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IMPORTANCE Steroid 5α-reductase type 3 congenital disorder of glycosylation (SRD5A3-CDG)
is a rare disorder of N-linked glycosylation. Its retinal phenotype is not well described but
could be important for disease recognition because it appears to be a consistent primary
presenting feature.

OBJECTIVE To investigate a series of patients with the same mutation in the SRD5A3 gene and
thereby characterize its retinal manifestations and other associated features.

DESIGN, SETTING AND PARTICIPANTS Seven affected individuals from 4 unrelated families
with early-onset retinal dystrophy as a primary manifestation underwent comprehensive
ophthalmic assessment, including retinal imaging and electrodiagnostic testing.
Developmental and systemic findings were also recorded. Molecular genetic approaches,
including targeted next-generation sequencing, autozygosity mapping, and apex microarray,
were tried to reach a diagnosis; all participants were mutation negative. Whole-exome
sequencing or whole-genome sequencing was used to identify the causative variant.
Biochemical profiling was conducted to confirm a CDG type I defect. Patient phenotype data
were collected over the course of ophthalmic follow-up, spanning a period of 20 years,
beginning March 20, 1997, through September 15, 2016.

MAIN OUTCOMES AND MEASURES Detailed clinical phenotypes as well as genetic and
biochemical results.

RESULTS The cohort consisted of 7 participants (5 females and 2 males) whose mean (SD) age
at the most recent examination was 17.1 (3.9) years and who were all of South Asian ethnicity.
Whole-exome sequencing and whole-genome sequencing identified the same homozygous
SRD5A3 c.57G>A, p.(Trp19Ter) variant as the underlying cause of early-onset retinal dystrophy
in each family. Detailed ocular phenotyping identified early-onset (aged �3 years) visual
loss (mean [SD] best-corrected visual acuity, +0.95 [0.34] logMAR [20/180 Snellen]),
childhood-onset nyctalopia, myopia (mean [SD] refractive error, –6.71 [–4.22]), and
nystagmus. Six of the 7 patients had learning difficulties and psychomotor delay. Fundus
autofluorescence imaging and optical coherence tomographic scans were abnormal in all
patients, and electrodiagnostic testing revealed rod and cone dysfunction in the 5 patients
tested.

CONCLUSIONS AND RELEVANCE Mutations in the SRD5A3 gene may cause early-onset retinal
dystrophy, a previously underdescribed feature of the SRD5A3-CDG disorder that is
progressive and may lead to serious visual impairment. SRD5A3 and other glycosylation
disorder genes should be considered as a cause of retinal dystrophy even when systemic
features are mild. Further delineation of SRD5A3-associated eye phenotypes can help inform
genetic counseling for prognostic estimation of visual loss and disease progression.
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C ongenital disorders of glycosylation (CDGs) are a large
group of neurometabolic diseases caused by impaired
glycoconjugate synthesis. Type I CDGs (CDG-I) result

from disruptions in the early N-linked glycosylation pathway.1

Numerous CDG-I subtypes exist that are characterized by neu-
rologic, developmental, hepatic, and coagulation abnormali-
ties alongside ocular, muscular, skeletal, dermatologic, car-
diovascular, or genitourinary involvement in some forms.1,2

Approximately 23 different genes have been associated with
this group of disorders.1 Steroid 5α-reductase type 3 (SRD5A3
[OMIM 611715]) encodes a polyprenol reductase enzyme re-
quired for the synthesis of dolichol, the end product of the
mevalonate pathway.3 Dolichol undergoes phosphorylation to
produce dolichol phosphate that serves as the lipid-anchor for
N-glycan biosynthesis in the endoplasmic reticulum.3

Biallelic mutations in SRD5A3 cause SRD5A3-CDG (for-
merly known as CDG-Iq [OMIM 612379]), a phenotypically
variable form of CDG-I that features nystagmus, optic atro-
phy, visual loss, muscle hypotonia, intellectual disability,
and cerebellar ataxia.3,4 Biochemically, SRD5A3-CDG is char-
acterized by a transferrin isoelectric focusing pattern that is
typical of CDG-I.5 Defective glycan synthesis results in
altered sialotransferrin forms, which are detectable by
charge differences and characterized by increased disialo-
transferrin and/or asialotransferrin in cases of CDG-I.5 Kah-
rizi syndrome (OMIM 612713), featuring iris coloboma, juve-
nile cataract, contractures, kyphosis, mental retardation,
motor delay, and lack of speech, has also been reported in
association with biallelic variants in SRD5A3.6 Patients
described thus far have considerable phenotypic overlap
with SRD5A3-CDG, although they demonstrate a normal
transferrin isoelectric focusing profile.6,7 Unlike other CDG-I
subtypes, all patients with SRD5A3-CDG develop abnormal
ocular phenotypes and almost always experience early-
onset visual loss such that the ocular presentation can be an
early and obvious disease-delineating feature.

Previous studies of this disorder focused on genetic find-
ings associated with the neurometabolic and developmental
manifestations of the condition, with only 1 study acknowl-
edging a retinal abnormality.8 Hence, the appearance, onset,
and progression of the SRD5A3-CDG–related retinal pheno-
type is poorly understood. Our study reports detailed ocular
and developmental phenotypes in 7 individuals, from 4 un-
related families with early-onset retinal dystrophy (EORD) who
harbor the same SRD5A3 mutation, discovered through whole-
exome sequencing (WES) or whole-genome sequencing (WGS).

Methods
Clinical Assessment
Study participants were ascertained from Manchester Centre
for Genomic Medicine, Manchester, England; Moorfields Eye
Hospital, London, England; and St. James’s University Hospi-
tal, Leeds, England. The Northwest Research Ethics Commit-
tee granted approval for all aspects of this study, and the study
protocol observed the tenets of the Declaration of Helsinki.9

Written informed consent was obtained from each study par-

ticipant, or parental informed consent was obtained on be-
half of children, as an essential prerequisite for study inclu-
sion. Patient phenotype data were collected over the course
of ophthalmic follow-up, spanning a period of 20 years, be-
ginning March 20, 1997, through September 15, 2016.

