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Abstract. We study a class of abstract nonlinear stochastic equations of hyperbolic type driven by
jump noises, which covers both beam equations with nonlocal, nonlinear terms and nonlinear wave
equations. We derive an Itô formula for the local mild solution which plays an important role in the
proof of our main results. Under appropriate conditions, we prove the non-explosion and the asymptotic
stability of the mild solution.

1. Introduction. In this paper we will study two nonlinear hyperbolic second order in time stochastic
partial differential equations (SPDEs) driven by Lévy-type noises: the beam and the wave equations
(with emphasis on the former). We propose a framework that covers both types of equations. Let us
briefly describe the motivation for these equations.

Due to its widespread applications in structural and mechanical engineering, the subject of nonlinear
vibrations of Euler-Bernoulli beam has been intensively studied by many authors (see [33] for the free
oscillations of a damped beam with immovable ends under an axial force, [5] for the effect of a compressive
axial load, [14] for the effect of an axial periodic load on the motion of a hinged beam and [23] for a
model with a nonlinear friction force, to name just a few). A type of nonlinear stochastic beam equation
describing nonlinear vibrations of an elastic panel subjected to random fluctuations (state dependent
white noises) was investigated by Chow and Menaldi in [12]. By means of a stochastic energy equation,
they proved the existence, uniqueness and regularity of solutions. Recently the second named author,
Maslowski and Seidler in [8] studied a wide class of abstract stochastic nonlinear beam equations perturbed
by a white noise in a Hilbert space which is applicable to the equation treated in [12]. With the help
of Lyapunov functions, they proved non-explosion of the mild solution and established the asymptotic
stability of the solution. Most of the previous studies on hyperbolic SPDEs considered Gaussianity
perturbations. However a huge amount of experimental evidences have demonstrated that Lévy-type
models possess properties which describe the physical, biological and financial phenomena more accurately
than the pure diffusion-based models, see cf. [1, 4, 10, 13, 27]. For instance, the real asset prices move
essentially by jumps and large, sudden movements may occur over the time scales. Also the growth and
recruitment of planktonic fish larvae and the magnetization in ferromagnetic materials are modelled by
means of jump processes. The problem of vibration of a road bridge under running vehicles is usually
modeled as a simply supported beam structure subjected to moving loads. Because vehicle loads are
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2 JIAHUI ZHU AND ZDZIS LAW BRZEŹNIAK

random in nature and traffic flows may suddenly increase or decrease, this leads to discontinuous gaps
between vehicle flows. Those features are unattainable by diffusion-based models but appear as prevailing
in models with jumps. Lévy-type models are more sophisticated and not easily amenable to mathematical
analysis. Many results achieved in diffusion models are thus deserve to be re-investigated when jumps
are included and our paper could be seen as a modest contribution to theoretical underpinning of such
applied research.

In our paper, we investigate the existence and uniqueness of global mild solutions to a stochastic model
arising in the nonlinear theory of structural dynamics and aeroelasticity by focusing on the following
abstract second order stochastic differential equation perturbed by jump noises

utt +A2u+∇uΦ(u) + f(t, u, ut) =

∫

Z

g(t, u, ut, z) Ñ(t, dz), (1)

where u is an H-valued stochastic process with H being a Hilbert space, A is a self-adjoint operator on
H such that A ≥ µI for some µ > 0, Φ : D(A) → [0,∞) is an “energy” function (with the gradient ∇Φ

understood with respect to the Hilbert space structure on H) and Ñ is a compensated Poisson random
measure.

The two motivating examples of the function Φ are those corresponding to the beam and nonlinear
wave equations. In the former case Φ is of the form

Φ(u) =
1

2
m(|B

1

2u|2), u ∈ D(A), (2)

where m : [0,∞) → ∞) is a C1 class increasing function such that m(0) = 0 and its derivative is a locally
Lipschitz continuous function, B is a self-adjoint operator such that BA−1 ∈ L(H). In the latter, more
concrete, case, H = L2(D) for some domain D ⊂ R

d, d ∈ N, A2 being the − Laplacian with the Dirichlet
boundary conditions, and, for suitable p ≥ 2.

Φ(u) =
1

p+ 1

∫

D

|u(x)|p+1 dx, u ∈ H2(D) ∩H1
0 (D).

Note that in the former case

∇uΦ(u) = m′(|B
1

2u|2)Bu, u ∈ D(A)

while in the latter

∇uΦ(u) = |u|p−1u, u ∈ D(A).

We will first prove, see also [34] where the case of globally Lipschitz coefficients is carefully investigated,
that under some natural local Lipschitz continuity conditions on the coefficients f and g, Equation 1 has
a unique maximal local mild solution given by 11. More importantly, we will prove, see Theorem 2.6, that
the maximal local solution is a global one and establish in Theorem 2.7 the ultimate boundedness and
stability of such solutions. Let us stress that this is not a simple issue due to the presence of a nonlinear
term involving the function m. The main ingredient of the proofs of these two theorems is a general
version of the Itô Lemma for mild solutions. Note that the results about maximal local mild solution
(Proposition 1) and the Itô Lemma (Lemma 5.2) are proved in a more general form for equation 10 than
what is needed to establish the non-explosion of the mild solutions, i.e. for functions F and G not being
of the special forms 7 or 9. On comparing with the method used in the case of stochastic beam equation
driven by Wiener process, the factorization method used in showing the uniform Lp-convergence of the
Yosida approximation for stochastic convolutions w.r.t. the Wiener noise, is not applicable in our case.
Instead of considering the Yosida approximation An, we follow the approximation procedure introduced in
[28] and [29]. We first apply the ordinary Itô formula to D(A)-valued solution processes, then investigate
its limit and obtain an Itô-type formula for the mild solution when the D(A)-valued solution processes
converges to the mild solution, hereD(A) is the domain of the generator A. As a result, the Itô formula we
established for mild solutions is sufficient to cover the two different cases: the existence of a global solution
and its asymptotic boundedness. Compared with [8], where the two results were proved separately, we
give a more efficient direct proof of the main results. As our major motivation, we also show that under
some standard assumptions the results we have proved for problem 1 can be applied to a wider class of
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models including stochastic nonlinear wave equations and stochastic nonlinear beam equations subject
to either the periodic boundary condition or mixed hinged/clamped boundary conditions.

Stochastic PDE driven by discontinuous noise is a very new subject. So far mainly problems with
Lipschitz coefficients have been investigated, see the recent monograph [24] by Peszat and Zabczyk
and/or papers [18] by Hauseblas and [26] by Riedle. A type of stochastic PDEs with monotone and
coercive coefficients, which is weaker than the usual Lipschitz and linear growth assumptions, driven by
some discontinuous perturbations were studied by Gyöngy and Krylov in [16] for the finite-dimensional
case and extended by Gyöngy to infinite-dimensional spaces in [17]. Recently, the authors and Liu in [3]
established the existence and uniqueness of strong solutions for a large class of SPDEs with coercive and
locally monotone coefficients driven by Lévy processes. Stochastic reaction diffusion equations driven by
Lévy noises have been a subject of a recent paper [9], where also some comments on the existing literature
can be found. The approach of the current paper is different as it does not use any compactness methods
but instead follow a more natural route of constructing a maximal local solution and then proving that
its lifespan is equal to infinity, see [8] and [6] for the gaussian noise case. To our best knowledge the
present paper is the first one in which this approach is applied to SPDEs with non-Lipschitz coefficients
and non-gaussian noise. Note however, that this method has been used and further developed in a joint
paper by the current authours and Liu in [3]. It is a natural and interesting question to combine the
results obtained in this paper together with those from [7] and prove the existence of an invariant measure
for 11. However, contrary to the finite dimensional case, see e.g. [2], this is still an open problem and its
resolution is postponed till the next publication.

The rest of the paper is organized as follows. Section 2 gives a detailed description of the problem, the
main results and its hypotheses. Section 3 is devoted to proving a basic auxiliary result about stopped
stochastic convolutions. Section 4 proves the existence and uniqueness of maximal local mild solution,
while Section 5 proves the crucial Lemma, Itô Lemma. The proofs of the main theorems 2.6 and 2.7, are
given in Section 6 and Section 7.

For the convenience of a reader let us describe the structure of the proof of Theorem 2.6 about the
existence and uniqueness of a global solution to Problem 10. The existence and uniqueness of a local
maximal solution is formulated in Proposition 1, which in turn is proved in section 4. In section 5 we
formulate an infinite dimensional Itô Lemma for processes which are not semimartingales but are defined
certain stochastic convolutions. This result is general enough to be applicable in the proof of both main
theorems. In section 3 we formulate Lemma 3.1 about equality of two possible definitions of stopped
stochastic convolution processes. To conclude the proof of Theorem 2.6 it is enough to show that the
lifetime of the local maximal solution is equal to infinity. The proof of that fact is contained in section

2.6. For this we define auxiliary stopping times τn, by 51, and auxiliary processes f̃n, g̃n, F̃n and G̃n

defined by (52, 53, 54, 55) and consider processes vn which are global solutions of the auxiliary linear
SPDE 56. We apply to vn the Itô formula from our fundamental section 5 and, since by Lemma 3.1, vn
and u are equal up to τn we conclude the proof. The proof of the first part of Theorem 2.7 relies on the
use of Itô formula from section 5 applied a modified energy function 58.

2. Framework and main results. Throughout the whole paper we assume that (Ω,F ,P) is a proba-
bility space, equipped with a filtration F = (Ft)t≥0 satisfying the usual hypotheses1, and that (Z,Z, ν)

is a σ-finite measure space. We denote by Ñ the compensated Poisson random measure on [0, T ]×Ω×Z
with the intensity measure ν, so that

Ñ((0, t]×B) = N((0, t]×B)− tν(B), for t ≥ 0, B ∈ Z.

We use P to denote the predictable σ-field on R+ ×Ω, that is the σ-field generated by all left continuous
and F-adapted real-valued processes. We write BF for the σ-field of all F-progressively measurable sets
on R+ × Ω, i.e.

BF = {A ⊂ R+ × Ω : ∀ t ∈ R+, A ∩ ([0, t]× Ω) ∈ B([0, t])⊗Ft}.

1i.e. F0 contains all sets of P-measure zero and Ft = Ft+.
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The two motivating stochastic evolution equations are the wave equation in R
d,

utt + (γ2 −∆)u+ |u|p−1u = βut +

∫

Z

g(t, u(t−), ut(t−), z) Ñ(t, dz), .

for p > 1 and the beam equation in O ⊂ R
d,

utt +∆2u−m′(|∇u|2)∆u = βut +

∫

Z

g(t, u(t−), ut(t−), z) Ñ(t, dz),

where m ∈ C1(R+,R+).
Of course the above equations have to be supplemented by initial and boundary conditions. A common

feature of these two problems is that they can be written as

utt +∇uE(u) = βut +

∫

Z

g(t, u(t−), ut(t−), z) Ñ(t, dz), (3)

where E is the energy defined by

E(u) =
1

2

∫

R3

[
|∇u(x)|2 + γ2|u(x)|2

]
dx+

1

p+ 1

∫

R3

|u(x)|p+1 dx (4)

for the wave equation, and in the case of the beam equation,

E(u) =
1

2

∫

D

[
|∆u(x)|2 +m

(
|∇u|2

)]
dx, (5)

and ∇uE is the gradient of E with respect to the Hilbert space L2(Rd) or L2(D). In fact, one consider
the following generalised energy for the nonlinear beam equation

E(u) =
1

2

∫

O

[
|∆u(x)|2 +m

(
|∇u|2

)]
dx+

1

p+ 1

∫

O

|u(x)|p+1 dx.

