there may appear to be so is
simply a consequence of CEGs being used to analyse (often highly) asymmetric
problems, with more context-specific conditional independence structure than
is possible with BNs and IDs.

CEGs represent conditional independence structure explicitly in their topol-
ogy [20, 25]. And any structure represented in an ID will always be depicted in
the equivalent CEG. So, in particular, if a CEG is drawn in EF order, then it
will depict all structure represented by the equivalent EF ID or BN, plus any
extra context-specific structure. Similarly if a CEG is drawn in temporal or
causal order. This follows from the ID-to-CEG construction given in the proof
of Theorem 1.

It can happen that the operations on an ID required to change the order
of variables to allow for solution will decrease the number of conditional in-
dependence statements readable from the graph. As any (discrete) ID can be
represented by a decision CEG which encodes the same conditional indepen-
dence properties in its topology, this decrease will also happen with CEGs, but
the effect of this on solution will be no worse than with an ID, and may actually
be better since context-specific properties evident in the CEG may alleviate (but
not exacerbate) the problem. In particular, if an ID-representation of a prob-

lem is soluble, so is the CEG-representation. This follows from the ID-to-CEG
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construction given in the proof of Theorem 1.

The DAG and conditional probability tables of a BN can be used to represent
the full joint distribution of the BN’s vertex-variables, and similar can be done
with an ID, conditional on the set of decision strategies that a DM might employ.
It is in the nature of highly asymmetric problems that their context-specific
Markov structure results in a full joint distribution which is not expressible in
such a neat and tidy form. However, the CEG expresses this distribution in a
remarkably transparent manner: The full joint distribution of the variables of
a non-decision CEG is explicit in the topology of the CEG, since the root-to-
leaf/sink paths are precisely the atoms in the event space, and the probabilities
of these atoms are the products of the probabilities of their component edges [25].
This idea transfers automatically to decision CEGs, so in Figure 6 for example,
the first root-to-leaf path equates to the atom (D1 =1,Co =1,C; = 1,Dy =
1,C5 = 1), and has the probability

P(Cy=1,C,=1,C3=1|D;=1,Dy=1)

:P(02:1|D1:1)XP(01:1|D1:1)><P(03:1|D1:1,02:1)

There are 24 root-to-leaf paths equating to the atoms for which the variables
{D1,C5,C1, Dy, C3} take different values. The probabilities of these paths are
given by similar expressions to the one above. These paths can be partitioned
by the values taken by D; and Ds. For each combination of decisions at D,
and Do, there is a set of atoms whose conditional probabilities add up to 1, so
the decision CEG encodes the full joint probability distribution of its chance
variables conditioned on its decision variables.

Although it is possible to construct a decision CEG from an 1D, the decision
CEG is a function of a decision tree. Decision trees are easily elicited from
clients and are easy for clients to understand. So users of decision CEGs need
no expertise in BNs or IDs in order to use their chosen graphical tool, just a
familarity with trees (and this is easily gained).

Once we have represented our problem as a decision tree, all we need to do

is identify those sets of edge probabilities that are the same, and those decision
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nodes which will be indistinguishable to the DM. Conversion to a decision CEG

then follows the steps described in section 2.

4. Comparing CEGs with other graphical methods for tackling asym-

metric decision problems

In chapter 3 we saw how the CEG compares with IDs. In this chapter we
look at how CEGs compare with Valuation Networks (VNs) [14], Sequential
Decision Diagrams (SDDs) [7], and Sequential Influence Diagrams (SIDs) [10].
We also look briefly at Decision Circuits [3].

4.1. CEGSs and Valuation Networks

Even for simple problems (such as that described in section 3.1) it is not
always transparent what a VN-representation will look like, and construction
takes some time and thought. Figure 9 gives a possible VN-representation of
the problem presented in chapter 3. The decision and chance nodes are laid
out in an essentially EF ordering along the spine of the graph — the lack of a
directed edge connecting C; and Cy reflects the existence of two possible EF
orderings.

The qualitative constraint that if Dy = 2 then C7 = 1 is represented by
a double-triangle node a, connected by undirected edges to both D; and Cj.
Note that the choices available at Dy do not depend on the choice made at
D1, nor the values taken by C7 or C3. Moreover the values available at Cs are
not constrained by the choice made at D;; and although the value taken by Cs
probabilistically influences the value taken by Cs, there are no constraints on
the values taken by C5. Hence there are no further double-triangle nodes.