Each patient underwent full ophthalmic assessment, in-
cluding visual acuity and dilated fundus examination. Fun-
dus photographs were obtained using conventional 35° color
fundus photography (Topcon Great Britain) or Widefield color
fundus imaging (Optos plc). Fundus autofluorescence (FAF)
imaging was conducted using either the 55° Spectralis (Heidel-
berg Engineering Inc) or ultra-widefield confocal scanning la-
ser imaging (Optos plc). Optical coherence tomography (OCT)
was performed using the Spectralis OCT platform. Five pa-
tients underwent electroretinography, which was performed
using gold-foil electrodes and according to standards speci-
fied by the International Society for Clinical Electrophysiol-
ogy of Vision in 3 patients and using surface electrodes in the
other 2 patients.10,11 Developmental and dysmorphology as-
sessments were conducted by a clinical geneticist (J.C.S.) or
an inherited metabolic disease specialist (S.G.).

Molecular Investigations
Genetic Analysis
Targeted next-generation sequencing (105-gene inherited reti-
nal dystrophy panel testing and WES) was conducted, as pre-
viously detailed by Arno et al.12

The proband of families I and III underwent screening for
a panel of 105 known inherited retinal dystrophy genes (de-
scribed in O’Sullivan et al13) at the Manchester Genomic Diag-
nostic Laboratory. Single-nucleotide polymorphism analysis
was performed on family II using an Affymetrix 50k Xba SNP
chip (Affymetrix Inc) on DNA samples from the parents, 1 af-
fected child, and 2 unaffected children to identify regions of
homozygosity in the affected child for the prioritization of can-
didate genes. The proband from family IV was screened using
a commercially available APEX microarray (Asper Ophthal-
mics) for 344 published disease-causing variants in 8 genes as-
sociated with Lebers congenital amaurosis and EORD. The pro-
band from families I, II, and III underwent WES as part of the
UK Inherited Retinal Disease Consortium, an ongoing study of

Key Points
Question What is the retinal phenotype underlying steroid
5α-reductase type 3 congenital disorder of glycosylation
(SRD5A3-CDG)?

Findings This case series of 7 individuals from 4 unrelated families
with early-onset retinal dystrophy found, through the use of
whole-exome sequencing or whole-genome sequencing, that they
harbored an SRD5A3 c.57G>A, p.(Trp19Ter) homozygous mutation,
which manifested through early-onset visual loss, nyctalopia,
myopia, and nystagmus as well as learning difficulties and
psychomotor delay.

Meaning This detailed description of the SRD5A3-CDG retinal
phenotype may facilitate disease recognition and prognostic
estimation in other cases.
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inherited retinal disease in families without a molecular diag-
nosis following targeted gene panel screening.

The affected individual and unaffected parents of family
IV underwent WGS as part of the 100,000 Genomes Project.
Genomic DNA was processed using a kit (TruSeq DNA PCR-
Free Sample Preparation; Illumina Inc) and sequenced using
a high-throughput sequencing platform (HiSeq X Ten; Illu-
mina Inc), generating minimum coverage of 15 times for more
than 97% of the callable autosomal genome. Readings were
aligned to build GRCh37 of the human genome using an aligner
(Isaac; Illumina Inc). Single-nucleotide variants and indels (in-
sertions or deletions) were identified using Platypus soft-
ware (version 0.8.1; Wellcome Trust Centre for Human Genet-
ics) (http://www.well.ox.ac.uk/platypus) and annotated using
Cellbase software (https://github.com/opencb/cellbase). Variant
filtering was performed using minor allele frequency in publicly
available and in-house data sets, predicted protein effect, and
familial segregation. Surviving variants were prioritized using
2 prespecified virtual gene panels from PanelApp (https:
//bioinfo.extge.co.uk/crowdsourcing/PanelApp/): Intellectual
Disability version 1.2, which includes SRD5A3, and Posterior
Segment Abnormalities version 1.7. Allelic state was required
to match the curated mode of inheritance for variants in panel
genes.

The SRD5A3 c.57G>A, p.(Trp19Ter) (GenBank NM
_024592) homozygous variant was confirmed by Sanger se-
quencing using a cycle sequencing kit (BigDye Terminator, ver-
sion 3.1; Applied Biosystems).

Biochemical Studies
Where samples were made available, type I N-glycosylation de-
fect was confirmed using isoelectric focusing of serum trans-
ferrin and blood coagulation studies.5

Results
Patient Phenotypes
Study participants (5 females and 2 males) had a mean (SD) age
of 17.1 (3.9) years at their most recent examination, were all of
South Asian ethnicity. Phenotypes are summarized in the
Table.

Family I
Family I (G40001), originally from India, had a history of con-
sanguinity and no prior family history of health problems.

The proband, patient I-1, from family I was born slightly
underweight at 2.7 kg and was mildly jaundiced after birth. A
developmental and dysmorphology assessment by a clinical
geneticist found only mild developmental delay. She walked
at age 18 months and developed speech at the normal time.
She attended mainstream school where she received assis-
tance because of her visual problems but was able to com-
plete the same level of work as her peers.

At age 5 weeks, she was not fixing and following but was
otherwise well. At age 5 years, ophthalmic review identified a
decline in visual acuity; fundus imaging and electrophysi-
ological testing led to a preliminary diagnosis of congenital sta-

tionary night blindness (Table and Figure 1A and C). At her lat-
est visit at age 20 years, right and left best-corrected visual
acuity measured 1.5 logMAR (20/800 Snellen) with a mild my-
opic refractive error (Table). Fundus autofluoresence imaging
was also abnormal (Figure 1B and D).

Patient I-2 was born at term following an uneventful preg-
nancy and was otherwise fit and well. At age 5 years, she was
described as being hyperactive with an attention deficit and
experienced frequent sleep disturbances. At age 7 years, she
was examined by a clinical geneticist who diagnosed her as hav-
ing social communication disorder, behavioral problems, and
learning difficulties. Dysmorphology assessment identified her
as having thick hair; thick gums; coarse facies; and slender, ta-
pered fingers.

At age 2 months, she presented with multiplanar nystag-
mus. On examination, she was found to be mildly myopic,
while fundoscopy revealed only attenuated retinal blood ves-
sels, and electroretinography demonstrated no recordable re-
sponse in the dark (Figure 1E and G and Table). Fundus auto-
fluoresence at age 3 years was abnormal (Figure 1F and H). At
age 7 years, she began to report symptoms of nyctalopia.

Family II
The proband (II-1) and her affected sister (II-1) from family II
(G15567) were born to first-cousin parents of a family who origi-
nated from India.