In such a case, the generalised energy for the nonlinear beam equation will take the following form

utt +∆2u−m′(|∇u|2)∆u+ |u|p−1u = βut +

∫

Z

g(t, u(t−), ut(t−), z) Ñ(t, dz).

With an appropriate choice of the linear operators A and B, these problems can be written in a unified
way

utt = −A2u− f(t, u, ut)−m′(|B
1

2u|2)Bu+

∫

Z

g(t, u(t−), ut(t−), z) Ñ(t, dz),

u(0) = u0, ut(0) = u1.

(6)

As a byproduct of this approach we will see that Equation 3 with the energy function 5 has at least
two non-equivalent formulations depending on the choice of the operator A (and hence the boundary
conditions) while B is the Laplace operator with fixed boundary conditions.

Suppose that H is a real separable Hilbert space with an inner product 〈·, ·〉 and a corresponding norm
| · |H . By B(H) we denote the Borel σ-field on H. Let A and B be self-adjoint operators in H. Suppose
that B ≥ 0 and A ≥ µI for some µ > 0. We also assume that BA−1 ∈ L(H) and functions

f : R+ ×D(A)×H ∋ (t, ξ, η) 7→ f(t, ξ, η) ∈ H

and

g : R+ ×D(A)×H × Z ∋ (t, ξ, η) 7→ g(t, ξ, η) ∈ L2(Z, ν;H)

are, respectively, B(R+)⊗B(D(A))⊗B(H)/B(H) and B(R+)⊗B(D(A))⊗B(H)⊗Z/B(H) measurable.
We follow a classical approach from the deterministic theory of second order (in time) equations based

on introducing a new Hilbert space H := D(A) × H with product norm |(x, y)|2H := |Ax|2H + |y|2H , an
operator A defined by

A =

(
0 I

−A2 0

)
, D(A) = D(A2)×D(A),
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which is a generator of a C0-unitary group
(
etA

)
, t ∈ R, on H, see [19], and functions

F : R+ ×D(A)×H ∋ (t, ξ, η) 7→ −
(
0, f(t, ξ, η)

)
∈ H, (7)

M : D(A)×H ∋ (ξ, η) 7→ −
(
0,m′(|B

1

2 ξ|2)Bξ
)
= −

(
0,∇ξΦ(ξ)

)
∈ H, (8)

G : R+ ×D(A)×H × Z ∋ (t, ξ, η, z) 7→
(
0, g(t, ξ, η, z)

)
∈ H. (9)

Then Equation 6 can be rewritten as a system of first order equations for the unknown function u(t) =
(u(t), ut(t)) with respect to the time variable in the following form, with u0 = (u0, u1) ∈ H,

du(t) = Au(t) dt+ F (t, u(t)) dt+M(u(t)) dt+

∫

Z

G(t, u(t−), z) Ñ(dt, dz), t ≥ 0,

u(0) = u0.

(10)

It is useful to notice that the above equation is more general than the problem 6. Indeed, the functions
F and G do not need to be of the special form 7 and 9. We will formulate our local existence result, see
Proposition 1, and the Itô Lemma, see Lemma 5.2, in this more general way, i.e. for general functions
F and G. From that we will deduce a corresponding result for special functions F and G as in 7 and 9,
however, with general functions f , m and g (of course satisfying some natural assumptions).

In the sequel, M2
loc(BF⊗Z,H) will denote the space of all BF⊗Z-progressively measurable processes

φ : R+×Ω → H such that for all T ≥ 0, E
∫ T

0
|φ(t)|2H dt <∞, and M2

loc(P⊗Z,H) stands for the space of

all P⊗Z-measurable functions ϕ : R+×Ω×Z → H such that for all T ≥ 0, E
∫ T

0

∫
Z
|ϕ(t, z)|2H ν(dz) dt <

∞.

Definition 2.1. A strong solution to Equation 10 is a D(A)-valued càdlàg F-adapted stochastic process
u = (u(t))t≥0 defined on (Ω,F ,F,P) such that

(1) u(0) = u0 a.s.;
(2) the process φ defined by

φ(t, ω) = F (t, u(t, ω)) +M(u(t, ω)) ∈ R+ × Ω

belongs to the space M2
loc(BF ⊗ Z,H) and the process ϕ defined by

ϕ(t, ω, z) = G(t, u(t−, ω), z) (t, ω, z) ∈ R+ × Ω× Z

belongs to M2
loc(P ⊗ Z,H);

(3) for any t ≥ 0, the following equality holds P-a.s.

u(t) = u0 +

∫ t

0

Au(s) ds+

∫ t

0

[
F (s, u(s)) +M(u(s)

]
ds+

∫ t

0

∫

Z

G(s, u(s−), z)Ñ(ds, dz).

Definition 2.2. Amild solution to Equation 10 is anH-valued F-adapted stochastic process u = (u(t))t≥0

with2 càdlàg paths defined on (Ω,F ,F,P) such that conditions (1) and (2) of Definition 2.1 are satisfied
and

(3′) for any t ≥ 0, the following equality holds P-a.s.

u(t) = etAu0 +

∫ t

0

e(t−s)A
[
F (s, u(s)) +M(u(s))

]
ds+

∫ t

0

∫

Z

e(t−s)AG(s, u(s−), z)Ñ(ds, dz).

Let us recall, see for instance [6], that a stopping time τ is called to be accessible if there exists an
increasing sequence {τn}n∈N of stopping times such that τn < τ and limn→∞ τn = τ a.s. and this
sequence {τn}n∈N will be called an approximating sequence for τ .

Using the above introduced notion we can state the main definition in this paper. One can fully
understand it only after becoming familiar with the results presented in section 3.

2As before, one could add, to avoid a slight chance of ambiguity, “H-valued”-càdlàg.
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Definition 2.3. A local mild solution to Equation 10 is an H-valued, F-adapted, càdlàg local process
u = (u(t))0≤t<τ , where τ is an accessible stopping time with an approximating sequence {τn}n∈N, such
that for any n ∈ N, the stopped process uτn(t) := u(t ∧ τn), t ≥ 0, satisfies,

u(t ∧ τn) =e
(t∧τn)A

u0 +

∫ t∧τn

0

e(t∧τn−s)A[F (s, u(s)) +M(u(s))] ds

+ Iτn(G(u))(t ∧ τn), P-a.s. t ≥ 0,

(11)

where Iτn(G(u)) is a process defined by

Iτn(G(u))(t) =

∫ t

0

∫

Z

1[0,τn](s)e
(t−s)AG(s, u(s−), z) Ñ(ds, dz), t ≥ 0. (12)

For the future reference we specifically state the following important observation.

Remark 1. Suppose that X and Y are two càdlàg processes and τ is an F-stopping time. If X and Y
coincide on the open interval [0, τ), i.e. X(s, ω)1[0,τ)(s) = Y (s, ω)1[0,τ)(s), for (s, ω) ∈ R+ × Ω, we can
infer

G(s,X(s−), z)1[0,τ ](s) = G(s, Y (s−), z)1[0,τ ](s), for (s, ω) ∈ R+ × Ω,

since the function [0, τ ] ∋ s 7→ G(s,X(s−), z) depends only on the values of X on [0, τ).

Definition 2.4. A local mild solution u = (u(t))0≤t<τ to Equation 10 is unique if for any other local
mild solution ũ = {ũ0≤t<τ̃} to Equation 10, the processes u and ũ are equivalent on [0, τ ∧ τ̃).

A local mild solution u = (u(t))0≤t<τ is called a maximal local mild solution if for any other local
mild solution ũ = (ũ(t))0≤t<τ̃ satisfying τ̃ ≥ τ a.s. and ũ|[0,τ) is equivalent to u, one has τ̃ = τ a.s.. If
P(τ = +∞) = 1, the local mild solution u is called a global mild solution to Equation 10.

Remark 2. If the local mild solution of Equation 10 is unique, then the uniqueness of the maximal local
mild solution holds as well. In particular, a maximal local mild solution u = (u(t))0≤t<τ is unique if and
only if for any other local mild solution ũ = (ũ(t))0≤t<τ̃ , we have τ̃ ≤ τ a.s. and ũ = u a.s. on [0, τ ∧ τ̃).

In order to show the existence and uniqueness of a global mild solution to Equation 10, it is sufficient
to impose local Lipschitz continuity and some natural growth conditions on the functions F and G.

Condition (C.1).

The function F : [0,∞)×H → H is Lipschitz on balls in H, locally uniformly w.r.t. t, i.e. for every
R > 0 and T > 0, there exists a constant LF,R,T > 0 such that for all t ∈ [0, T ] and x, y ∈ BH(0, R),

|F (t, x)− F (t, y)|H ≤ LF,R,T |x− y|H.

There exists a constant LF > 0 such that for all t ∈ [0, T ],

|F (t, 0)| ≤ LF .

Condition (C.2).

The function G : [0,∞)×H → L2(Z, ν;H) is Lipschitz on balls in H, locally uniformly w.r.t. t, i.e.
for T > 0, there exists a constant LG,R,T > 0 such that for all t ∈ [0, T ] and x, y ∈ BH(0, R),

∫

Z

|G(t, x, z)−G(t, y, z)|2H ν(dz) ≤ LG,R,T |x− y|2H.

There exists a constant LG > 0 such that for all t ∈ [0, T ],
∫

Z

|G(t, 0, z)|2H ν(dz) ≤ LG.

Let us now formulate a basic result about the existence of a local maximal solution, see Definition 2.3.

Proposition 1. Suppose that conditions (C.1) and (C.2) are satisfied. Suppose also that the function
M : H → H is Lipschitz on balls. Then for every F0-measurable initial data u0, there exists a unique
maximal local mild solution to Equation 10.
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For the existence of global solutions we will additionally need the following classical assumptions on
F and G.

Condition (C.3).

Function G is of linear growth on H locally uniformly w.r.t. t ∈ R+, i.e. for every T > 0, there
exists constants KG,T , RG,T ≥ 0 such that for all t ∈ [0, T ],

∫

Z

|G(t, x, z)|2H ν(dz) ≤ KG,T +RG,T |x|
2
H, x ∈ H. (13)

Condition (C.4).

For every T > 0, there exists constants Kf,T , Rf,T ≥ 0 such that for all t ∈ [0, T ],

−〈x2, f(t, x1, x2)〉H ≤ Kf,T +Rf,T |x|
2
H, x = (x1, x2) ∈ H = D(A)×H. (14)

Condition (C.5).

The “energy” functional Φ is of the form 2, i.e.

Φ(u) =
1

2
m(|B

1

2u|2), u ∈ D(A),

where, m : [0,∞) → ∞) is a C1 class increasing function such that m(0) = 0 and the derivative m′

is locally Lipschitz continuous.