We note that C111C5 | Dy and C111C5, so C is connected to a single triangle
node b. Cjs is a parent of Cs (in the probabilistic sense), so is also connected to a
triangle node d, and both Cy and C5 are connected to a further triangle node c.
It is debatable whether we should have one or two utility nodes here. We opt

for two, noting that if C5 = 1 then our utility is independent of D5 and Cj.
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Figure 9: VN-representation of the problem described in Example 2

The VN in Figure 9 has 11 nodes (of five different types) and 15 edges (some
directed, some not), compared with the 14 nodes (of three types) and 18 edges
(all directed) of our parsimonious CEG, so is not much simpler in topology.
Moreover the depiction of the underlying conditional independence structure is
not apparent, which it is with the CEG (through the colouring and coalescence).

Solution using the VN is carried out via a complex fusion algorithm, which
sequentially reduces the VN in a process similar to that method of ID solution
which progresses via a sequence of pruning operations.

An advantage claimed for VN-representations is that they distinguish be-
tween informational and structural edges entering decision nodes. This dis-
tinction is not explicit in CEG-representations, but is implicitly used in the
simplification process described in section 3.2. The principal disadvantages of
VNs are the complexity of the solution technique and the lack of transparent
interpretability of the graph. Bielza & Shenoy in [4] also note that a major issue
of VNs is their inability to model some asymmetry, not a problem with CEGs.
Lastly, VNs suffer from the same drawback as Smith et als’ IDs [16] in that
the graphs have to be supplemented with extra tables (here the indicator val-

uations, which capture the asymmetry) before solution can commence. Again,
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this is not necessary with CEGs, where the full dependence level specification [4]

is encoded in the topology.

4.2. CEGSs and Sequential Decision Diagrams

Sequential Decision Diagrams [7] are most useful when there exist paths of
different lengths in the underlying decision tree of a problem. Where this is not
obviously the case, as in our Example 2, the SDD graph can be particularly
unilluminating. A valid initial SDD here could simply be the set of nodes and
directed edges D; — C1 — Cy — Dy — C3 — U (or the alternative EF
ordering D1 — Cy — C1 — Dy — C3 — U). One could argue that the property
U (Cs,D3) | (C2 = 1) can be established before solution is attempted, in
which case the edge C; — D2 would be labelled 2, and an extra edge Cy — U
added, labelled 1. If we are drawing our SDD simply from the description of
the problem, it is not apparent which diagram should be used.

Users of SDDs also require an ID-representation of the problem, and very
probably also an ID after appropriate arc-reversal, in order to construct the
Formulation Table. But then this table is all that is necessary for solution,
and it replicates the information present in the topology of the CEG in a less
transparent manner. In fact it is arguable whether SDDs are a graphical tool
at all, given that it is the Formulation Table that is used for solution.

The lack of direction as to how to draw our initial SDD has consequences for
the construction of the Formulation Table. If we assume that we do not know
the property U II (Cs, D2) | (C2 = 1), then the first three sections of the table
are as in Table 4. But if we know this property, then the Next Node function
entries for Cy are all U, Do; and this ambiguity continues in further sections of
the table.

The solution of SDDs relies on the identification of relevant and minimal
histories of its nodes. These ideas are related to the stages and positions of
CEGs. However, because they are only represented in the Formulation Table,
their interpretation and their relationship to the underlying graph are not (in

our opinion) as transparent as the stages and positions of a CEG.
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Table 4: SDD Formulation Table for Example 2

Node Histories State Space Next Node function
D, 10) 1,2 Ci, Cy
C D; =1 1,2 Ca, Cy
D; =2 1 Ca, Cy
Cs DiChy =11 1,2 D3, Dy
D:C; =12 1,2 Ds, Do
D:C; =21 1,2 Ds, Do

However, SDDs enjoy many useful properties. Like CEGs but unlike IDs and
VNs, they do not require the addition of dummy states to variables. SDDs list
the nodes’ state spaces in a table (whereas in a CEG the state spaces are explicit
in the topology). SDD solution is local, relying on the relevant and minimal
histories, and hence, like CEGs, they do what Call & Miller [6] requested, and
exploit coalescence. Like with CEGs and IDs, one can, when working with SDDs
identify barren nodes, and use this to advantage in solution. However, CEGs
have the advantage over SDDs in that there are not two distinct representations
of the probability model, and in CEGs arc-reversal is, as already noted, explicitly
represented in the original graph, and is not a requirement for producing a

Formulation Table.

