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Abstract 7 

Customer requirements (CRs) play a significant role in the product development process, 8 

especially in the early design stage. Quality function deployment (QFD), as a useful tool in 9 

customer-oriented product development, provides a systematic approach towards satisfying CRs. 10 

Customers are heterogeneous and their requirements are often vague, therefore, how to determine the 11 

relative importance ratings (RIRs) of CRs and eventually evaluate the final importance ratings is a 12 

critical step in the QFD product planning process. Aiming to improve the existing approaches by 13 

interpreting various CR preferences more objectively and accurately, this paper proposes a weighted 14 

interval rough number method. CRs are rated with interval numbers, rather than a crisp number, which 15 

is more flexible to adapt in real life; also, the fusion of customer heterogeneity is addressed by 16 

assigning different weights to customers based on several factors. The consistency of RIRs is 17 

maintained by the proposed procedures with design rules. A comparative study among fuzzy weighted 18 

average method, rough number method and the proposed method is conducted at last. The result shows 19 

that the proposed method is more suitable in determining the RIRs of CRs with vague information. 20 

Keywords: Quality function deployment; rough set theory; fuzzy set theory; product planning; 21 

customer-centric design 22 
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1. Introduction 27 

In order to survive in the competitive market, companies strive to provide quality products that satisfy 28 

various customer needs and expectations to gain value-added profits (S. Q. Xie and Tu 2006; S. S. Xie 29 

and Tu 2011). To enable the customised product development process, our previous work (B. M. Li et 30 

al. 2011) gives a comprehensive review on its knowledge-based systems, methods and tools. Moreover, 31 

the tendency towards mass customisation and personalization (Tseng et al. 2010) requires companies to 32 

reveal latent customer requirements (CRs) (e.g. affective and cognitive ones) other than only explicit 33 

technical information (Wang and Tseng 2011), thus, the function-based methods need to be improved 34 

accordingly. Also, due to the customer heterogeneity with different opinions and various subjective 35 

information expressed, it inevitably contains much vagueness which needs to be interpreted into design 36 

specifications properly and rapidly. 37 

Quality function deployment (QFD), which introduced by Akao (1972), has been a widely 38 

adopted methodology in assisting customer-oriented product development process (Zheng et al. 2015). 39 

It provides a systematic framework to analyse the customer need and to map them into design 40 

specifications all over the product development process (Goncalves-Coelho 2005). QFD has proven to 41 

have many advantages ever since its first application, such as: improve customer satisfaction, reduce 42 

product development cost, shorten the time-to-market, and enhance the multi-disciplined teamwork in 43 

the product development process (Cohen and Cohen 1995). The key element of QFD is a combined 44 

chart which is called the house of quality (HoQ) to map the CRs (the ‘WHATs’) into corresponding 45 

adjusted engineering characteristics (the ‘HOWs’) that fulfil the CRs in product planning stage, and 46 

subsequently into parts characteristics, process plans, and manufacture operations (Luo et al. ; Zheng et 47 

al. 2015). The major issue of QFD product planning is to determine the final importance ratings of CRs 48 

(Y.-L. Li et al. 2012), as its accuracy will largely affect the product success. In general, the 49 

determination process contains five steps: 1) identify CRs; 2) determine the relative importance ratings 50 

(RIRs) of CRs; 3) undertake competitive analysis of CRs; 4) set the suitable improvement ratio of CRs; 51 

and 5) determine the final importance ratings of CRs, among which the first two steps are particularly 52 

significant as they are directly related to the ‘voice of customer’ (VOC). Selection of representatives 53 

with reasonable knowledge of the product/service, and elicitation of their preferences of the CRs are a 54 

necessity (Franceschini et al. 2015). 55 

This work introduces a way to determine the RIRs of CRs more accurately and effectively from 56 

the identified CRs by proposing a novel rough set based method, i.e. interval rough numbers method to 57 

manage the imprecise design information in product planning stage. The rest of the paper is organized 58 

as follows. Section 2 gives a comprehensive review of the typical RIR methods in QFD product 59 

planning process, and a comparison of two major approaches in dealing with imprecise information of 60 
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CRs: the fuzzy set theory method and the rough set theory method. Section 3 proposes a weighted 61 

interval rough number method and based on that, describes the detailed procedures of determining the 62 