Examination of patient II-1 by a clinical geneticist found
she had delayed motor and speech development with associ-
ated learning difficulties at a young age. She had variable mani-
fest nystagmus and myopia at age 18 months. At age 5 years,
her best-corrected visual acuity measured 3/12 single Kays
(0.60 logMAR [20/80 Snellen]) in the right and left eyes (Table).
Electrodiagnostic testing at age 11 years identified both rod and
cone system dysfunction. In her second decade of life, she be-
came symptomatic with nyctalopia and photophobia. Fun-
dus, FAF, and OCT examinations identified multiple abnor-
malities indicative of retinitis pigmentosa (RP) (Table and
Figure 1I-L and Figure 2A and B).

Patient II-2 was examined by a pediatrician at age 18
months and was found to have normal muscle tone but in-
creased, brisk reflexes and mild hyperkeratosis on the right leg.
She also had developmental delay and learning difficulties but
had normal growth measurements and a normal skeletal sur-
vey. She was particularly anxious and had a very short memory.

The patient was found to have pendular nystagmus and
roving eye movements at age 3 months. Electrodiagnostic test-
ing at age 7 years suggested rod and cone dysfunction. By age
15 years, her myopia had increased, and she was experienc-
ing poor night vision and photophobia. Results of fundus, FAF,
and OCT examinations were abnormal and indicative of RP in
the absence of pigmentary changes (Table and Figures 1M-P
and 2C and D).

Family III
The affected sibling pair from family III (LDS3659) were born to
apparently nonconsanguineous parents originating from India.

Patient III-1 experienced learning difficulties from a young
age and was described as having a slightly “clumsy” walking
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style. Her family noticed she had poor visual behavior within
the first year of life. A myopic refractive error was detected at
age 18 months, which progressed to high myopia by age 16 years

(Table). Examination of the fundus, by color and FAF imaging,
revealed abnormalities suggestive of retinal pigment epithe-
lium malfunction (Table and Figure 1T). The OCT scans were

Table. Ophthalmic and Phenotypic Presentations of Patients With SRD5A3 c.57G>A, p.(Trp19Ter) Mutation

Characteristic

Individual/Sex/Family ID

I-1/F/G40001.1 I-2/F/G40001.2 II-1/F/G15567.1 II-2/F/G15567.2 III-1/F/LDS3659.1
III-2/M/
LDS3659.2 IV-1/M/G15063

Demographic Characteristics

Ethnicity South Asian South Asian Indian Indian Pakistani Pakistani Indian

Age at onset 5 wk 2 mo 18 mo 3 mo <1 y 2-3 y <1 y

Age at last
examination, y

20 13 18.5 14.5 16 14 24

Consanguinity + + + + + − -

Ophthalmic Findings

Ophthalmic
history

Failure to fix and
follow, multiplanar
nystagmus, mild
myopia from 2 mo,
nyctalopia from
6 y, initial
diagnosis of CSNB
made at 6 y

Multiplanar
nystagmus,
strabismus,
progressive
myopia from 2 mo,
nyctalopia from
7 y

Variable manifest
nystagmus, squint,
myopia from
18 mo

Nystagmus and
roving eye
movements from
3 mo, myopia,
poor night vision
and photophobia

Roving eye
movements and
nyctalopia from
<1 y, high myopia,
exophoria
decompensating
into an exotropia
from 16 y, central
scotomata

Roving eye
movements from
2-3 y, nyctalopia,
high myopia,
exophoria

Early-onset
nystagmus and
myopia

BCVA (Snellen
equivalent)
[age, y]

1.5 logMAR
(20/640) OU [20]

1.3 logMAR
(20/400) OU [7];
1.04 logMAR
(20/250) OD ;
1.20 logMAR
(20/320) OS [13]

0.900 Crowded
logMAR (20/160)
OD;
0.800 (20/125)
crowded logMAR
OS [6]; 0.72
logMAR (20/100)
OD; 0.36 logMAR
(20/50) OS [18.5]

1.0 logMAR
(20/200) OD; 0.8
logMAR (20/125)
OS [15]

NA NA 0.6 logMAR
(20/80) OU [4.5];
1.0 logMAR
(20/200) OU
[24 y]

Refractive
error (age)

−1.00/+0.25 × 90
OD;
−1.25/+0.25 × 80
OS (20 y)

−2.00/+1.00
× 100 OD;
−3.00/+1.00 × 80
OS (2 mo);
−6.00/+1.75 × 90
OD and
−6.50/+1.00 × 90
OS (3 y)

−2.5/−2.5 × 180
OD;
−1.5/−3.0 × 170
OS (6 y);
−3.00/−3.5 × 180
OD;
−3.50/−4.0 × 160
OS (18.5 y)

−1.5/−1.25 × 180
OD;
−2.00/−2.00
× 180 OS (18 mo);
−5.5/−3.75 × 155
OD;
−5.5/−3.75 × 100
OS (15 y)

−15.50/+0.25
× 109 OD;
−14.00/
+1.00 × 92 OS
(16 y)

−9.50/+1.50
× 103 OD,
−8.25/+2.5 × 106
OS (14 y)

OD:
−7.00/−0.75
× 180; OS: −7.5
DS (24 y)

Fundus
imaging

Optic disc pallor,
foveal hypoplasia,
granular
appearance of
peripheral retina,
attenuated retinal
vasculature

Subtle temporal
optic disc pallor,
mildly attenuated
retinal arterioles,
prominent nerve
fiber layer visibly
radiating around
the superior and
inferior vascular
arcades; patchy
(RE) and stippled
(LE) macular
reflex

Tilted optic disc
with temporal
pallor,
peripapillary
atrophy
temporally,
absence of foveal
reflex (LE only),
attenuated retinal
vasculature

Myopic tilted discs,
attenuated retinal
vasculature, subtle
mottling in the
retinal periphery

Myopic tilted discs,
attenuated retinal
vasculature, subtle
mottling in the
retinal periphery

Myopic tilted discs,
attenuated retinal
vasculature, subtle
mottling in the
retinal periphery

Optic disc pallor,
attenuated
retinal
vasculature

FAF Well-defined
ring of
hyperautofluores-
cence around the
macula

Well-defined
ring of
hyperautofluores-
cence around the
macula

Well-defined
ring of
hyperautofluores-
cence around the
macula

Diffuse ring of
hyperautofluores-
cence around the
macula

Diffuse ring of
hyperautofluores-
cence around the
macula

Well-defined
ring of
hyperautofluores-
cence around the
macula

Diffuse ring of
hyperautofluores-
cence around the
macula

OCT Data not available Data not available Widespread loss
of outer retinal
structures with
relative
preservation of
foveal structures,
including
photoreceptors