Remark 3. Note that since m′ is locally Lipschitz continuous and B ∈ L(D(A), H), the function

D(A) ∋ u 7→ m′(|B
1

2u|2)Bu ∈ H is also locally Lipschitz continuous w.r.t. u ∈ D(A). Hence we are
confident that the next claim holds.

Lemma 2.5. Assume that m : [0,∞) → ∞) is a C1 class increasing function such that m(0) = 0 and
the derivative m′ is locally Lipschitz continuous and that function M is defined by formula 8, i.e.

M : H ∋ (ξ, η) = −
(
0,∇ξΦ(ξ)

)
= −

(
0,m′(|B

1

2 ξ|2)Bξ
)
∈ H.

Then the mapping M is Lipschitz on balls.

Let us now formulate two main results of our paper. The first one is about the existence of global
solutions while the second is concerned with stability of solutions.

Theorem 2.6. Suppose that conditions (C.1)-(C.5) are satisfied. Then for every F0-measurableH-valued
intial data u0, there exists a unique global mild solution to Equation 10.

Our last result is about asymptotic behaviour of solutions. This result is proved under more stringent
conditions than the previous results. Let us formulate the relevant conditions.

Condition (C.6).

The function F is related to a function f : R+ ×D(A)×H → H via formula 7 and the latter is of
the following form. There exists δ > 0 such that

f(t, x) = δx2, t ≥ 0 and x = (x1, x2) ∈ H = D(A)×H.

Condition (C.7).

There exists α > 0 such that the function m′ from (C.5) satisfies

m(z) ≤
1

α
zm′(z) , z ≥ 0. (15)

Remark 4. An example of a functionm′ satisfying both conditions (C.5) and (C.7) is functionm(z) = zα,
z ≥ 0 with α ≥ 2. Note that in this case, the function M defined by 8 is Lipschitz on balls.

For the stability of the global solutions we will need the following stronger version of condition (C.3).

Condition (C.8).



8 JIAHUI ZHU AND ZDZIS LAW BRZEŹNIAK

Function G is of linear growth on H uniformly w.r.t. t ∈ R+, i.e. there exists constants KG, RG ≥ 0
such that for all t ≥ 0,

∫

Z

|G(t, x, z)|2H ν(dz) ≤ KG +RG|x|
2
H, x ∈ H.

Theorem 2.7. Assume (C.2), (C.8) and (C.5)-(C.7). Assume furthermore that

R2
G − β < 0.

Then, the unique global mild solution u =
(
u, v

)
to Equation 10 with the initial data u0 =

(
u0, v0

)

satisfying E
[
|u0|

2
H +m(|B

1

2u0|
2
H)

]
<∞, satisfies the following estimate

sup
t≥0

E
[
|u(t)|2H +m(|B

1

2u(t)|2H)
]
<∞.

Moreover, if G satisfies 13 with KG,T = 0, i.e. there exists RG,T > 0 such that for every T > 0,
∫

Z

|g(t, x, z)|2H ν(dz) ≤ RG,T |x|
2
H, t ∈ [0, T ], x ∈ H,

then there exist constants C > 0 and λ > 0 such that

E |u(t)|2H ≤ E

[
|u(t)|2H +m(|B

1

2u(t)|2H)
]
≤ Ce−λt

E

[
|u0|

2
H +m(|B

1

2u0|
2
H)

]
, t ≥ 0.

Note that Proposition 1 holds true for problem 10 in the general form, i.e. for the functions F and G
satisfying conditions (C.1) and (C.2), and the M satisfying the locally Lipschitz condition. Theorem 2.6
holds true for problem 10 in the special form since the functions M, F and G are of special form 8, 7
and 9 respectively, and the corresponding functions m, f and g satisfy condition (C.5), (C.4) and (C.3).
Finally, Theorem 2.7 holds for problem 10 in the above case when also functions M, F and G are special
form 8, 7 and 9 respectively, for functions m, f and g satisfying also Conditions (C.5), (C.7), (C.6) and
(C.8).

Since the stochastic nonlinear beam equation with either the hinged or the clamped boundary condi-
tions can be treated in almost the same way as in [8], as only the the stochastic term will be different, we
will discuss applications to the stochastic nonlinear beam equation with periodic boundary conditions.
However, in order that a reader can easily spot the differences and similarities between our Example and
section 4 from [8] we have decided to keep as much as possible the notation from that paper.

Definition 2.8. Suppose that Λ is a topological space and X1, X2 and Y are normed vector spaces. A
Borel function

R : Λ×X1 ×X2 → Y

is called locally Lipschitz w.r.t. X1, globally Lipschitz w.r.t. X2, uniformly w.r.t. Λ iff for every N ∈ N,
there exist constants LN and L such that for all λ ∈ Λ, x′1, x

′′
1 ∈ BX1

(0, N), x′2, x
′′
2 ∈ X2, the following

inequality holds

|R(λ, x′′1 , x
′′
2)−R(λ, x′1, x

′
2)|Y ≤ LN |x′′1 − x′1|X1

+ L|x′′2 − x′2|X2
.

This definition can be given of various natural generalizations which we simply do not state.

Example 2.9 (Stochastic nonlinear beam equation with the periodic boundary condition). Assume that
L > 0 and let Tn be a n-dimensional torus of length L, i.e.

T
n = R

n/ ∼L,

where ∼L an equivalence relation in R
n defined by x ∼L y iff y−x

L ∈ Z
n. It is well known that T

n

is a riemannian manifold (without boundary) and that functions defined on T
n can be identified with

functions defined on R
n which are L-periodic in each coordinate (i.e. Ln-periodic). Partial differential

equations on a torus are often used as the simplest model of PDES on manifolds where there is no
need to introduce deep theory from Differential Geometry. A boundary or initial value problem with
periodic boundary conditions is often identified as a corresponding problem on the torus. Somehow
incorrectly, one can identify T

n with the product on n intervals [0, L) each equipped with a metric
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d(s, t) = min{|t − s|, |t − L − s|}. One can also identify (correctly) that Tn with a cartesian product of
copies of a circle of length L. In this way, one can see that Tn is endowed with the Lebesgue measure m
on the σ-fields of its Borel sets or of Lebesgue measurable sets. This gives rise to the family of Lebesgue
spaces Lp(Tn) for each p ∈ [1,∞]. With a bit of extra work one can define the scales of the Sobolev
spaces Hk,p(Tn) for k ∈ N and p ∈ [1,∞]. Every function u ∈ Hk,p(Tn) can be uniquely lifted to an

Ln-periodic function U ∈ Hk,p
loc (R

n) so that u satisfies naturally periodicity conditions. These spaces

satisfy the classical Gagliardo-Nirenberg inequalities, for instance if k − n
p > 0, then u ∈ Hk,p(Tn) has a

unique representative ũ which belongs to C(Tn). Note also that the lift Ũ of ũ belongs to C(Rn).
Define a linear operator B in H = L2(Tn) by

D(B) = H2,2(Tn),
Bu = −∆u, u ∈ D(B).

It is well known that B is a self-adjoint operator in H.
Next let us now define an operator P by

D(P ) = H4,2(Tn),
Pu = ∆2u+ u, u ∈ D(P ).

It is well know that P is a strictly position self-adjoint operator on the Hilbert space H = L2(Tn) and

〈Pu, u〉 =

∫

Tn

[
|∆u|2 + |u|2

]
dm, u ∈ D(P ).

Let A1 be the unique positive square root of P . It satisfies

D(A1) = H2,2(Tn),

Obviously, since D(P 1/2) is equal to the complex interpolation space of order 1
2 between D(P ) and

L2(Tn), D(A1) = H2,2(Tn) = D(B) and the A1-graph norm is equivalent to theH2,2-norm. In particular,
B ∈ L(D(A1),H).

Note that in view of the Gagliardo inequalities (or the Sobolev embeddings) if u ∈ D(P ) then Dαu ∈
L2(Γ) for α ≤ 3, where Γ = ∂([0, L]n) is the boundary of the square of length L in R

n.
Consider the following problem in (0, L)n

∂2u

∂t2
−m

(∫

O

|∇u|2dx

)
∆u+ γ∆2u+Υ

(
t, x, u,∇u,

∂u

∂t

)
=

∫

Z

Π(t, x, u,∇u,
∂u

∂t
, z)Ñ(t, dz) (16)

with the periodic boundary conditions (written for simplicity in the case n = 2)

u(0, ·) = u(L, ·), u(·, 0) = u(·, L)

∂u(0, ·)

∂x1
=
∂u(L, ·)

∂x1
,
∂u(·, 0)

∂x2
=
∂u(·, L)

∂x2

where γ > 0, m ∈ Cα(R+, [0,∞)), a Borel function

Υ : [0, T ]×D × R× R
n × R → R

is locally Lipschitz w.r.t. R×R
n, globally Lipschitz w.r.t. R, uniformly w.r.t. [0, T ]×D, a Borel function

Π : [0, T ]×D × R× R
n × R× Z → R

is such that the corresponding function

Π̃ : [0, T ]×D × R× R
n × R → L2(Z, ν)

is locally Lipschitz w.r.t. R×R
n ×R uniformly w.r.t. [0, T ]×D. Moreover we assume that the following

growth conditions are satisfied.

1. There exists a constant KΥ such that for all t ∈ [0, T ], x ∈ D, a ∈ R, b ∈ R
n and c ∈ R,

cΥ(t, x, a, b, c) ≥ −KΥ(1 + |c|2). (17)
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2. There exists a constant LΠ such that for all t ∈ [0, T ], x ∈ D, a ∈ R, b ∈ R
n and c ∈ R,

∫

Z

|Π(t, x, a, b, c, z)|2ν(dz) ≤ LΠ(1 + |c|2). (18)

If n = 1 or n ≤ 3 and the functions Υ and ψ depend only on the first and the second variables (i.e. on x
and u), then there exists a unique maximal global mild solution to Equation 16.

Example 2.10 (Stochastic nonlinear beam equation with mixed hinged/clamped boundary conditions).
Let O ⊂ R

n be a bounded domain with a C∞- boundary ∂O consisting of two parts (possibly disjoint)
Γ1 and Γ2. We assume that the common part Γ1 ∩ Γ2 6= ∅, then it is a subset of a submanifold of ∂(O)
of dimension3 ≤ n− 2. Let us denote by ν the unit exterior normal field to Γ1.

Let us introduce an operators B and P by

D(B) =W 2,2(O) ∩W 1,2
0 (O), Bψ = −∆ψ, ψ ∈ D(B).

D(P ) = {ϕ ∈ H4,2(O) : ϕ = 0 on ∂(O), ∂ϕ∂n = 0 on Γ1 and ∆ϕ = 0 on Γ2},

Pϕ = ∆2ϕ, for ϕ ∈ D(P ).