RIRs correspondingly. Section 4 gives an illustrative example of mountain bicycle frameset product to 63 

validate the proposed method and procedures. Then, to validate its advantages, a comparative study of 64 

fuzzy weighted average method, rough number method and the proposed one is conducted with respect 65 

to preference ordering consistency and robustness in Section 5. Finally, discussions and the major 66 

contributions of this work are summarized in Section 6. 67 

2. Literature review of RIR methods in QFD product planning 68 

Relative importance, same as weightings, is usually defined by customers articulating their preferred 69 

trade-offs between the CRs. Customers can define the relative importance mainly through three ways: 70 

direct assignment, pairwise comparison and preference ordering, a comprehensive review of typical 71 

RIR methods in recent research work is given in Table 1.  72 

For direct assignment, a user can directly evaluate the relative importance of one CR over the 73 

others in a certain scale, such as the point scoring scale (e.g. 1-5, 1-10) (Hauser and Clausing 1988; 74 

Griffin and Hauser 1993; Ramanathan and Jiang 2009). This technique is simple and straightforward. 75 

Customers who can precisely describe their preferences in this way will benefit from its simple input, 76 

otherwise they may face difficulties to choose correct values especially in the early design stage when 77 

information is limited. Also, as the priority rank is dependent on its rating scale, there is low robustness 78 

among variations (Chuang 2001; Nahm et al. 2013). Another problem is that customers have a 79 

tendency to rate every attribute (Lai et al. 2008; Chuang 2001) with the highest possible scores, which 80 

cannot assist the prioritizing process for final importance rating accurately. Despite the drawbacks, it is 81 

still a widely used way in marketing analysis, for its usability, small input effort and flexibility. 82 

The pairwise comparison technique asks customers to compare a pair of CRs each time. It is based 83 

on the assumption that it is much easier for a customer to place a comparative value rather than an 84 

absolute one (Braglia and Petroni 1999). Conjoint analysis (Griffin  and Hauser 1993; Jiang et al. 2005) 85 

is a typical way to determining the relative importance of CRs. Another similar method is Saaty’s 1–9 86 

scale in an analytic hierarchy process (AHP) approach (Saaty 1977). It has been widely used in 87 

determining the RIRs of CRs in the QFD product planning process (Ho 2008; Y. L. Li et al. 2010; H. 88 

Raharjo et al. 2011; Y. L. Li et al. 2011; Y.-L. Li et al. 2012). However, the relative importance matrix 89 

is inevitably arbitrary, subjective and inconsistent in judgments (Rao, Padmanabhan 2007). Besides, 90 

this approach is based on the hypothesis that the CRs are independent. The dependency implies a 91 

heavier weight of these joint attributes (Ishizaka, Nemery 2013). To overcome the limitation of 92 

interdependency, the analytic network process (ANP) method (Ertay et al. 2005; Hendry Raharjo et al. 93 

2008; Geng et al. 2010) was utilized in a similar way. However, for all these methods, customers need 94 
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to provide a comparison for each pair of attributes, which requires much detailed information from 95 

customers and sometimes beyond customer’s knowledge capability (Chan et al. 1999).  96 

For preference ordering method, each customer is asked to give his/her individual ranking of CR 97 

preferences instead of assigning different ratings by a certain rating scale or by elaborate pairwise 98 

comparison. The final importance ranking of CRs is determined by the aggregated weights of each 99 

customer’s preference order. It overcomes the shortage of too much elaborate input effort from 100 

customers, and also it is capable of dealing with incomplete information (e.g. partial comparison). 101 