Widespread loss
of outer retinal
structures with
relative
preservation of
foveal structures,
including
photoreceptors

Widespread loss
of outer retinal
structures and
complete absence
of the
photoreceptor
layer

Widespread loss
of outer retinal
structures with
relative
preservation of
foveal structures,
including
photoreceptors

Widespread loss
of outer retinal
structures with
relative
preservation of
foveal structures,
including
photoreceptors

ERG (age
at testing)

Indicative of
rod-cone
dystrophy (no
details available)
(5 y)

Low-amplitude
light-adapted
response,
extinguished
dark-adapted
response (2 mo)

Undetectable
rod-specific
responses, delayed
and subnormal
cone-specific
responses (11 y)

Limited
compliance with
test but reduced
and delayed
cone-specific
responses found
with rod
involvement

NA NA Profoundly
electronegative
ERG, grossly
delayed
cone-specific
responses

(continued)
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corroborative of this finding and indicated loss of outer seg-
ment structures with complete loss of the photoreceptor layer
(Figure 2E).

Patient III-2, when examined at age 14 years, was found
to have an ataxic gait and reduced upper-limb coordination,
both of which are signs of mild cerebellar disease. He also dem-
onstrated global developmental delay and experienced recur-
rent respiratory tract infections.

He experienced loss of vision with associated roving eye
movements between ages 2 and 3 years. He also presented with
early-onset nyctalopia and high myopia (Table). Ophthalmic
examination revealed abnormalities similar to those of his
brother, apart from a small region of photoreceptor preserva-
tion within the central macula (Table and Figure 2F).

Family IV
The proband (IV-1) from family IV (G15063), a male, was
born to apparently nonconsanguineous parents originating
from India. Examination of patient IV-1 at age 4½ years iden-
tified developmental delay, learning difficulties, and abnor-
mal curvature of the spine (Table). His ophthalmic history
revealed infantile-onset nystagmus and reduced vision. At
age 4½ years, he was found to have reduced visual acuity
(0.60 logMAR OU [20/80 Snellen]) and myopia (Table). At
his most recent examination at age 24 years, his vision had
deteriorated (Table), and fundus examination revealed reti-
nal vessel attenuation and pale optic discs (Figure 1Q and S).
Electroretinography indicated both rod and cone dysfunc-
tion (Table), and an OCT scan revealed loss of outer segment
structures with relative preservation of the central macula,
bilaterally (Figure 2G and H).

Molecular Analysis
Clinically available genetic testing did not identify any
potentially pathogenic variants in 105 known retinal dystro-
phy genes in the proband of families I and III. Autozygosity
mapping and candidate gene sequencing did not identify
any pathogenic variants in the proband of family II. Apex
array analysis in patient IV-1 was also mutation negative.
Subsequent WES or WGS led to the identification of SRD5A3
c.57G>A, p.(Trp19Ter) homozygous variant in each proband.
Sanger sequencing confirmed the presence and zygosity of
this variant in every affected member of each family. The
SRD5A3 c.57G>A, p.(Trp19Ter) variant has an allele fre-
quency of 0.001174 in 4684 control individuals of South
Asian ethnicity, according to the Exome Aggregation Consor-
tium data set (http://exac.broadinstitute.org/). In the
homozygous state, this same variant has been described as the
cause of SRD5A3-CDG in 4 unrelated families.4,8,14

Both siblings from family III underwent screening for bio-
chemical abnormalities that may be associated with CDG.5 Mild
abnormalities of blood clotting (activated partial thrombo-
plastin time [aPTT], 43.6 seconds; aPTT ratio, 1.4 [interna-
tional normalized ratio, 3.23]) and a microcytic hypochromic
blood profile were observed in both. Liver function test re-
sults were normal; however, a CDG type I pattern of transfer-
rin glycoforms was observed.

Discussion
Biallelic mutations in SRD5A3 are associated with SRD5A3-
CDG, a phenotypically variable disorder of N-linked glycosyla-

Table. Ophthalmic and Phenotypic Presentations of Patients With SRD5A3 c.57G>A, p.(Trp19Ter) Mutation (continued)

Characteristic

Individual/Sex/Family ID

I-1/F/G40001.1 I-2/F/G40001.2 II-1/F/G15567.1 II-2/F/G15567.2 III-1/F/LDS3659.1
III-2/M/
LDS3659.2 IV-1/M/G15063

Developmental/
neurological
findings

Mild
developmental
delay up to age 5 y

Dysmorphic,
communication
and behavioral
problems, learning
difficulties,
recurrent
respiratory
infections, gait
ataxia

Psychomotor
delay, learning
difficulties

Increased brisk
reflexes,
psychomotor
delay, and learning
difficulties

Learning
difficulties, gait
ataxia, normal
reflexes, mild
upper-limb
coordination
difficulties on
finger-nose test;
normal height,
weight, and head
circumference

Learning
difficulties,
developmental
delay, gait ataxia,
normal reflexes,
mild upper-limb
coordination
difficulties on
finger-nose test;
recurrent
respiratory
infections; normal
height, weight,
and head
circumference

Developmental
delay, learning
difficulties,
scoliosis

Other
investigations

Normal urine
organic acid and
plasma phytanic
acid levels

Normal hearing
assessment results;
normal values for
uMPS,
oligosaccharides,
and lysosomal
enzymes; normal
radiographic
findings and aCGH
results

Normal values for
VLCFAs, lysosomal
enzymes, and
white cell and
plasma enzymes

Normal values for
VLCFAs, lysosomal
enzymes, and
white cell and
plasma enzymes

Abbreviations: aCGH, array comparative genomic hybridization; DS, diopter
sphere; ERG, electroretinography; FAF, fundus autofluoresence; NA, not
available; OCT, optical coherence tomography; OD, right eye; OS, left eye;

OU, both eyes; uMPS, urine mucoplysaccharides; VLCFAs, very long-chain fatty
acids; +, present; −, absent.
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tion that is normally characterized by neurodevelopmental ab-
normalities and ophthalmic manifestations.3,4 We describe 7
patients from 4 families with a retinopathy consequent on the
SRD5A3 c.57G>A, p.(Trp19Ter) mutation. This mutation has
been reported previously to cause SRD5A3-CDG in 4 other un-
related families.4,8,14