It is well known that both B and P are self-adjoint, B is positive and P is non-negative. As in [8] we
can check that it is also positive. Indeed, if ϕ ∈ D(P ) then by the Stokes Theorem and by [15, Lemma

9.17], since D(P ) ⊂W 2,2(O) ∩W 1,2
0 (O),

〈Pϕ, ϕ〉H =

∫

O

∆2ϕ · ϕ dx =

∫

O

(∆ϕ,∆ϕ)dx = |∆ϕ|2H ≥ 0 ≥ K|u|2H .

where the constant K > 0 is independent of ϕ. Set A = P
1

2 . Then by [32], D(A) = [H, D(P )]1/2 = {ϕ ∈

W 2,2(O) : ϕ = 0 on ∂O and ∂φ
∂n = 0 on ∂Γ1}. Thus we infer that D(A) ⊂ D(B).

As in the previous Example 2.9, by adapting 17-18 on functions Υ and Π, we can verify that all the
requirements on the functions f and g are fulfilled.

Therefore, Theorem 2.6 and 2.7 are applicable to Equation 16 with the mixed clamped/hinged bound-
ary conditions

u = 0 on ∂O,
∂u

∂n
= 0 on ∂Γ1, ∆u = 0 on ∂Γ2. (19)

Thus, as in the previous Example, we have the following Assertion: if n = 1 or n ≤ 3 and the functions
Υ and ψ depend only on the first and the second variables (i.e. on x and u), then there exists a unique
maximal global mild solution to Equation 16 with the mixed clamped/hinged boundary conditions 19.

Example 2.11 (Nonlinear stochastic wave equations). We consider the following stochastic equation on
R

d

∂2u

∂t2
= δ2∆u− γ2u+ Γ(t, x, u,∇u,

∂u

∂t
) +

∫

Z

Λ(t, x, u,∇u,
∂u

∂t
, z)Ñ(t, dz),

u(0) = u0, ut(0) = v0

(20)

where γ > 0 and Γ and Λ are nonlinear terms. Let H = L2(Rd). We consider two cases d = 1 and d ≥ 2.
We suppose that:

1. If d = 1, the function Γ : [0,∞)×R
d ×R×R

d ×R → R is locally Lipschitz with respect to the 3rd
variable, locally uniformly with respect to the 1st and uniformly with respect to the 2nd, 4th and
5th.

2. If d ≥ 2, the function Γ : [0,∞) × R
d × R × R

d × R → R is Lipschitz with respect to the 3rd, 4th
and 5th variables, locally uniformly with respect to the 1st and uniformly with respect to the 2nd.

3. If d = 1, the function Λ̃ : [0,∞)×R
d×R

d×R
d → L2(Z, ν) (associated with function Λ(t, x, u,∇u, ut))

is locally Lipschitz is with respect to the 3rd variable and globally Lipschitz with respect to 4th
and 5th, locally uniformly with respect to the 1st and uniformly with respect to the 2nd.

3For instance, if n = 1 and O = (a, b) then we can have Γ1 = {a} and Γ2 = {b}.
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4. If d ≥ 2, the function Λ̃ : [0,∞)×R
d×R

d×R
d → L2(Z, ν) (associated with function Λ(t, x, u,∇u, ut))

is globally Lipschitz is with respect to the 3rd, 4th and 5th variables, locally uniformly with respect
to the 1st and uniformly with respect to the 2nd.

Then Equation 20 has a unique local mild solution.
Moreover, if there exists L > 0 and L′ and nonnegative functions κ, κ′ ∈ L1(Rd) such that for all
t ∈ [0,∞), almost all x ∈ R

d and all a, c ∈ R and b ∈ R
d

〈Γ(t, x, a, b, c), c〉 ≥ −L(κ(x) + |c|2),

∫

Z

|Λ(t, x, a, b, c, z)|2 ν(dz) ≤ L′(κ′(x) + |a|2 + |b|2 + |c|2).

then Equation 20 has a unique global mild solution.

Remark 5. As we will see below, the wave equation is a special case of the general problem with m = 0.

Proof of the Claim made in Example 2.11. Let A be positive square root of the strictly positive self-
adjoint operator −δ2∆+ γ2I on H. Then A ≥ γI, D(A) =W 1,2(Rd) and

|Au|2H = δ2|∇u|2L2 + γ2|Au|2H .

Although, we could consider a more general case, we put m = 0.
Define f and g to be the Nemytski maps corresponding to functions Γ and Λ respectively, i.e.

f : [0, T ]×D(A)× L2(Rd) ∋ (t, ψ, φ) 7→ Γ(t, ·, ψ(·),∇ψ(·), φ(·)) ∈ L2(Rd),

g : [0, T ]×D(A)× L2(Rd)× Z ∋ (t, ψ, φ, z) 7→ Λ(t, ·, ψ(·), ψ(·), φ(·), z) ∈ L2(Rd).

Put C = 1
min{δ2,γ2} . Consider the case d = 1 as the other one is trivial. Let ψ1, ψ2 ∈ D(A) with their

norms being bounded by a fixed R > 0. Since by the Sobolev embedding Theorem, W 1,2(R) ⊂ Cb(R) ⊂
L∞(R), we can find N > 0 such that |ψi|L∞ ≤ N . Denoting by LN the Lipschitz constant of the function
Γ on ball of radius N with respect to the 3rd variable and by L the Lipschitz constant of the function Γ
with respect to the 4th and 5th variables we get, for all t ∈ [0,∞),

|f(t, ψ1, φ1)− f(t, ψ2, φ2)|
2
H =

∫

Rd

|Γ(t, x, ψ1(x),∇ψ1(x), φ1(x))− Γ(t, x, ψ2(x),∇ψ2(x), φ2(x))|
2dx

≤ LN |ψ1 − ψ2|
2
H + L

(
|∇ψ1 −∇ψ2|

2
H + |φ1 − φ2|

2
H

)

≤ C
(
LNγ

2|ψ1 − ψ2|
2
H + Lδ2|∇ψ1 −∇ψ2|

2
H

)
+ L|φ1 − φ2|

2
H

= Cmax{L,LN}|Aψ1 −Aψ2|
2
H + L|φ1 − φ2|

2
H ,

and analogously,∫

Z

|g(t, ψ1, φ1)− g(t, ψ2, φ2)|
2
H ν(dz) ≤ Cmax{L,LN}|Aψ1 −Aψ2|

2
H + L|φ1 − φ2|

2
H .

Similarly, in the general case, it’s easy to verify that∫

Z

|g(t, ψ, φ)|2H ν(dz) =

∫

Z

∫

Rd

|Λ(t, ψ(x),∇ψ(x), φ(x), z)| dx ν(dz)

=

∫

Rd

∫

Z

|Λ(t, ψ(x),∇ψ(x), φ(x), z)| ν(dz) dx

≤ CL′(γ2|ψ|2H + δ2|∇ψ|2H) + L′(|κ′|L1 + |φ|2H)

= CL′|Aψ|2H + L′|φ|2H + L′|κ′|L1 .

〈f(y, ψ, φ), φ〉 =

∫

Rd

〈Γ(t, x, ψ(x),∇ψ(x), φ(x)), φ(x)〉dx

≥ −L

∫

Rd

(κ(x) + |φ(x)|2 dx = −L|κ|L1 − L|φ|2H .
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Remark 6. As in [8] it is worth pointing out that our results are valid for bounded and unbounded
domains.

3. An auxiliary Lemma. Let (etA)t∈R be a C0-semigroup on a Hilbert space H. Assume that τ is an
accessible stopping time. Let ϕ =

(
ϕ(t)), t ≥ 0 be an H-valued process belonging to M2

loc(P ⊗ Z,H).
Set

I(t) = I(ϕ; t) =

∫ t

0

∫

Z

e(t−s)Aϕ(s, z)Ñ(ds, dz), t ≥ 0,

Iτ (t) = Iτ (ϕ; t) =

∫ t

0

∫

Z

1[0,τ ](s)e
(t−s)Aϕ(s ∧ τ, z)Ñ(ds, dz), t ≥ 0.

Note that by the choice of process ϕ and the assumption about (etA)t∈R, the stochastic convolution process
I(t), t ≥ 0, is well defined. Also for any stopping time τ , the process 1[0,τ ](t, ω) is predictable. In fact, the
predictable σ-field is generated by the family of closed stochastic intervals {[0, T ] : T is a stopping time},
see [30]. This together with the predictability of ϕ implies that integrand of Iτ (t) is predictable. Thus the
stochastic convolution Iτ (t) is well defined as well. Moreover, one can always assume that the stochastic
convolution process I(t) and Iτ (t), t ≥ 0 are H-valued càdlàg, see [35]. The following lemma verifies the
definition 11 of a local mild solution. The proof below is mainly based on [8] (which in turn was provided
by Martin Ondreját, see [22]). Let us point out a minor but important difference with [8]. We consider
here closed random intervals [0, τ ], while in the case of a Wiener process [8] we considered open random
intervals [0, τ). Our formula 21 is also more general than formula [8, (A.4)] as we allow an additional
time parameter r.

Lemma 3.1. Under the assumptions listed above, for any stopping time τ and for all r ≥ t ≥ 0,

e(r−t∧τ)AI(t ∧ τ) = e(r−t)AIτ (t), P− a.s. (21)

In particular,

I(t ∧ τ) = Iτ (t ∧ τ). (22)

Remark 7. It is known, see [6] and [8] for the Wiener process case, that is if ξ is another process
satisfying the same conditions as ϕ such that for some Ω0 ∈ F ,

ϕ = ξ Leb⊗ P⊗ ν a.s. on [0,∞)× Ω0 × Z

then P-a.s. on Ω0,
∫ t

0

∫

Z

ϕ(s, z)Ñ(ds, dz) =

∫ t

0

∫

Z

ξ(s, z)Ñ(ds, dz), t ≥ 0.

In particular, if Ω0 ⊂ {ω ∈ Ω : ξ(·, ω, ·) = ϕ(·, ω, ·) on [0, τ(ω)]}, then the above equality implies that
P-a.s. on Ω0 ∫ t∧τ

0

∫

Z

ϕ(s, z)Ñ(ds, dz) =

∫ t∧τ

0

∫

Z

ξ(s, z)Ñ(ds, dz), t ≥ 0.

One of the consequences of Lemma 3.1 is the following modification of the above assertions.

Corollary 1. Suppose that is ξ is another process satisfying the same conditions as ϕ and

ϕ = ξ Leb⊗ P⊗ ν a.s. on [0, τ ]× Ω× Z,

where [0, τ ]× Ω× Z := {(t, ω, z) ∈ [0,∞)× Ω× Z : 0 ≤ t ≤ τ(ω)}, then t ≥ 0, P-a.s.,

I(ϕ; t ∧ τ) = I(ξ; t ∧ τ).

Proof. Indeed, note that obviously, for t ≥ 0, P-a.s.,

Iτ (ϕ; t) = Iτ (ξ; t),

Thus, equality follows by applying 22.
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Remark 8. An alternative approach to Lemma 3.1 and Corollary 1 is via the method implemented by [7]
and [11], i.e. maximal inequalities for stopped stochastic convolution processes. In our case, this would
require to use Theorems 4.4, 4.5 and 5.1 from [35].