Nahm et al. (2013) proposed a preference-graph (PG) method which utilizes dominant matrix to 102 

represent customer’s preference ordering. However, the ranking might not reflect final RIR accurately 103 

due to its questionable operations and lack of relative importance weights among CRs. Moreover, 104 

Franceschini et al. (2015) proposed a generalized Yager’s method in determining the RIRs, which aims 105 

to fuse the preference orderings of different CRs by multiple interviewed customers into a consensus 106 

fused ordering.  107 

 On the other hand, in the development of a product planning HoQ, customers’ perceptions of a 108 

product are elicited through marketing techniques and then categorized into a number of major CRs, 109 

which usually consists of linguistic expressions with ambiguity and multiple meanings, such as ‘low 110 

importance’, ‘high performance’. In order to deal with imprecise or vague information, Zadeh’s (1965) 111 

fuzzy set theory was widely used, such as fuzzy AHP (C. K. Kwong and Bai 2002; C. Kwong and Bai 112 

2003), fuzzy ANP (Büyüközkan et al. 2004; Kahraman et al. 2006; Lee et al. 2010), fuzzy weighted 113 

average (Liu 2005; Chen et al. 2006). Furthermore, the variability of customer opinions, known as 114 

customer heterogeneity, causes vagueness in determining the consistency of RIRs. In such cases, fuzzy 115 

group decision-making methods were proposed to address it by fusing individual preferences into a 116 

consistent single order (Buyukozkan et al. 2007; Zhang and Chu 2009; C. K. Kwong et al. 2011).  117 

 Though fuzzy set theory is somewhat capable of handling vagueness, however, its selection of 118 

membership function lacks objectivity, which is usually determined based on engineers’ experience and 119 

intuition subjectively (Jin 2003). Thus, rough set based methods, first proposed by Pawlak (1982), was 120 

utilized to deal with the subjective assessments in the product planning HoQ. In literature, the rough set 121 

(Y. Li et al. 2009; Y. Li et al. 2010) and rough number method (L.-Y. Zhai et al. 2008; L. Y. Zhai et al. 122 

2009, 2010; Song et al. 2013) were proposed. Unlike fuzzy set theory which defines a set by a partial 123 

membership without clear boundary, the rough set theory utilizes the boundary region of a set to 124 

express vagueness (Pawlak 1982; L. Y. Zhai et al. 2009). Also, there is no need for it to require any 125 

external or additional subjective information to analyse data (L. Khoo et al. 1999; Pawlak 1982), the 126 

measurement of vagueness is computed based on the uncertainty already inherent in the data (L.-P. 127 

Khoo and Zhai 2001), which remains its objectivity. Moreover, rough set theory is suitable for 128 

small-sized data set which statistical methods are not (Pawlak 1991; L. Y. Zhai et al. 2009). A 129 



5 
 

comparison of fuzzy set theory and rough set theory based methods in the QFD product planning RIR 130 

determination is given in Table 2. 131 

132 
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Table 1 Literature review of typical types of RIR methods in QFD product planning 1 

 2 

Table 2 Comparison of fuzzy set theory and rough set theory in determining RIRs of CRs 3 

Though the existing rough number method (L. Y. Zhai et al. 2008, 2009) works well in 4 

determining the RIR of CRs, it has two shortages: 5 

(1) Customers’ perceptions are rated in crisp numbers, which is not flexible and might not be 6 

appropriate in real life, e.g. customers’ feeling of ‘low importance’ should be defined by 7 

themselves in a predefined rating scale rather than designer’s interpretation of ‘low 8 

importance – 1’ in a crisp number or ‘low importance – (0, 0, 2)’ in a fuzzy set. 9 