Our case series provides an in-depth description of the ocu-
lar symptomology and appearance over the course of ophthal-
mic follow-up. The retinopathy, unlike the extraocular fea-

tures of this disease, appears to be slowly progressive. On
fundal view, signs of retinal disease may be subtle and bone
spicules may be absent in young patients. Similarly, syn-
dromic manifestations associated with SRD5A3 mutation may
also be mild. This detailed description of retinal phenotype
could be important for early disease recognition because it ap-
pears to be a consistent primary presenting feature. Early-
onset visual loss (≤3 years of age; mean [SD] best-corrected vi-
sual acuity, +0.95 [0.34] logMAR [20/180 Snellen]) and

Figure 1. Color Fundus and Fundus Autofluorescence Images of Patients With SRD5A3 c.57G>A, p.(Trp19Ter)
Variant

Color RE FAF RE FAF LEColor LE

A B DC

Patient I-1 20 y Patient I-1 20 y Patient I-1 20 y Patient I-1 20 y

E F HG

Patient I-2 13 y Patient I-2 13 y Patient I-2 13 y Patient I-2 13 y

M N PO

Patient II-2 12 y Patient II-2 12 y Patient II-2 12 y Patient II-2 12 y

Q R TS

Patient IV-1 24 y Patient IV-1 24 y Patient IV-1 24 y Patient IV-1 16 y

I J LK

Patient II-1 17 y Patient II-1 17 y Patient II-1 17 y Patient II-1 17 y

A, C, E, and G, Widefield color fundus
imaging (Optos plc). I, K, M, O, Q, and
S, 35° Color fundus photography.
B, D, F, H, J, L, N, P, R, and T, fundus
autofluorescence imaging.
LE indicates left eye; RE, right eye;
arrows, foveal autofluorescence/
hypoplasia; arrowheads, optic disc
pallor; and asterisks, vessel
attenuation.
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nystagmus are consistent manifestations associated with the
SRD5A3 c.57G>A, p.(Trp19Ter) variant in this cohort of 7 pa-
tients. Other shared ocular findings were retinal arteriolar at-
tenuation in the absence of bone spicule formation (n = 7),
childhood-onset nyctalopia (n = 5), and optic disc pallor (n = 5).
In addition, each of the patients described in this series expe-
rienced varying degrees of progressive myopia (mean [SD] re-
fractive error, –6.71 [–4.22]), ranging from relatively mild to high
(Table). None of the patients were microphthalmic, and they
did not have ocular colobomata as has been described in as-
sociation with other SRD5A3 mutations.4 Mutual systemic as-
sociations included learning difficulties and developmental de-
lay. One patient was found to have only mild developmental
delay as a young child (<5 years), which may have been attrib-
utable to her severe visual impairment because she went on
to meet normal developmental and intellectual milestones with
increasing age.

Despite the absence of a pigmentary retinopathy, wide-
spread loss of outer retinal structures was evidenced by OCT,
with relative preservation of foveal photoreceptors and only
mild epiretinal membrane formation (Figure 2A-H). Electro-
retinography, when performed (n = 5), identified dysfunc-
tion in both rod and cone pathways at the level of the photo-
receptor, allowing discrimination from disorders involving the

photoreceptor-bipolar cell synapse, such as congenital sta-
tionary night blindness, as 3 of the 7 patients initially re-
ceived a clinical diagnosis of congenital stationary night blind-
ness. Previous reports of patients with SRD5A3 mutations have
not described OCT findings. There has been a single descrip-
tion of retinal bone spicule pigmentation in an adult sibling
pair with the SRD5A3 c.57G>A, p.(Trp19Ter) variant. Because
of the lack of previous descriptions of RP as a feature of
SRD5A3-CDG, Kara and colleagues8 hypothesized that RP may
be a late-onset feature of the condition. Our findings suggest
that the onset of retinal degeneration is likely to occur in child-
hood in at least a proportion of cases. Ocular imaging and FAF
suggest early dysfunction of the retinal pigment epithelium.

Rhodopsin is a pigment-containing, G protein–coupled re-
ceptor that is expressed in rod photoreceptors cells, where it
specifically localizes to the rod outer segments.15 Studies have
shown that the N-terminus of rhodopsin contains 2 N-linked
glycosylation sequences.16 Mutations at glycosylated amino
acid residues or surrounding glycosylation consensus se-
quences of rhodopsin cause autosomal dominant and secto-
ral RP in humans.17,18 Studies in animal models expressing non-
glycosylated rhodopsin have shown that, although the mutant
proteins undergo normal biosynthesis, folding, and traffick-
ing, they confer toxicity, which causes rod cell death and leads

Figure 2. Optical Coherence Tomography in Patients With SRD5A3 c.57G>A, p.(Trp19Ter) Variant

Patient II-1 RE, 17 yA Patient II-1 LE, 17 yB

Patient IV-1 RE, 24 yG Patient IV-1 LE, 24 yH

Patient III-1 RE, 14 yE Patient III-2 RE, 12 yF

Patient II-2 RE, 12 yC Patient II-2 LE, 12 yD

Optical coherence tomographic scans
shown as horizontal (A through E, G,
and H) or vertical (F) scans and
accompanying en face infrared image
with location at which the scan
through the macula was taken
(indicated by green line). Arrowheads
demarcate the transition of absent or
present photoreceptors (except in C,
where part of the macula is not
visible, and in E, where the
photoreceptor layer is completely
absent). LE indicates left eye;
RE, right eye.
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to light-sensitive retinal degeneration.19 Evidence of whether
nonglycosylated rhodopsin incorporates into and initiates disc
morphogenesis in rod outer segments is conflicting.20,21 It is
possible that the SRD5A3 c.57G>A, p.(Trp19Ter) variant pre-
vents normal glycosylation of rhodopsin in the retina and sub-
sequently impairs its normal incorporation and/or function in
the rod outer segments, thereby leading to defective photo-
transduction and loss of vision before the eventual photore-
ceptor death and the presentation of RP. Similarly, nonglyco-
sylation of other retinal proteins, such as ABCA4, known to
have 7 N-glycosylation sites, could also lead to defective pho-
totransduction and eventual cell death.22 This is an area that
warrants further research.