Proof of Lemma 3.1. It is enough to proof identity 21 as the equality 22 follows from the former by
replacing the deterministic times r = t by a stopping time t ∧ τ . It is also enough to proof identity 21
when r = t.
We first verify it for deterministic time. Let τ = a. If t < a, then

e(t−t∧a)AI(t ∧ a) = I(t) =

∫ T

0

∫

Z

1[0,t]e
(t−s)Aϕ(s, z)Ñ(ds, dz)

=

∫ T

0

∫

Z

1[0,t]1[0,a]e
(t−s)Aϕ(s, z)Ñ(ds, dz)

=

∫ t

0

∫

Z

1[0,a]e
(t−s)Aϕ(s ∧ a, z)Ñ(ds, dz) = Ia(t),

where we used in the equality the fact that 1[0,a](s)ϕ(s, z) = 1[0,a](s)ϕ(s ∧ a, z).
If t ≥ a, then

e(t−t∧a)AI(t ∧ a) = e(t−a)AI(a) = e(t−a)A

∫ a

0

∫

Z

e(a−s)Aϕ(s, z)Ñ(ds, dz)

= e(t−a)A

∫ T

0

∫

Z

1[0,a](s)e
(a−s)Aϕ(s, z)Ñ(ds, dz)

+ e(t−a)A

∫ T

0

∫

Z

1(a,t](s)1[0,a](s)e
(a−s)Aϕ(s, z)Ñ(ds, dz)

= e(t−a)A

∫ a

0

∫

Z

1[0,a](s)e
(a−s)Aϕ(s, z)Ñ(ds, dz)

+ e(t−a)A

∫ t

a

∫

Z

1[0,a](s)e
(a−s)Aϕ(s, z)Ñ(ds, dz)

= e(t−a)A

∫ t

0

∫

Z

1[0,a](s)e
(a−s)Aϕ(s ∧ a, z)Ñ(ds, dz)

=

∫ t

0

∫

Z

1[0,a](s)e
(t−s)Aϕ(s, z)Ñ(ds, dz) = Ia(t).

Thus equality 21 holds for any deterministic time.
Now let τ be an arbitrary stopping time. Define τn := 2−n([2nτ ] + 1), for each n ∈ N. That is

τn = k+1
2n if k

2n ≤ τ < k+1
2n . Then τn ց τ as n → ∞ pointwise. Since equality 21 has been proved for

each deterministic time k2−n, in view of Remark 7 we infer that

e(t−t∧τn)AI(t ∧ τn) =
∞∑

k=0

1{k2−n≤τ<(k+1)2−n}e
(t−t∧(k+1)2−n)AI(t ∧ (k + 1)2−n)

=

∞∑

k=0

1{k2−n≤τ<(k+1)2−n}I(k+1)2−n(t) = Iτn(t).

(23)

Since τn ց τ , by the P-a.s. right-continuity of the process I, see [35], the random variable I(t ∧ τn)
converges pointwise on Ω to I(t ∧ τ) as n→ ∞ for every t ≥ 0 P-a.s. Also, observe that

∣∣∣e(t−t∧τn)AI(t ∧ τn)− e(t−t∧τ)AI(t ∧ τ)
∣∣∣

≤
∣∣∣e(t−t∧τn)A

(
I(t ∧ τn)− I(t ∧ τ)

)∣∣∣+
∣∣∣
(
e(t−t∧τn)A − e(t−t∧τ)A

)
I(t ∧ τ)

∣∣∣

≤ |I(t ∧ τn)− I(t ∧ τ)|+
∣∣∣
(
e(t−t∧τn)A − e(t−t∧τ)A

)
I(t ∧ τ)

∣∣∣ .
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converges to 0 as n → ∞. Thus we conclude that e(t−t∧τn)AI(t ∧ τn) converges to e
(t−t∧τ)AI(t ∧ τ), for

each t ≥ 0, P-a.s. For the term Iτn(t), by the Itô isometry we find out that

E|Iτn(t)− Iτ (t)|
2 = E

∣∣∣∣
∫ t

0

∫

Z

(
1[0,τn](s)− 1[0,τ ](s)

)
e(t−s)Aϕ(s, z)Ñ(ds, dz)

∣∣∣∣
2

= E

∫ t

0

∫

Z

∣∣∣
(
1[0,τn](s)− 1[0,τ ](s)

)
e(t−s)Aϕ(s, z)

∣∣∣
2

ν(dz) ds.

Recall that that τn ↓ τ as n → ∞. So 1[0,τn] converges to 1[0,τ ] as n → ∞. Obviously, the integrand is

bounded by |ϕ(s, z)|2 for all n. Thus by the Lebesgue dominated convergence theorem it follows that

lim
n→∞

E|Iτn(t)− Iτ (t)|
2 → 0.

Hence we can always find a subsequence which is convergent a.s. Finally, Letting n → ∞ in both sides
of 23 yields 21. This completes the proof.

4. Proofs of Proposition 1.

Proof of Proposition 1. Set F̃ (t, x) = F (t, x) +M(x), for t ≥ 0, x ∈ H. Since functions F , M and G are

Lipschitz on closed balls in H, for every n ∈ N we may find globally Lipschitz functions F̃n : H → H and

Gn : H → H such that F̃n = F̃ and Gn = G on B̄H(0, n), the closed ball in H of radius n and centered
at the origin. By using a classical argument we infer that there exists a unique mild solution (un(t))t≥0

to problem 10 with F̃ replaced by F̃n and G replaced by Gn, see e.g. Theorem 4.1.10 in [34]. By the
càdlàg property of the process un, a random variable τn defined by

τn := inf{t ≥ 0 : |un(t)|H ≥ n}

is a stopping time. So,

F̃n(s, un(s)) = F̃ (s, un(s)) and Gn(s, un(s), z) = G(s, u(s), z) on [0, τn).

It follows that on [0, τn) we have

un(t) = etAu0 +

∫ t

0

e(t−s)AF̃ (s, un(s)) ds+

∫ t

0

∫

Z

e(t−s)AG(s, un(s−), z)Ñ(ds, dz). (24)

Let Φ(un) denote the right hand side of 24. Note that the value of Φ(un) at τn depends only on the
values of un on [0, τn), i.e.

△Φ(un)(τn) := Φ(un)(τn)− Φ(un)(τn−) =

∫

Z

G(τn, un(τn−), z)Ñ({τn}, dz).

Hence we may extend the process un from the interval [0, τn) to the closed interval [0, τn] by setting

un(τn) = Φ(un)(τn) = eτnAu0 +

∫ τn

0

e(τn−s)AF̃ (s, un(s)) ds+ Iτn(G(un))(τn), (25)

where Iτn(G(un)) is a process defined by 12 with u replaced by un, i.e.

Iτn(G(un))(t) =

∫ t

0

∫

Z

1[0,τn]e
(t−s)AG(s, un(s−), z)Ñ(ds, dz), t ≥ 0.

Therefore, combining equalities 24 and 25, we deduce that the stopped process un(· ∧ τn) satisfies

un(t ∧ τn) = e(t∧τn)A
u0 +

∫ t∧τn

0

e(t∧τn−s)AF̃ (s, un(s)) ds+ Iτn(G(un))(t ∧ τn), t ≥ 0.

For n < m, set τn,m = τn ∧ τm. It follows that |un(t)| ≤ n < m and |um(t)| ≤ m for t ∈ [0, τn,m).

So F̃n(s, un(s)) = F̃ (s, un(s)) and F̃m(s, um(s)) = F̃ (s, um(s)) for s ∈ [0, τn,m). Also Gn(s, un(s)) =
G(s, un(s)) and Gm(s, um(s)) = G(s, um(s)) for s ∈ [0, τn,m). Therefore, both un and um, solve on
[0, τn,m) the same equation 10. Hence by the uniqueness of mild solutions, see [34, Theorem 4.1.10], we
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have un(t) = um(t), for t ∈ [0, τn,m), a.s. Since △ui(τn,m) =
∫
Z
G(τn,m, ui(τn,m−), z)Ñ({τn,m}, dz), for

i = n,m and, by Remark 1, G(s, un(s−), z) and G(s, um(s−), z) coincide on [0, τn,m], we infer that

un = um on [0, τn,m]. (26)

Hence, arguing by contradiction, we can show that a.s.

τn ≤ τm if n < m.

So the limit limn→∞ τn =: τ∞ exists a.s. Let us denote Ω0 = {ω : limn→∞ τn = τ∞} and note that
P(Ω0) = 1.

Now define a local process (ut)0≤t<τ∞ as follows. If ω /∈ Ω0, set u(t, ω) = 0, for 0 ≤ t < τ∞. If ω ∈ Ω0,
then for every t < τ∞(ω), there exists a number n ∈ N such that t ≤ τn(ω) and we set u(t, ω) = un(t, ω).
In view of 26 this process is well defined and it satisfies

u(t ∧ τn) = e(t∧τn)A
u0 +

∫ t∧τn

0

e(t∧τn−s)AF̃ (s, u(s)) ds+ Iτn(G(u))(t ∧ τn), t ≥ 0,

where we used the fact because that of 26, for all t ≥ 0,

Iτn(G(un))(t) = Iτn(G(u))(t).

Furthermore, by the definition of the sequence {τn}
∞
n=1 we infer that a.s. on the set {τ∞ <∞},

lim
tրτ∞(ω)

|u(t, ω)|H = lim
nր∞

|u(τn(ω), ω)|H ≥ lim
n
n = ∞. (27)

Next we will show that the process u(t), 0 ≤ t < τ∞ is a maximal local mild solution to Problem 10.
Let us suppose that ũ = (ũ(t))0≤t<τ̃ is another local mild solution to Problem 10 such that τ̃ ≥ τ∞ a.s.
and ũ|[0,τ∞)×Ω is equivalent to u. It follows from 27 and the P-equivalence of u and ũ on [0, τ∞) that

lim
tրτ∞(ω)

|ũ(t, ω)|H = lim
tրτ∞(ω)

|u(t, ω)|H = ∞. (28)

It remains to show that P(τ̃ > τ∞) = 0. To prove this, assume the contrary, namely P(τ̃ > τ∞) > 0.
Since ũ is a local mild solution, there exists a sequence {τ̃n} of increasing stopping times such that ũ is
a mild solution on the interval [0, τ̃n], i.e. the equation 11 is satisfied. Define a new family of stopping
times by

σn,k := τ̃n ∧ inf{t : |ũ(t)| > k}; σk := supσn,k.

Since σn,k ≤ τ̃n ≤ τ̃ , σk ≤ τ̃ . Also, observe that limk σk = τ̃ . Since σk ր τ̃ and P(τ̃ > τ∞) > 0, there
exists a number k such that P(σk > τ∞) > 0. Hence, we have |ũ(t, ω)|H ≤ k for t ∈ [τ∞(ω), σk(ω))
contradicting the earlier observation 28. Moreover the uniqueness of the solution follows immediately
from the above construction of the solution u.

The proof that the maximal local solution is a global one is based on the use of the Khashminski
test, see [20] and [8]. The essence of this method is to prove first the existence and uniqueness of a local
maximal solution, then to find an appropriate Lyapunov function, with the help of which prove the life
span of that local maximal solution is equal to ∞. This method had been earlier used in the parabolic
case in [11].

In order to prove the main result we need the following auxiliary standard result whose proof can be
found in [8]. The function V satisfying conditions below is called a Lyapunov function for Equation 10.