(2) Customer heterogeneity is not considered. The hierarchical importance of each customer is 10 

not included. Also, the difference of customers’ importance ratings (i.e. fluctuation) is 11 

regarded as the vagueness incorporated into the final calculation without consistency 12 

evaluation, which may not reflect customer preferences accurately. 13 

3. Weighted interval rough number method 14 

Aiming to enhance the existing rough set based methods and determine the RIRs more flexibly and 15 

accurately, this research proposes a weighted interval rough number method. It treats the fusion of 16 

customer heterogeneity by assigning different weights to each customer according to his/her 17 

‘performance’. Also, the flexibility of customer perception is defined as an interval number within a 18 

predefined rating scale. The detail information is introduced as follows. 19 

3.1 Definition of interval rough number 20 

In order to determine RIRs of CRs, the proposed method adopted some fundamental theories of 21 

Zhai et al. (2008, 2009) work to derive the definitions of interval rough number.  22 

Assume there is a set of k classes of customer perceptions (e.g. expectation), R = (J1, J2, … , Jk) 23 

ordered in a sequence of J1 < J2 < …< Jk, and another set of m classes, R* = {I 1, I2,…, Im} defined in 24 

the universe. In R* each class is presented in an interval, as I i = {I li , Iui}; I li ,İI ui; 1İiİm; I li ,, IuięR. 25 

I li , stands for the lower boundary and I ui the upper of the ith class. Assume that U is the universe 26 

consisting of every object and Y stands for any object of U. If both the lower and upper boundary 27 

classes are ordered in the manner of I l1*  < I l2*  <…I lj *, Iu1*  < I u2*  <…Iuk* (1 İ j, k İ m), 28 

respectively, then define another two sets of lower classes Rl* = (I l1* , I l2*  …, Ilj * } and upper classes as 29 

Ru* =  {I u1* , Iu2*  …, Iuk* }, respectively. For any class I li *ęR, 1İ iİ j, and I ui*ęR, 1İiİk, the 30 
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lower approximation of I li * and I ui* are defined as: 1 

(1) 2 

 3 

(2) 4 

, and the upper approximation of ܫכ and ܫ௨כ are represented as: 5 

(3) 6 

 7 

(4) 8 

Thus, both the lower class ܫכ and upper class ܫ௨כ are defined by its lower limit Lim(ܫ*) 9 

and Lim(ܫ௨*), and the upper limit ܮଓ݉തതതതത(ܫ*) and ܮଓ݉തതതതത(ܫ௨*) respectively, where 10 

(5) 11 

 12 

(6) 13 

, where ML, ML*  are the sum of containing objects in the lower approximation of ܫכ and ܫ௨14 כ 

respectively; and 15 

(7) 16 

 17 

(8) 18 

, where MU, MU*  are the ones contained in the upper approximation of ܫכ  and ܫ௨כ , 19 

respectively. 20 

For the lower class, the rough boundary interval of I li * is the interval between the its lower and 21 

upper limit, which is represented as RB(ܫ*) : 22 

(9) 23 

, and for the upper class, rough boundary interval of ܫ௨כ is: 24 

(10) 25 

The vague class ܫכ and ܫ௨כ can be expressed by its lower limit and upper limit as follows: 26 

(11) 27 

 28 

(12) 29 

Since each class is defined by both its lower and upper boundaries rather than a crisp number 30 

defined by rough number method, it is called interval rough number, which is defined as: 31 