The SRD5A3 c.57G>A, p.(Trp19Ter) variant has an allele fre-
quency of 0.0012 in the South Asian population according to
the Exome Aggregation Consortium data set. This frequency
is 30 times higher than for other ethnic groups, suggesting that
SRD5A3 c.57G>A, p.(Trp19Ter) is an ancestral variant within
this specific population. Further, findings from our cohort sug-
gest that phenotypic subtleties mean this condition goes un-
recognized or unsuspected. Alongside recent evidence for a role
of other glycosylation disorder genes in nonsyndromic reti-
nal dystrophy (POMGNT123 and DHDDS24), we suggest that CDG
genes be considered in clinical diagnostic gene panels for reti-
nal disease.

Limitations
For some of the families described in this study, parental DNA
samples were unavailable to confirm zygosity of the SRD5A3
c.57G>A, p.(Trp19Ter) homozygous variant identified in each
affected family member. Therefore, we cannot definitively ex-
clude the possibility of a heterozygous deletion on 1 allele. Fur-

thermore, because of the limited information available regard-
ing each family pedigree, we cannot exclude the possibility that
each of the 5 families described here shares a distant, com-
mon ancestor.

Conclusions
This case series provides a detailed account of the retinal dys-
trophy consequent on the SRD5A3 c.57G>A, p.(Trp19Ter) mu-
tation, delineating the complex phenotype associated with
SRD5A3-CDG. Furthermore, we illustrate the wide variability
in onset and progression of the disorder in patients with the
same null mutation. We report EORD as a novel feature of
SRD5A3-CDG and suggest that retinal degeneration without
pigmentary change may be an early manifestation of CDG that
may progress to RP over time. Of note, our findings also sug-
gest that SRD5A3 may cause these ocular manifestations along-
side mild learning difficulties in some instances, in contrast
to the neurodevelopmental delay and other systemic fea-
tures usually associated with SRD5A3-CDG.3,4 Our work adds
to cumulative evidence that next-generation sequencing of-
fers a proficient means of diagnosis for this genetically hetero-
geneous and phenotypically variable group of conditions.6,25,26

For CDG, precise diagnosis enables the provision of more ac-
curate prognostic information regarding loss of vision and risk
of later-onset manifestations. Better understanding of the
pathogenesis of SRD5A3-mediated retinal disease could lead
to the development of novel therapeutic strategies. Findings
in our cohort show that the macula, although nonfunctional,
remains structurally intact, potentially contributing to mak-
ing this condition a good target for gene therapy.

ARTICLE INFORMATION

Accepted for Publication: January 8, 2017.

Published Online: March 2, 2017.
doi:10.1001/jamaophthalmol.2017.0046

Author Affiliations: Genomic Medicine, Division of
Evolution and Genomic Sciences, Faculty of Biology,
Medicines and Health, University of Manchester,
Manchester Academic Health Science Centre
(MAHSC), Manchester, England (Taylor,
Clayton-Smith, Black); Manchester Centre for
Genomic Medicine, Central Manchester University
Hospitals NHS Foundation Trust, MAHSC,
Saint Mary’s Hospital, Manchester, England
(Taylor, Clayton-Smith, Black); UCL Institute of
Ophthalmology, University College London,
London, England (Arno, Hull, Michaelides, Moore,
Hardcastle, Webster); Section of Ophthalmology
and Neuroscience, Leeds Institute of Biomedical
and Clinical Sciences, University of Leeds, Leeds,
England (Poulter, Khan, Ali, Toomes, McKibbin,
Inglehearn); Department of Ophthalmology,
St. James’s University Hospital, Leeds, England
(Khan, McKibbin); Manchester Royal Eye Hospital,
Manchester Academic Health Science Centre,
Central Manchester Foundation Trust, Manchester,
England (Morarji); Moorfields Eye Hospital, London,
England (Hull, Michaelides, Hardcastle, Webster);
UCL Genetics Institute, University College London,
London, England (Pontikos); Genomics England,
Queen Mary University of London, London,

England (Rueda Martin, Smith); Metabolic Unit,
Great Ormond Street Hospital, London, England
(Grunewald); Institute for Child Health, University
College London, London, England (Grunewald);
Department of Ophthalmology, University of
California, San Francisco, Medical School,
San Francisco (Moore).

Author Contributions: Dr Taylor and Prof Black
had full access to all the data in the study and take
responsibility for the integrity of the data and
accuracy of the data analysis.
Study concept and design: Ali, Toomes,
Clayton-Smith, Michaelides, Moore, Inglehearn,
Black.
Acquisition, analysis, or interpretation of data:
Taylor, Arno, Poulter, Khan, Morarji, Hull, Pontikos,
Rueda Martin, Smith, McKibbin, Clayton-Smith,
Michaelides, Moore, Hardcastle, Webster.
Drafting of the manuscript: Taylor, Smith,
Clayton-Smith, Michaelides, Black.
Critical revision of the manuscript for important
intellectual content: Taylor, Arno, Poulter, Khan,
Morarji, Hull, Pontikos, Rueda Martin, Ali, Toomes,
McKibbin, Clayton-Smith, Grunewald, Michaelides,
Moore, Hardcastle, Inglehearn, Webster.
Statistical analysis: Khan, Pontikos, Rueda Martin,
Black.
Obtained funding: Ali, Toomes, Michaelides, Moore,
Hardcastle, Inglehearn, Webster, Black.
Administrative, technical, or material support:

Taylor, Poulter, Toomes, Grunewald, Michaelides,
Inglehearn, Webster, Black.
Study supervision: Toomes, McKibbin,
Clayton-Smith, Moore, Inglehearn, Black.

Conflict of Interest Disclosures: All authors have
completed and submitted the ICMJE Form for
Disclosure of Potential Conflicts of Interest and
none were reported.

Funding/Support: This work was funded by RP
Fighting Blindness and Fight for Sight (RP Genome
Project GR586) and Rosetrees Trust, Fight for Sight
(family II), Moorfields Eye Hospital Special Trustees,
National Institute for Health Research (NIHR)
Biomedical Research Centre at Moorfields Eye
Hospital, National Health Service (NHS) Foundation
Trust, and UCL Institute of Ophthalmology
(Drs Khan, Webster, and Hardcastle). Dr Khan is
supported by a National Institute for Health
Research Rare Diseases Translational Research
Collaboration fellowship award.