Lemma 4.1. (Khashminski’s test for non-explosion) Let V be a continuous function for which

EV (u0) <∞ and V (x) → +∞ as |x|H → ∞. (29)

Let u(t), 0 ≤ t < τ∞ be a maximal local mild solution to Equation 10 with an approximating sequence
{τn}n∈N. Let T > 0. Suppose that there exists constants Ci > 0, i = 1, 2, such that for every t ∈ [0, T ],
and n ∈ N,

EV (u(t ∧ τn)) ≤ EV (u0) +

∫ t

0

(
C1 + C2E(V (u(s ∧ τn)))

)
ds. (30)

Then τ∞ ∧ T = T , P-a.s..



16 JIAHUI ZHU AND ZDZIS LAW BRZEŹNIAK

5. An Itô Lemma. In this section we will formulate a general form of an Itô Lemma which in the next
two sections will be used to prove the existence of a global solution and the asymptotic boundedness of
the solutions. The novelty of our approach is that we prove one result general enough to cover the two
different cases. In the case of stochastic beam equation driven by a Wiener process, see [8], the authors
formulated and proved two separate results. Our proof would yield, had we considered that case here,
those results as corollaries.

We begin with formulation of the general assumptions and the Itô Lemma. This will be proceeded by
two examples when these general assumptions are satisfied. The section will be finished with the proof
of the Itô Lemma.

Assumption 5.1. Assume that Q is linear self-adjoint, strictly positive and bounded operator on H
such that the quadratic form

D(A) ∋ x 7→ 〈Ax,Qx〉H ∈ R

has a unique extension from D(A) to a bounded and symmetric quadratic form

Γ : H×H → R

on the whole H.

Put, for x = (x1, x2) ∈ H,

V0(x) =
1

2
〈x,Qx〉H, V1(x) = m(|B

1

2x1|
2
H),

and define a function V : H → R+ by

V (x) = V0(x) + V1(x) =
1

2
〈x,Qx〉H +m(|B

1

2x1|
2), , x ∈ H. (31)

An obvious consequence of the above definition is that V (x) = V0(x) whenever π1x = 0 i.e.

V (x) =
1

2
〈x,Qx〉H, if x = (0, x2) ∈ H.

However, we also have two important equalities, for x ∈ H and y = (0, y2) ∈ H:

V (x+ y)− V (x) =
1

2
〈y,Qy〉H + 〈Qx, y〉H (32)

V ′(x)(y) = 〈Qx, y〉H (33)

Note that since we assume that m is a C1-class function with locally Lipschitz derivative, the function V
is also of C1-class on H, with the Fréchet derivative of V being Lipschitz on balls of H. See also Lemma
5.4 for further important consequences of this regularity assumption. But it seems that in order to be
able to apply our Itô Lemma, it would be sufficient to assume that the derivative functions m′ is only
locally Hölder continuous.

Let us also note the following inequalities comparing the behaviour of V (x) and |x|H.

µ0|x|
2
H ≤ V (x) ≤ µ1|x|

2
H +m

(
C|x|2H

)
(34)

for some C > 0, where µ0 > 0 and µ1 > 0 are such that

µ0|x|
2
H ≤ 〈Qx, x〉H ≤ µ1|x|

2
H, x ∈ H. (35)

In order to prove 34 let us note that in view of 35 it is sufficient to prove the second inequality in 34 for
V1. Since by assumptions: the function m is increasing and, for some C > 0, |By| ≤ C

1

2 |y|, for y ∈ D(A)
(what makes sense since we also assume that D(A) ⊂ D(B)), we have for x = (x1, x2) ∈ H = D(A)×H,

V1(x) = m(|B
1

2x1|
2
H) = m(〈Bx1, x1〉) ≤ m

(1
2

[
|Bx1|

2 + |x1|
2
])

≤ m
(max{C, 1}

2

[
|Ax1|

2 + |x1|
2
])

= m
(max{C, 1}

2
|x|2H

)

Let us note that it follows from 34 that V is a bounded function on bounded subsets of H and that it
satisfies condition 29 of the Khasminski Lemma 4.1.
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Now we are ready to formulate the announced Itô Lemma, the main result in this section.

Lemma 5.2. Assume that the operator Q satisfies Assumption 5.1 and the function m satisfies Assump-
tion (C.5). Let the function V be defined by formula 31. Assume that u = (u, v) be a global mild solution
of the problem 10 and let σ be a bounded stopping time such that the processes u(r), F (r, u(r)) and
G(r, u(r)) are uniformly bounded on [0, σ)× Ω. Then we have P-a.s.,

V (u(σ))eλσ − V (u(s))eλs =

∫ σ

s

eλr
[
λV (u(r)) + Γ(u(r), u(r)) + 2m′(|B

1

2u(r)|2)〈Bu(r), v(r)〉H

+ V ′(u(r))
(
F (r, u(r)) +M(u(r))

)]
dr

+

∫ σ

s

∫

Z

eλr
[
V (u(r) +G(r, u(r), z))− V (u(r))− V ′(u(r))

(
G(r, u(r), z)

)]
ν(dz) dr

+

∫ σ

s

∫

Z

eλr
[
V (u(r−) +G(r, u(r), z))− V (u(r−))

]
Ñ(dr, dz)

(36)

The main difficulty in proving the above version of the Itô Lemma stems from facts: (i) the operator
A unbounded, and (ii) the C0-semigroup generated by the operator A is not analytic. Indeed, all three
nonlinear maps F , M and G are smooth maps defined on the state space H.

Example 5.3. Let β ≥ 0. Define a linear self-adjoint bounded operator Q = Qβ on H by

Qβ :=

(
β2A−2 + 2I βA−2

βI 2I

)
. (37)

Note that Q0 = 2I.
The following properties of Qβ have been established in the last cited paper.

The operator Qβ is an isomorphism of H and

|Qβ |
−1
L(H)〈Qβu, u〉H ≤ |u|2H ≤ 〈Qβu, u〉H, u ∈ H; (38)

〈(0,−δu2), Qβu〉H = −βδ〈u1, u2〉 − 2δ|u2|
2

u = (u1, u2) ∈ H, δ ∈ R;

〈Au, Qβu〉H = −β|Au1|
2
H + β2〈u1, u2〉+ β|u2|

2, u = (u1, u2) ∈ D(A). (39)

and hence the quadratic form

〈Au, Qβu〉H, u ∈ D(A)

has a unique extension from D(A) to a bounded quadratic form on the whole H and thus the quadratic
form Γβ satisfies

Γβ(u, u) = β
[
β〈u1, u2〉+ |u2|

2 − |Au1|
2
H

]
, u = (u1, u2) ∈ H. (40)

In particular, Qβ satisfies Assumption 5.1. In sections 6 and resp. 7 we will use Lemma 5.2 with Q = Qβ

for β = 0, resp. β > 0.
To our best of our knowledge, the operator Q appeared for the first time in the paper [25] in connec-

tion with a stability analysis of linear deterministic hyperbolic equations and was applied to stochastic
hyperbolic problems in [21]. The above result was also used in [8] for similar purposes as in the current
paper.

Remark 9. As noted in Example 5.3 above, if β = 0 then Q = 2I, i.e. Q0 = 2I. Then, by 40, Γ0 = 0
and 〈Q0x, y〉H = 2〈x2, y2〉 for all x = (x1, x2) ∈ H and y = (0, y2) ∈ H. Thus, invoking the definitions
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7, 8 and 9 of maps F , M and G in terms of maps f , m and g respectively, we infer that the following is
thus a special case of our equality 36, where we also put λ = 0,

V (u(σ))− V (u0) =

∫ σ

0

[
− 2〈π2u(r), f(r, z)〉H +

∫

Z

|g(r, z)|2Hν(dz)
]
dr

+

∫ σ

s

∫

Z

[
2〈π2u(r−), g(r, z)〉H + |g(r, z)|2H

]
Ñ(ds, dz)

(41)

Indeed, when Q = Qβ , by 32 and 33, we have for x = (x1, x2) ∈ H and y = (0, y2) ∈ H

V (x+ y)− V (x) = |y2|
2
H + 〈βx1 + 2x2, y2〉H (42)

V ′(x)(y) = 〈βx1 + 2x2, y2〉H . (43)

Note however, that in our proof, contrary to the corresponding proof in [8], we will not prove the above
special formula 41 but the general one 36

Note that every Hilbert space is 2-smooth. The following result is an immediate consequence of [31,
Lemma 2.1 and Lemma 2.2].

Lemma 5.4. For every r > 0, there exists C = C(r) > 0 such that

|V (y)− V (x)− V ′(x)(y − x)|H ≤ C|y − x|2H, for all x, y ∈ Br(0,H),

Indeed, function V is of C2 class and it’s first Frechét derivative is Lipschitz on balls.

Proof of Lemma 5.2. We start the proof with constructing a sequence of global strong solutions which
converges to the global mild solution uniformly. To do this, let us set, see [29], for l ∈ N, t ∈ R+, ω ∈ Ω
and z ∈ Z,

ul(0) = l(lI −A)−1
u(0),

Fl(t, ω) = l(lI −A)−1
[
F (t, u(t, ω)) +M(u(t, ω))

]
and

Gl(t, ω, z) = l(lI −A)−1G(t, u(t, ω), z).

We will apply the standard version of Itô formula for each fixed l and then a limit when l → ∞ will be
taken.

Let us introduce the following two canonical linear projections:

π1 : H ∋ (x, y) 7→ x ∈ D(A) and π2 : H ∋ (x, y) 7→ y ∈ H.

Let us also observe that

π1A = π2 on D(A) and π1M = 0 on R+ × Ω. (44)

Our approach here differs from the one used in [8], where instead the Yosida approximation of the
operator A was used.

The following result can be applied to the above approximations with Y equal to H and S equal to
either (0, T )× Ω or (0, T )× Ω× Z.

Lemma 5.5. Suppose that Y is a separable Banach space, (S,S, σ) a measure space, p ∈ [1,∞) and
ξ : S → Y a Borel function such that

∫

S

|ξ(s)|pY dσ(s) <∞.

Let A be the infinitesimal generator of a contraction C0-semigroup on Y . Then

lim
l→∞

∫

S

|ξ(s)− (lI −A)−1ξ(s)|pY dσ(s) = 0.

Proof. The proof is straightforward, since by the Hille-Yosida Theorem, we know |(lI − A)−1| ≤ 1
l and

for every s ∈ S, (lI −A)−1ξ(s) → ξ(s) pointwisely.
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Since by definition, the processes Fl and Gl take values in D(A), we infer Fl ∈ M2
loc(BF ⊗ Z;D(A))

and Gl ∈ M2
loc(P ⊗ Z;D(A)), for l ∈ N. Therefore, the equation

dul(t) = Aul(t)dt+ Fl(t)dt+

∫

Z

Gl(t, z)Ñ(dt, dz), t ≥ 0

ul(0) = ul(0).

has a unique global strong solution ul given by

ul(t) = ul(0) +

∫ t

0

[
Aul(r) + Fl(r, u(r))

]
dr +

∫ t

0

∫

Z

Gl(r, u(r−), z)Ñ(dr, dz), t ≥ 0.