4.3. CEGSs and Sequential Influence Diagrams

Jensen et al in [10] state that a Sequential Influence Diagram can be thought
of as two diagrams superimposed on each other, each diagram encoding different
aspects of the problem structure. As such they are similar in concept to VNs,
but in appearance they are closer to SDDs. As a result of this superimposition it
is not immediately obvious how to read the conditional independence structure
of a problem from its SID-representation.

SIDs depict asymmetry using a combination of dashed and solid directed
edges connecting nodes, which may also carry annotations describing conditions

on the edge being utilised. Two nodes may have both a dashed and a solid edge
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connecting them, and SIDs may contain cycles consisting of a mix of dashed
and solid edges, so they are not necessarily DAGs. Nodes may also be clustered,
giving the SID a superficial resemblance to some types of OOBN (examples of
each of these occur in [10] Figures 3 and 4).

Solution is accomplished via decomposing the graph/problem into a collec-
tion of (symmetric) subproblems, with an associated propagation of probability
and utility potentials, similar to CEGs.

Like SDDs, they are most useful when the modelled problem exhibits the
types of asymmetry where different actions lead to different choices in the fu-
ture, and where different paths in the underlying decision tree have different
lengths. For this reason we have created an SID for Example 1 rather than Ex-
ample 2. This is given in Figure 10, where we have followed Jensen et al’s lead in
separating decision node outcomes where this makes the graph easier to follow.
So the possible outcomes of the Test decision node are distinct nodes Self (we

take up the option) and Other (we pass the option on to another prospector).

Test
3
tLp

Figure 10: SID-representation of the problem described in Example 1

The meaning of most edges is reasonably clear — dashed edges encode struc-

ture (in the form of precedence information and sometimes asymmetry), and
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solid edges encode probabilistic and utility dependencies, and reflect how this
information could be represented in an ID of the problem. So here, the oil is (or
isn’t) in the ground before we do the test (our original probabilities were given
in the form P(oil), P(test result good | oil) etc), and a temporally or causally
ordered ID-representation of the problem would have an edge from the chance
node Oil to the chance node Test result. This is reflected in the solid edges from
our Oil node in Figure 10 to the nodes Other and Self.

The reason for the edge from Self to usz may not be immediately obvious,
but is a consequence of the utility information in Figure 1. The SID depiction is
not fully expressive in some situations. For our example here, some indication
that ug depends on Self when the outcome of the node is good (and when Drill
takes the outcome not drill) would be helpful.

The graph in Figure 10 has 9 nodes and 13 edges (solid and dashed) compared
with the 8 nodes and 14 edges in the CEG, so the two graphs are of similar
complexity. The conditional independence structure which is transparent in an
ID-representation (and is there in the topology of the CEG in Figure 2) is not
transparent in the SID.

We have not described the SID solution of this problem, but it is more
straightforward than some of its competitors. Overall, in our view the relative
merits of CEGs and SIDs are fairly well balanced, but the two methods approach
problems from very different directions, and the choice of which method should
be used is one that would typically depend on the familiarity of a user with
decision trees as opposed to IDs. For example, public health professionals are
increasingly familiar with processes expressed as trees (see for instance the NICE
Pathways produced by the National Institute for Health and Care Excellence in
the UK), and so CEG-representations are likely to fit more naturally into their

analyses.

4.4. CEGSs and Decision Circuits — a brief discussion

Decision Circuits [3] are a relatively recent addition to the collection of graph-

ical models used for the representation and analysis of discrete decision prob-
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lems. Like CEGs they can be used to model asymmetries explicitly, but they
are much more unwieldy even than decision trees, and focus on representation
of the necessary calculations needed for a problem, rather than on the prob-
lem itself. In [2] there is an example where there is an ID equivalent to the
nodes Dy, C3 and U (and connecting edges) in Figure 4 (our Example 2 ID).
The authors also provide a Decision Circuit representation of this ID (where
all variables are binary), which contains 39 nodes and 48 edges. Although the
methods have since been streamlined, Decision Circuits still remain a rather

impractical representational-level tool for all but the tiniest of problems.