Role of the Funder/Sponsor: The funding sources
had no role in design and conduct of the study;
collection, management, analysis, and
interpretation of the data; preparation, review, or
approval of the manuscript; and decision to submit
the manuscript for publication.

Group Information: Members of the UK Inherited
Retinal Disease Consortium include Graeme C.
Black, DPhil, FRCOphth (study chair); Georgina Hall,

Research Original Investigation Steroid 5α-Reductase Type 3 Congenital Disorder of Glycoslation With Retinal Dystrophy

E8 JAMA Ophthalmology Published online March 2, 2017 (Reprinted) jamaophthalmology.com

Copyright 2017 American Medical Association. All rights reserved.

Downloaded From: http://jamanetwork.com/pdfaccess.ashx?url=/data/journals/ophth/0/ by a University of Leeds User  on 03/14/2017

http://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaophthalmol.2017.0046&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2017.0046
http://www.jamaophthalmology.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2017.0046


Copyright 2017 American Medical Association. All rights reserved.

MSc; Stuart Ingram, BSc; Rachel L. Taylor, PhD;
Simon Ramsden, PhD; Forbes Manson, PhD;
Panagiotis Sergouniotis, PhD; Andrew R. Webster,
MD(Res), FRCOphth; Alison J. Hardcastle, PhD;
Michel Michaelides, MD(Res), FRCOphth; Vincent
Plagnol, PhD; Nikolas Pontikos, PhD; Michael
Cheetham, PhD; Gavin Arno, PhD; Alessia
Fiorentino, PhD; Chris F. Inglehearn, PhD; Carmel
Toomes, PhD; Manir Ali, PhD; Martin McKibbin,
FRCOphth; James A. Poulter, PhD; Kamron N. Khan,
PhD, FRCOphth; Emma Lord, MSc; Andrea Nemeth,
PhD, FRCP; Susan Downes, MD, FRCOphth;
Jing Yu, PhD; Stefano Lise, PhD; and Veronica
van Heyningen, PhD. Members of the 100,000
Genomes Project include Mark Caulfield, MBBS,
MRCP, MD, FRCP, FAHA, FBHS, FMedSci, FESC,
FBPS; Andrew Devereau, PhD; Clare Turnbull, MD,
PhD, MA, MSc, MRCP; Dina Halai, MSc; Ellen
Thomas, MBBS, PhD; Emma Baple, MBBS, PhD;
Freya Boardman-Pretty, PhD; Katarzyna
Witkowska, PhD; Laura Riley, MSc; Louise Jones,
PhD; Mark Bale, PhD; Matina Prapa, PhD; Nirupa
Murugaesu, PhD, MRCP; Richard Scott, MBBS, PhD;
Simon Thompson, PhD; Tim Hubbard, PhD; Tom
Fowler, PhD; Augusto Rendon, PhD; Alona Sosinsky,
PhD; Antonio Rueda Martin, PhD; Damian
Smedley, PhD; Ellen McDonagh, PhD; and
Katherine Smith, PhD.

Disclaimer: The views expressed are those of the
authors and not necessarily those of the NHS,
NIHR, or Department of Health.

Additional Contributions: The authors
acknowledge the support of the Manchester
Academic Health Science Centre and the
Manchester National Institute for Health Research
Biomedical Research Centre. This research was
made possible through access to the data and
findings generated by the 100,000 Genomes
Project. The 100,000 Genomes Project is managed
by Genomics England Limited (a wholly owned
company of the Department of Health) and is
funded by the NIHR and NHS England. The
Wellcome Trust, Cancer Research UK, and the
Medical Research Council also funded the research
infrastructure. The authors also acknowledge
Genomics England and the Ophthalmology
Genomics England Clinical Interpretation
Partnership for enabling this research. We thank
the families for agreeing to participate in this study.

REFERENCES

1. Cylwik B, Naklicki M, Chrostek L, Gruszewska E.
Congenital disorders of glycosylation, part I: defects
of protein N-glycosylation. Acta Biochim Pol. 2013;
60(2):151-161.

2. Jaeken J, Matthijs G. Congenital disorders of
glycosylation: a rapidly expanding disease family.
Annu Rev Genomics Hum Genet. 2007;8:261-278.

3. Cantagrel V, Lefeber DJ, Ng BG, et al. SRD5A3 is
required for converting polyprenol to dolichol and
is mutated in a congenital glycosylation disorder. Cell.
2010;142(2):203-217.

4. Morava E, Wevers RA, Cantagrel V, et al. A novel
cerebello-ocular syndrome with abnormal
glycosylation due to abnormalities in dolichol
metabolism. Brain. 2010;133(11):3210-3220.

5. Lefeber DJ, Morava E, Jaeken J. How to find and
diagnose a CDG due to defective N-glycosylation.
J Inherit Metab Dis. 2011;34(4):849-852.

6. Kahrizi K, Hu CH, Garshasbi M, et al. Next
generation sequencing in a family with autosomal
recessive Kahrizi syndrome (OMIM 612713) reveals
a homozygous frameshift mutation in SRD5A3. Eur
J Hum Genet. 2011;19(1):115-117.

7. Al-Gazali L, Hertecant J, Algawi K, El Teraifi H,
Dattani M. A new autosomal recessive syndrome of
ocular colobomas, ichthyosis, brain malformations
and endocrine abnormalities in an inbred Emirati
family. Am J Med Genet A. 2008;146A(7):813-819.

8. Kara B, Ayhan Ö, Gökçay G, Başboğaoğlu N,
Tolun A. Adult phenotype and further phenotypic
variability in SRD5A3-CDG. BMC Med Genet. 2014;
15:10.

9. World Medical Association. World Medical
Association Declaration of Helsinki: ethical
principles for medical research involving human
subjects. JAMA. 2013;310(20):2191-2194. doi:10
.1001/jama.2013.281053

10. McCulloch DL, Marmor MF, Brigell MG, et al.
ISCEV Standard for full-field clinical
electroretinography (2015 update). Doc Ophthalmol.
2015;130(1):1-12.

11. Bach M, Brigell MG, Hawlina M, et al. ISCEV
standard for clinical pattern electroretinography
(PERG): 2012 update. Doc Ophthalmol. 2013;126(1):
1-7.

12. Arno G, Holder GE, Chakarova C, et al; UK
Inherited Retinal Disease Consortium. Recessive
retinopathy consequent on mutant G-protein β
subunit 3 (GNB3). JAMA Ophthalmol. 2016;134(8):
924-927.