Now we can apply Itô formula to the process ul and the function eλtV (x) to get

V (ul(σ))e
λσ − V (ul(s))e

λs =

∫ σ

s

eλr
[
λV (ul(r)) + V ′(ul(r)

(
Aul(r) + Fl(r, u(r))

)]
dr

+

∫ σ

s

∫

Z

eλr
[
V (ul(r) +Gl(r, z))− V (ul(r))− V ′(ul(r))

(
Gl(r, z)

)]
ν(dz) dr

+

∫ σ

s

∫

Z

eλr
[
V
(
ul(r−) +Gl(r, , z)

)
− V (ul(r−))

]
Ñ(dr, dz).

(45)

We next prove the following auxiliary result.

Lemma 5.6. For every T > 0 and every n ∈ N,

lim
l→∞

E sup
t∈[0,T ]

|ul(t)− u(t)|2H = 0.

Proof. Let us fix T > 0. Then we have

ul(t)− u(t) =

∫ t

0

e(t−s)A
([
F (s, u(s)) +M(u(t, ω))

]
− Fl(s)

)
ds

+

∫ t

0

∫

Z

e(t−s)A (G(s, u(s), z)−Gl(s, z)) Ñ(ds, dz), t ∈ [0, T ].

The result follows by applying the Cauchy-Schwarz inequality, Lemma 5.5 to processes F and G and the
Davis inequality for stochastic convolution processes, see [35].

Therefore, by taking a subsequence we can deduce that P-a.s., for every T > 0,

lim
l→∞

sup
t∈[0,T ]

|ul(t)− u(t)|2H = 0. (46)

Since H is a Hilbert space, the Frechét derivative V ′ of function V can be identified with the gradient
DV of V which satisfy (we continue to use notation x = (x1, x2) and y = (y1, y2))

V ′(x)(y) =〈Qx, y〉H + 2m′(|B
1

2x1|
2
H) 〈Bx1, y1〉H , x, y ∈ H, (47)

V ′(x)
(
Ax

)
=〈Qx,Ax〉H + 2m′(|B

1

2x1|
2
H)〈Bx1, x2〉H , x ∈ D(A),

see [8]. By taking into account 44 and Assumption 5.1 we infer that

V ′(ul(r)
(
Aul(r) + Fl(r)

)
= Γ

(
ul(r), ul(r)

)
+ 2m′(|B

1

2π1ul(r)|
2
H)〈Bπ1ul(r), π2ul(r)〉H

+ 〈Qul(r), Fl(r)〉H + 2m′(|B
1

2π1ul(r)|
2
H)〈Bπ1ul(r), π1Fl(r)〉H .

(48)

Since m ∈ C1 and B ∈ L(D(A), H), we infer that P-a.s. uniformly in [0, σ(ω)], m′(|B
1

2π1ul(s)|
2
H) →

m′(|B
1

2π1u(s)|
2
H), π2ul(s) → π2u(s) and Bπ1ul(s) → Bπ1u(s), as l → ∞. Moreover, as the maps

Γ;H × H → R and Q : H → H are continuous, we infer that Γ(ul(r), ul(r)) → Γ(u(r), u(r)) and
〈Qul(r), Fl(r)〉H → 〈Qu(r), F (r, u(r))+M(u(r))〉H. Since the process ul is càdlàg, we infer that for every
l ∈ N, the set {ul(t, ω) : t ∈ [0, T ]} is relatively compact subset of R for almost all ω and the sequence
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{ul}l∈N converges uniformly to v, P-a.s., we infer that the set {ul(s), s ∈ [0, T ], l ∈ N} is bounded in H,
P-a.s. Therefore, P-a.s.,

〈Qul(r), Fl(r)〉H ≤ C|Fl(r)|H sup
0≤r≤T

|ul(r)|H ≤ C|F (r, u(r)) +M(u(r))|H, s ∈ [0, T ].

Hence, by the Lebesgue DCT, we conclude that

∫ σ

s

〈Qul(r), Fl(r)〉Hdr →

∫ σ

s

〈Qu(r), F (r, u(r)) +M(u(r))〉Hdr P-a.s. (49)

Analogously, because of 46 and 44 we can argue as in [8] and deduce that P-a.s.

∫ σ

s

2m′(|B
1

2π1ul(r)|
2
H)〈Bπ1ul(r), π2ul(r)〉H dr →

∫ σ

s

2m′(|B
1

2π1u(r)|
2
H)〈Bπ1u(r), π2u(r)〉H dr

∫ σ

s

2m′(|B
1

2π1ul(r)|
2
H)〈Bπ1ul(r), π1Fl(r)〉H dr →

∫ σ

s

2m′(|B
1

2π1u(r)|
2
H)〈Bπ1u(r), π1

(
F (r, u(r))

+M(u(r))
)
〉H dr.

(50)

Taking 48, 49, 50 and also 47 into account, the first term on the right side of inequality 45 converges
P-a.s. as l → ∞ to

∫ σ

s

eλr
[
λV (u(r)) + Γ

(
u(r), u(r)

)
+ 2m′(|B

1

2π1u(r)|
2
H)〈Bπ1u(r), π2u(r)〉H

+ V ′(u(r))
(
F (r, u(r)) +M(u(r))

)]
dr.

Now Set X(ω) = {ul(s, ω) : s ∈ [0, T ], l ∈ N}, for ω ∈ Ω. As we have noticed before, X(ω) is a bounded
subset of H for almost all ω ∈ Ω. Since V is of C2 class on H, by Lemma 5.4, we have

|V (ul(r) +Gl(r, z))− V (ul(r))− V ′(ul(r))
(
Gl(r, z)

)
| ≤ C|Gl(r, z)|

2

By using above results, 46, along with the Lebesgue DCT, we infer that P-a.s.

lim
l→∞

∫ σ

s

∫

Z

eλr
[
V (ul(r) +Gl(r, z))− V (ul(r))− V ′(ul(r))

(
Gl(r, z)

)]
ν(dz) dr

=

∫ σ

s

∫

Z

eλr
[
V (u(r) +G(r, u(r), z))− V (u(r))− V ′(u(r))

(
G(r, u(r), z)

)]
ν(dz) dr

For the last term on the right side of inequality 45, we observe that

∣∣∣V
(
ul(s) +Gl(r, z)

)
− V (ul(r))−

(
V (u(s) +G(r, u(r), z))− V (u(r))

)∣∣∣
2

≤ 2 sup
x∈X(ω)

|V ′(x)|2|G(u(r), z)|2H.

By applying the Itô isometry property of the stochastic integral, see [34] and then the the Lebesgue DCT
we get

lim
l→∞

E

∣∣∣
∫ σ

s

∫

Z

eλr
[
V
(
ul(r−) +Gl(r, z)

)
− V (ul(r−))

]
Ñ(dr, dz)

−

∫ σ

s

∫

Z

eλr
[
V (u(r−) +G(r, u(r), z))− V (u(r−))

]
Ñ(dr, dz)

∣∣∣
2

H
= 0.

Therefore, by passing a subsequence in 45, it is evident to see that the Itô formula 36 holds.
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6. Proof of Theorem 2.6. We will now prove Theorem 2.6 with the help of the two lemmas from
the preceding sections. In particular, as announced earlier, we will use Lemma 5.2 with the operator
Q = Q0 = 2I and the parameter β = 0, see Example 5.3 and Remark 9.

Proof of Theorem 2.6. Let u(t), 0 ≤ t < τ∞, be a maximal local mild solution to problem 10. Our aim is
to prove that τ∞ = ∞. Before we continue with the proof let us observe that it is sufficient to prove that
for any T > 0, τ∞ ≥ T . This is of particular importance because our time dependent coefficients satisfy
Conditions (C.3) and (C.4). For this purpose, we fix a positive time T > 0 and we replace the stopping
time τ∞ by τ∞ ∧ T . We will prove that τ∞ ∧ T ≥ T . Whenever we will speak in this section about the
infimum of an empty set we will define it to be equal to T .

Define a sequence of stopping times by

τn = inf {t ∈ [0, T ] : |u(t)|H ≥ n}, n ∈ N. (51)

As in the proof of Proposition 1, we can show that {τn}n∈N is an approximating sequence of the accessible
stopping time τ∞ ∧ T .

Let us set β = 0. We have Q = 2I. Then V (x) = |x|2H +m(|B
1

2x1|
2
H). It is clear that for every x ∈ H,

V (x) ≥ 0. Let us define qR = inf{V (x) : |x|H ≥ R}. Since 2qR ≥ inf{|x|2H : |x|H ≥ R} = R2 we infer
that that qR → +∞. Moreover, we have

E(V (u0)) = E|u0|
2
H + Em(|B

1

2u0|H) <∞.

Now it remains to verify condition 30 from Lemma 4.1. Notice that the solution u to Equation 10 is a

process with possibly finite lifespan. We therefore introduce a sequence of globally defined processes F̃n

and G̃n, n ∈ N, such that, roughly speaking, up to the stopping time τn, the solution u agrees with a
solution vn of a certain linear stochastic evolution equation. The Itô formula is applied to the process vn
and then a limit when n→ ∞ is taken.

Let us now show details of this program. We begin with fixing n ∈ N. Then we introduce the following
processes, for t ∈ [0, T ],

f̃n(t) = 1[0,τn)(t)f(t, u(t ∧ τn)), (52)

g̃n(t, z) = 1[0,τn](t)g(t, u(t ∧ τn−), z), for z ∈ Z, (53)

F̃n(t) =
(
0,−f̃n(t)−m′(|B

1

2u(t ∧ τn)|
2
H)Bu(t ∧ τn)1[0,τn)(t)

)
, (54)

G̃n(t, z) =
(
0, g̃n(t, z)

)
, for z ∈ Z. (55)

One can see that both processes F̃n and G̃n are bounded. Consider the following linear equation

dvn(t) = Avn(t)dt+ F̃n(t)dt+

∫

Z

G̃n(t, z)Ñ(dt, dz), t ∈ [0, T ], vn(0) = u(0). (56)

There exists a unique global mild solution of this equation, which is given by

vn(t) = etAu(0) +

∫ t

0

e(t−s)AF̃n(s) ds+

∫ t

0

∫

Z

e(t−s)AG̃n(s, z)Ñ(ds, dz), t ∈ [0, T ].

Furthermore, the stopped process vn(· ∧ τn) satisfies

vn(t ∧ τn) = e(t∧τn)A
u(0) +

∫ t∧τn

0

e(t∧τn−s)AF̃n(s) ds+ Iτn(G̃n)(t ∧ τn), t ∈ [0, T ],
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where as before Iτn(G̃n)(t) =
∫ t

0

∫
Z
1[0,τn](s)e

(t−s)AG̃n(s, z)Ñ(ds, dz), t ∈ [0, T ]. By (54-55), we have

Iτn(G̃n)(t) =

∫ t

0

∫

Z

1[0,τn](s)e
(t−s)AG̃n(s, z)Ñ(ds, dz)

=

∫ t

0

∫

Z

1[0,τn](s)e
(t−s)AG(s, u(s ∧ τn−), z)Ñ(ds, dz)

=

∫ t

0

∫

Z

1[0,τn](s)e
(t−s)AG(s, u(s−), z)Ñ(ds, dz) = Iτn(G(u))(t), t ∈ [0, T ].