5. Discussion

In this paper we have concentrated on how CEGs compare with IDs, VN,
SDDs and SIDs for the analysis of asymmetric decision problems. It is how-
ever worth pointing out two advantages of CEGs over coalesced trees: Firstly,
the ability to read conditional independence structure from CEGs enabled us
to create an analogue of the parsimonious ID, and secondly, the explicit rep-
resentation of stage structure in CEGs gave rise to our barren node deletion
algorithm.

A paper on the use of decision CEGs for multi-agent problems and games
has already been written [23], where we show how the methods outlined in this
paper can easily be adapted to the case where there is more than one decision
maker. Under the assumptions that the structure of the game and the crude
structure of each player’s utility function are common knowledge, modelling
for example an adversarial two-player game is straightforward. A parsimonious
CEG representation of the game is produced by considering each decision in
order (irrespective of who makes the decision), and discarding irrelevant infor-
mation. The optimal strategies for each player are then found using a single
rollback, provided that when each cut of decision nodes is reached, the decisions
made are those which increase the utility of the player making these decisions.

We intend to continue development of the theory of decision CEGs as part
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of the EPSRC project Modelling decision and preference problems using CEGS.
There is clearly scope for addressing complexity /efficiency issues relating to
decision CEGs. It would be useful to have an efficient ID-to-CEG algorithm.
Can we use modern lazy evaluation [5] techniques to increase the efficiency of our
solution technique? First indications suggest that there might be a benefit from
retaining some information from the unsimplified CEG, which in turn suggests
that the simplification and solution processes might not be best considered as

distinct. We aim to address these and other questions in a future paper.
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Appendix

Proof of Theorem 1
We consider here the case where the ID has only one (terminal) utility node. A
proof of the more general case is somewhat longer, but not significantly more

complex.

1. A BN with N vertex-variables can be completely specified by N con-
ditional independence/Markov statements (dictating the topology of its
DAG), and N conditional probability tables. An ID can be completely
specified by

(i) a partition of its N vertices into chance, decision and utility nodes,

(ii) conditional probability tables for each chance node, and lists of pos-

sible actions for each decision node,

(iil) wutilities associated with each possible sequence of decision-node-actions

and chance-variable-outcomes,
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(iv) a set of N conditional independence/Markov statements (reflecting

the topology of the ID), as described in bullet 3 below.

2. Let our ID have vertex-variables V1, ..., Vi, such that if ¢ < j then there
cannot exist a directed edge from Vj to V;.
From bullet 1, the set {V1,...,Vy} consists of subsets of chance nodes
(which we will label X;), decision nodes (which we will label D,), and one
terminal utility node (which we will label Uy).

3. (a) Each chance node X,, encodes a property of the form
X U R | Qs
where @Q,, is the set of parents of X,,, and

Ry, QO = ¢a
RnUQm={V1,...Vin_1},

and where R, and @, can contain both chance and decision nodes/variables.

(b) Each decision node D,, encodes a property of the form
Dy I Ry | Qs
where Q,, is the set of parents of D,,, and

R, QO = ¢a
R,UQ, = {Vlu-'-Vm—l}'

We interpret these statements for decision nodes as the DM does not
know the outcome of the variables in R,, when he/she comes to make
a decision at D,,.

Note that if an ID is drawn in EF order, then there are directed edges
from all vertices Vi,...,V;u—1 to Dy,, so @, contains all preceding
chance and decision nodes. In general ),,, consists of all the variables
whose outcomes are known to the DM when making his/her decision

at D,,, and which therefore he/she can use to inform his/her decision.
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(¢) The utility node Uy encodes a property of the form

UvIO Ry | Qn,

where @y is the set of parents of Uy, and

RyNnOQn=1¢

RyUQN = {Vlu"'VN—l}'

We interpret this statement for the utility node as the utility of a
particular sequence of decision-node-actions and chance-node-values
does not depend on the outcome of the variables in Ry (both decision-
node-actions and chance-node-values), but only on the outcomes of
those in Q.

4. Any (discrete) ID (with one terminal utility node as described in bullet 1)

can be drawn as a decision tree, whose root-to-leaf paths are all of equal
length, and which respects the partition of vertices into chance, decision
and utility nodes. Any decision tree can be represented as a decision CEG,
which also retains the partition of vertices into chance, decision and utility
nodes.
Moreover, the probabilities on the edges emanating from chance nodes in
the decision tree replicate those in the conditional probability tables of
the ID (bullet 1(ii)); and the CEG retains all edge-probabilities from the
tree, by construction. The edges emanating from decision nodes in the
decision tree represent the possible actions available to the DM at the
equivalent decision node in the ID (bullet 1(ii)); and the CEG replicates
these features of the topology of the decision tree, by construction. The
utilities associated with each root-to-leaf path in the decision tree are
equal to the utilities associated with each possible sequence of decision-
node-actions and chance-variable-outcomes in the ID (bullet 1(iii)); and
the CEG retains this information by construction.