13. O’Sullivan J, Mullaney BG, Bhaskar SS, et al.
A paradigm shift in the delivery of services for
diagnosis of inherited retinal disease. J Med Genet.
2012;49(5):322-326.

14. Gründahl JE, Guan Z, Rust S, et al. Life with too
much polyprenol: polyprenol reductase deficiency.
Mol Genet Metab. 2012;105(4):642-651.

15. Palczewski K. G protein–coupled receptor
rhodopsin. Annu Rev Biochem. 2006;75:743-767.

16. Hargrave PA. The amino-terminal tryptic
peptide of bovine rhodopsin: a glycopeptide
containing two sites of oligosaccharide attachment.
Biochim Biophys Acta. 1977;492(1):83-94.

17. Fishman GA, Stone EM, Sheffield VC, Gilbert LD,
Kimura AE. Ocular findings associated with
rhodopsin gene codon 17 and codon 182 transition
mutations in dominant retinitis pigmentosa. Arch
Ophthalmol. 1992;110(1):54-62.

18. Sullivan LJ, Makris GS, Dickinson P, et al. A new
codon 15 rhodopsin gene mutation in autosomal
dominant retinitis pigmentosa is associated with
sectorial disease. Arch Ophthalmol. 1993;111(11):
1512-1517.

19. Tam BM, Moritz OL. The role of rhodopsin
glycosylation in protein folding, trafficking, and
light-sensitive retinal degeneration. J Neurosci.
2009;29(48):15145-15154.

20. Fliesler SJ, Basinger SF. Tunicamycin blocks
the incorporation of opsin into retinal rod outer
segment membranes. Proc Natl Acad Sci U S A.
1985;82(4):1116-1120.

21. Tam BM, Moritz OL. Dark rearing rescues P23H
rhodopsin-induced retinal degeneration in a
transgenic Xenopus laevis model of retinitis
pigmentosa: a chromophore-dependent
mechanism characterized by production of
N-terminally truncated mutant rhodopsin. J Neurosci.
2007;27(34):9043-9053.

22. Tsybovsky Y, Molday RS, Palczewski K.
The ATP-binding cassette transporter ABCA4:
structural and functional properties and role in
retinal disease. Adv Exp Med Biol. 2010;703:105-125.

23. Xu M, Yamada T, Sun Z, et al. Mutations in
POMGNT1 cause non-syndromic retinitis
pigmentosa. Hum Mol Genet. 2016;25(8):1479-1488.

24. Lam BL, Züchner SL, Dallman J, et al. Mutation
K42E in dehydrodolichol diphosphate synthase
(DHDDS) causes recessive retinitis pigmentosa. Adv
Exp Med Biol. 2014;801:165-170.

25. Najmabadi H, Hu H, Garshasbi M, et al. Deep
sequencing reveals 50 novel genes for recessive
cognitive disorders. Nature. 2011;478(7367):57-63.

26. Timal S, Hoischen A, Lehle L, et al. Gene
identification in the congenital disorders of
glycosylation type I by whole-exome sequencing.
Hum Mol Genet. 2012;21(19):4151-4161.

Steroid 5α-Reductase Type 3 Congenital Disorder of Glycoslation With Retinal Dystrophy Original Investigation Research

jamaophthalmology.com (Reprinted) JAMA Ophthalmology Published online March 2, 2017 E9

Copyright 2017 American Medical Association. All rights reserved.

Downloaded From: http://jamanetwork.com/pdfaccess.ashx?url=/data/journals/ophth/0/ by a University of Leeds User  on 03/14/2017

https://www.ncbi.nlm.nih.gov/pubmed/23730680
https://www.ncbi.nlm.nih.gov/pubmed/23730680
https://www.ncbi.nlm.nih.gov/pubmed/17506657
https://www.ncbi.nlm.nih.gov/pubmed/20637498
https://www.ncbi.nlm.nih.gov/pubmed/20637498
https://www.ncbi.nlm.nih.gov/pubmed/20852264
https://www.ncbi.nlm.nih.gov/pubmed/21739167
https://www.ncbi.nlm.nih.gov/pubmed/20700148
https://www.ncbi.nlm.nih.gov/pubmed/20700148
https://www.ncbi.nlm.nih.gov/pubmed/18271001
https://www.ncbi.nlm.nih.gov/pubmed/24433453
https://www.ncbi.nlm.nih.gov/pubmed/24433453
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2013.281053&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2017.0046
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2013.281053&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2017.0046
https://www.ncbi.nlm.nih.gov/pubmed/25502644
https://www.ncbi.nlm.nih.gov/pubmed/25502644
https://www.ncbi.nlm.nih.gov/pubmed/23073702
https://www.ncbi.nlm.nih.gov/pubmed/23073702
https://www.ncbi.nlm.nih.gov/pubmed/27281386
https://www.ncbi.nlm.nih.gov/pubmed/27281386
https://www.ncbi.nlm.nih.gov/pubmed/22581970
https://www.ncbi.nlm.nih.gov/pubmed/22581970
https://www.ncbi.nlm.nih.gov/pubmed/22304929
https://www.ncbi.nlm.nih.gov/pubmed/16756510
https://www.ncbi.nlm.nih.gov/pubmed/861254
https://www.ncbi.nlm.nih.gov/pubmed/1731723
https://www.ncbi.nlm.nih.gov/pubmed/1731723
https://www.ncbi.nlm.nih.gov/pubmed/8240107
https://www.ncbi.nlm.nih.gov/pubmed/8240107
https://www.ncbi.nlm.nih.gov/pubmed/19955366
https://www.ncbi.nlm.nih.gov/pubmed/19955366
https://www.ncbi.nlm.nih.gov/pubmed/3156378
https://www.ncbi.nlm.nih.gov/pubmed/3156378
https://www.ncbi.nlm.nih.gov/pubmed/17715341
https://www.ncbi.nlm.nih.gov/pubmed/17715341
https://www.ncbi.nlm.nih.gov/pubmed/20711710
https://www.ncbi.nlm.nih.gov/pubmed/26908613
https://www.ncbi.nlm.nih.gov/pubmed/24664694
https://www.ncbi.nlm.nih.gov/pubmed/24664694
https://www.ncbi.nlm.nih.gov/pubmed/21937992
https://www.ncbi.nlm.nih.gov/pubmed/22492991
http://www.jamaophthalmology.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2017.0046