On the basis of Lemma 21, we see that for each n ∈ N and every t ∈ [0, T ]

vn(t ∧ τn) = e(t∧τn)A
u(0) +

∫ t∧τn

0

e(t∧τn−s)AF̃n(s) ds+ Iτn(G̃n)(t ∧ τn)

= e(t∧τn)A
u(0) +

∫ t∧τn

0

e(t∧τn−s)A1[0,τn](s)F (s, u(s ∧ τn)) ds+ Iτn(G(u))(t ∧ τn)

= u(t ∧ τn) P-a.s..

Applying Itô’s Lemma 5.2 to vn and Remark 9, it follows that

V (vn(t ∧ τn))− V (u(0)) =

∫ t∧τn

0

−2〈π2v(r), f(r, z)〉Hdr +

∫ t∧τn

0

∫

Z

|g(r, z)|2Hν(dz)dr

+

∫ t∧τn

0

∫

Z

[
2〈π2v(r−), g(r, z)〉H + |g(r, z)|2H

]
Ñ(ds, dz)

Finally, according to the fact that u coincides with v P-a.s. up to time t ∧ τn, by applying conditions 13
and 14, we get, for t ∈ [0, T ],

EV (u(t ∧ τn)) = EV (u0)− 2E

∫ t

0

〈ut(s), f(u(s))〉H1[0,τn]ds+ E

∫ t

0

∫

Z

|g(s, u(s), z)|2H1[0,τn]ν(dz) ds

≤ EV (u0) + 2E

∫ t

0

[
Kf +Rf |u(s)|

2
H

]
1[0,τn]ds+ E

∫ t

0

∫

Z

[
Kg +Rg|u(s)|

2
H

]
1[0,τn]ν(dz) ds

≤ EV (u0) +

∫ t

0

(
(2Kf,T +KG,T ) + (2Rf,T +RG,T )EV (u(s ∧ τn))

)
ds.

This implies inequality 30 with C1 = 2Kf,T +KG,T and C2 = 2Rf,T +RG,T .
In conclusion, we proved that V is a Lyapunov function and hence we can apply Lemma 4.1 to deduce

that τ∞ ∧ T = T .

7. Proof of Theorem 2.7. Let us fix β > 0 and Q = Qβ defined in 37. Let us remind that in this
section we consider functions F , M and G defined recollectively by equalities 7, 8 and 9. The following
proof follows the lines of [8]. We will try to keep it self consistent but also to pay attention to new
elements (due to the different type of noise). In the Itô formula we encounter expressions of the form
〈Qβu, v〉H, where v1π1v = 0. These will play an exceptionally important rôle below and hence let us
write down explicitly that for u = (u1, u2), v = (0, v2), z = (0, z2) ∈ H

〈Qβu, v〉H =
〈
βu1 + 2u2, v2

〉
,

〈Qβz, v〉H = 2〈z2, v2〉

In particular, in view of 7, 8 and 9 we get, for u = (u1, u2),
〈
Qβu, F (t, u) +M(u)

〉
H

= −
〈
βu1 + 2u2, f(t, u1, u2) +m′(|B

1

2u1|
2)Bu1

〉
,

〈
Qβu, G(t, u, ·)

〉
H

=
〈
βu1 + 2u2, g(u1, u2, ·)

〉
,

〈QβG(t, u, ·), G(t, u, ·)〉H = 2|g(t, u1, u2, ·)|
2.
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Thus, from 40 and 42 we infer that for u = (u1, u2) ∈ H,

Γβ(u, u) + 2m′(|B
1

2u1|
2)〈Bu1, u2〉+ V ′(u)(F (t, u) +M(u))

= β2〈u1, u2〉+ β|u2|
2 − β|Au1|

2 + 2m′(|B
1

2u1|
2)〈Bu1, u2〉

− β〈u1, f(t, u1, u2)〉 − βm′(|B
1

2u1|
2)〈u1, Bu1〉

− 2〈u2, f(t, u1, u2)〉 − 2m′(|B
1

2u1|
2)〈u2, Bu1〉

= β2〈u1, u2〉+ β|u2|
2 − β|Au1|

2 − β〈u1, f(t, u1, u2)〉

− βm′(|B
1

2u1|
2)〈u1, Bu1〉 − 2〈u2, f(t, u1, u2)〉.

Now, if we recall that by Assumption (C.6), for some δ > 0,

f(t, u) = δu2, for t ≥ 0, u = (u1, u2) ∈ H,

then we infer

Γβ(u, u) + 2m′(|B
1

2u1|
2)〈Bu1, u2〉+ V ′(u)(F (t, u) +M(u))

= β2〈u1, u2〉+ β|u2|
2 − β|Au1|

2 − βδ〈u1, u2〉

− βm′(|B
1

2u1|
2)〈u1, Bu1〉 − 2δ〈u2, u2〉

We see that if we put β = δ, then β2〈u1, u2〉 − βδ〈u1, u2〉 = 0 we get some cancelation in the equality
above, i.e.

Γδ(u, u) + 2m′(|B
1

2u1|
2)〈Bu1, u2〉+ V ′(u)(F (t, u) +M(u))

= δ|u2|
2 − δ|Au1|

2 − δm′(|B
1

2u1|
2)〈u1, Bu1〉 − 2δ〈u2, u2〉

= −δ|u2|
2 − δ|Au1|

2 − δm′(|B
1

2u1|
2)|B

1

2u1|
2

= −δ
[
|u|2H +m′(|B

1

2u1|
2)|B

1

2u1|
2
]

(57)

Proof of Theorem 2.7. Let us fix s ≥ 0 and let u be the solution to Equation 10 with the approximating
sequence {τn}n∈N. Fix t ≥ 0 and n ∈ N. By applying Lemma 5.2 with function V defined by 31

V (u) =
1

2
〈Qδu, u〉H +m(|B

1

2u1|
2), , u = (u1, u2) ∈ H, (58)

and then using 57, 42 and 43, we infer that P-a.s.

V (u(t ∧ τn))e
λ(t∧τn) = V (u(s))eλs +

∫ t∧τn

s

eλr
[
λV (u(r))− δ|u(r)|2H − δm′(|B

1

2u(r)|2)|B
1

2u(r)|2

+

∫

Z

|g(r, u(r), z)|2ν(dz)
]
dr

+

∫ t∧τn

s

∫

Z

eλr
[
〈δu(r−) + 2v(r−), g(r, u(r), z)〉+ |g(r, u(r), z)|2

]
Ñ(dr, dz).

Now applying (C.8) yields

V (u(t ∧ τn))e
λ(t∧τn)

≤ V (u(s))eλs +

∫ t∧τn

s

eλr
[λ
2
〈Qδu(r), u(r)〉H + λm(|B

1

2u(r)|2) + (RG − δ)|u(r)|2H

− δm′(|B
1

2u(r)|2)|B
1

2u(r)|2 +KG

]
dr

+

∫ t∧τn

s

∫

Z

eλr
[
〈δu(r−) + 2v(r−), g(r, u(r), z)〉H + |g(r, u(r), z)|2

]
Ñ(dr, dz).
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We continue by applying inequalities 38 and 15, the latter from (C.7), to infer that there exists α > 0
such that

V (u(t ∧ τn))e
λ(t∧τn)

≤ V (u(s))eλs +

∫ t∧τn

s

eλr
[(λ

2
‖Qδ‖L(H) +RG − δ

)
|u(r)|2H

+
(λ
α
− δ

)
m′(|B

1

2u(r)|2)|B
1

2u(r)|2 +KG

]
dr

+

∫ t∧τn

s

∫

Z

eλr
[
〈δu(r−) + 2v(r−), g(r, u(r), z)〉+ |g(r, u(r), z)|2

]
Ñ(dr, dz).

Now let us take the limits when n→ ∞. Since by Theorem 2.6, τ∞ = ∞, we infer

V (u(t))eλt ≤V (u(s))eλs +

∫ t

s

eλr
[(λ

2
‖Qδ‖L(H) +RG − δ

)
|u(r)|2H

+
(λ
α
− δ

)
m′(|B

1

2u(r)|2H)|B
1

2u(r)|2H +KG

]
dr

+

∫ t

s

∫

Z

eλr
[
〈δu(r−) + 2ut(r−), g(r, u(r), z)〉+ |g(r, u(r), z)|2H

]
Ñ(dr, dz), 0 ≤ s ≤ t <∞.

Because of our assumptions it is possible to find λ > 0 such that

λ

α
− δ < 0 and

λ

2
‖Qδ‖L(H) +RG − δ < 0 .

Therefore,

V (u(t))eλt ≤

∫ t

s

∫

Z

eλr
[
〈δu(r−) + 2ut(r−), g(r, u(r), z)〉H + |g(r, u(r), z)|2H

]
Ñ(dr, dz)

+ V (u(s))eλs +

∫ t

s

eλrKG dr, 0 ≤ s ≤ t <∞.

(59)

Next, we first consider the case when KG = 0. Then by taking the conditional expectation with respect
to Fs to both sides of 59 we get for 0 ≤ s ≤ t <∞,

E
(
V (u(t))eλt

∣∣Fs

)
≤E

(
V (u(s))eλs

∣∣Fs

)

+ E

(∫ t

s

∫

Z

eλr
[
〈βu(r−) + 2v(r−), g(r, u(r), z)〉H + |g(r, u(r), z)|2H

]
Ñ(dr, dz)

∣∣∣Fs

)

=V (u(s))eλs.

This proves that the process Φ(u(t))eλt, t ≥ 0, is a supermartingale. Therefore,

E|u(t)|2H ≤ E〈Qδu(t), u(t)〉H ≤ 2EV (u(t)) ≤ 2e−λt
EV (u(0)),

where the first inequality follows from 38, the last inequality follows from the supermartingale property
of Φ(u(t))eλt, t ≥ 0. Also, note that

EV (u(0)) = E

[1
2
〈Qδu(0), u(0)〉H +m(|B

1

2u(0)|)
]
≤

(1
2
‖Qδ‖L(H) + 1

)
E

[
|u(0)|2H +m(|B

1

2u(0)|)
]
. (60)

We conclude that with C = |Q|L(H) + 2,

E|u(t)|2H ≤ Ce−λt
E

[
|u(0)|2H +m(|B

1

2u(0)|)
]
, t ≥ 0,

which shows the exponentially mean-square stability of the mild solution.
In the case KG 6= 0, taking first the expectation to both sides of 59 and then setting s = 0 gives

EV (u(t)) ≤ e−λt
EV (u(0)) +

KG

λ

(
1− e−λt

)
, t ≥ 0.
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Thus, applying the inequality |x|2H ≤ 〈x,Qx〉H deduces

E|u(t)|2H ≤ E〈u(t), Qδu(t)〉H ≤ EV (u(t)) ≤ 2e−λt
EV (u(0)) +

2KG

λ
, t ≥ 0.

Therefore, combining with 60 we obtain

sup
t≥0

E|u(t)|2H ≤
(
‖Q‖L(H) + 2

)
E

[
|u(0)|2H +m(|B

1

2u(0)|)
]
+

2KG

λ
<∞,

which completes the proof of of Theorem 2.7.
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