So it suffices to show that the conditional independence/Markov structure

33



encoded in the N conditional independence statements (bullet 1(iv)) is
also present in the CEG.

. The root of our decision tree corresponds to V7, and the edges emanating
from the root to possible wvalues taken by V;. Nodes one edge from the
root correspond to V5 etc. Our leaf nodes are utility nodes associated with
the terminal (utility) variable Uy.

. All nodes in our decision tree which are the same distance (number of
edges) from the root (and also the edges emanating from these nodes)
correspond to one vertex-variable of the ID. We call such a set of nodes
a cut of the tree.

Consider the cut corresponding to V,,, € {Va,...,Vy_1}. Each node in
this cut correponds to a unique vector of values (v1,...,vn,—1) of the
preceding variables {V1, ..., Vi,-1}, and each edge emanating from one of
these nodes corresponds to a unique value v, of V.

If V,,, is a chance variable (X,,,), then the probability associated with such

an edge will be
P(Xm = Um | V1 = V1,-. .,Vm,1 = ’Umfl).

If V;,, is a decision variable (D), then the DM will have a choice of actions

determined by the variable outcomes up to that point
(‘/1 = V1., mel = ’Umfl)-

Each node in the cut corresponding to Viy = Un has an attached utility

for the root-to-leaf path associated with this node, of the form
U(V1 = UVlye--y VN,1 = val).

. Nodes in a cut can be partitioned into equivalence classes called stages
(see section 2). So consider the cut corresponding to V;,,. All nodes in this
cut which have the same vector of values ¢,, for Q,, belong to one stage,
and to a different stage from any node for which at least one value in this

vector is different.
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(a)

If V,,, is a chance variable (X,,), then the conditional probability
distribution of X,, is the same for every node in the same stage,
and the probabilities on the edges leaving any node in this stage are

expressible in the form
P(Xm =2m | Qm = qm),

for some vector of values g, of Q.

If V,,, is a decision variable (D), then @, are the variables whose
outcomes are known to the DM at D,,, and g, are these outcomes.
Nodes in the same stage have the same ¢,, so the DM has exactly
the same evidence at each node in the same stage. Hence these nodes
are indistinguishable, and the DM must necessarily make the same

decision.

QN are the variables whose outcomes affect the utility Uy, and gy
are these outcomes. Nodes in the cut associated with Vy = Uy that
have the same vector of values gy for @y correspond to root-to-leaf
paths which result in the same reward or loss. We can extend the
definition of stages from section 2 to terminal utility nodes, and call

the equivalence classes of this cut stages also.

8. So the set of stages in the cut associated with V,,, encode the conditional

10.

independence property that

Vin U R | Qs

whether V,,, is a chance variable, decision or utility.

Certain nodes in the same cut of the decision tree are coalesced into the
same position in a decision-CEG-representation (see section 2), but no
position will be created from nodes belonging to different stages. So the
stage-structure of the decision tree is preserved in the decision CEG.
From bullets 3, 7, 8 & 9 we see that the conditional independence/Markov

structure of the ID is preserved in the decision-CEG-representation thereof.
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Remark: We know from section 3.1 that if X,, is a decision variable (D,,),
then there may be elements of ), which are in some sense irrelevant to the
DM. Let Q4 C Q,, be the parents of D,, relevant for the purposes of maximis-
ing expected utility. Then there is a coarser partition of the nodes of the cut
associated with D,,, than that into stages, for which the DM has exactly the
same relevant evidence q;fl at each node in the same equivalence class. These
nodes will not be indistinguishable. An example of two decision nodes not in
the same stage, but in the same relevant evidence equivalence class, is the 1st
and 3rd drill nodes in Figure 1.

Note that the 1st and 3rd drill nodes are however in the same position, so
unlike chance nodes, decision nodes can be in the same position without being
in the same stage. This is a consequence of the fact that for decision nodes, ¢,
gives the information known to a DM, rather than (as is the case for chance
nodes) that part of the history of the node which determines the probability

distribution of its emanating edges.
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