( ) ( ){ }* / * *li l liApr I Y U R Y I= ∪ ∈ ≥

( ) ( ){ }* / * *ui u uiApr I Y U R Y I= ∪ ∈ ≥

( ) ( )* *
1

| ( )
*

*
L

ui u uiLim R YI IY Apr
M

=∈ ∑

( ) ( )1
* * )*| (l i l l i

L

Lim R YI IY Apr
M

=∈ ∑

( ) ( )1
* * )*| (l i l l i

U

Lim R YI IY Apr
M

=∈ ∑

( ) ( )* *
1

| ( )
*

*
U

ui u uiLim R YI IY Apr
M

=∈ ∑

( ) ( ) ( ) * * *li l i l iI IRB Lim Li Im= −

( ) ( ) ( ) * * *ui ui uiI IRB Lim Li Im= −

( ) ( ) ( )* *,*li li liIRN Lim Li ImI=

( ) ( ) ( )* *,*ui ui uiIRN Lim Li ImI=

( ){ }( *) / * *li l liApr I Y U R Y I= ∪ ∈ ≤

( ){ }( *) / * *ui u uiApr I Y U R Y I= ∪ ∈ ≤
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(13) 1 

3.2 Assignment of customer weight 2 

Customers often have different ideas of CRs, and normally the existing RIR methods treat the 3 

customers as equally important, which is not flexible and sometimes cannot reflect the actual 4 

preferences in a segmented market. For example, the reliability of an anonymous online questionnaire 5 

is reasonably lower than a face-to-face interview with lead users. Despite marketing strategies, even 6 

utilizing the same method, it is assumed that customers who are more likely to provide accurate RIRs 7 

information of CRs should be considered as more important than other ones. It can depend on 8 

(Franceschini et al. 2015): 9 

1) their level of participation and attention in the survey; 10 

2) their degree of experience and familiarity regarding product related knowledge; 11 

3) their level of education. 12 

In this regard, assume that there are M customers participating in the determination of RIRs, each 13 

customer is assigned with a weight wj , (1İjİM), i stands for the ith customer, and the total weights 14 

equals to: 15 

(14) 16 

3.3 Procedures of determining the RIRs 17 

Based on the proposed interval rough number method, the procedures of determining the RIRs of 18 

CRs contain 6 steps, as shown in Fig. 1. 19 

 20 

Fig. 1 Procedures of determining RIRs of CRs  21 

Step 1: Identification of CRs (WHATs)  22 

 In order to acquire the VOC, many marketing strategies have been proposed, such as: purchase 23 

history, focus group, lead user analysis, ethnography, brainstorm, etc. (Cooper and Dreher 2010). Also, 24 

many techniques were brought out in capturing the CRs, such as: virtual reality (VR) (Chryssolouris et 25 

al. 2007), product ecosystem (Zhou et al. 2011), recommender system (Fleder and Hosanagar 2009), 26 

co-design toolkits (Mugge et al. 2009) and human-computer interactions (Durka et al. 2012). Generally, 27 

these methodologies are combined to achieve more accurate information. Then, market analysts 28 

identify and categorize these raw information into the major high-level CRs by affinity diagram or tree 29 

diagrams. 30 

( ) ( ) ( )* * *i li uiI I I IRN RN RN=   ˈ

1

1
M

j
j

w
=

=∑
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Step 2: Customer weight and importance ratings of CRs 1 

After eliciting the major CRs in Step 1, the customers are asked to give their preferences of each 2 

CR by direct assignment of ratings. The range of ratings is pre-determined by the marketing analysts 3 

which generally utilizes the discrete numbers in certain scale, such as: 1-5 and 1-9 points. It 4 

corresponds to the level of importance, i.e. a bigger number stands for a more important CR. 5 

Customers can either rate by a crisp number (e.g. 1, 3, 5) with certainty or by interval numbers in 6 

uncertainty (e.g. [1, 2], [3, 5]), which represents the flexibility of customer expression. Also, marketing 7 

analysts need to determine the ‘reliability’ of customers by assigning each customer with a certain 8 

weight (see Section 3.2). 9 

Step 3: Quantification of ratings by interval rough number 10 

According to the definition in Section 3.1, the customer interval importance ratings are calculated 11 

with its lower class and upper class, respectively. For example, 3 customers’ (A, B, C) ratings of 12 

requirement R* is: R* = {(1, 3), (3, 3), (3, 5)}. Based on Eqs. (1) to (4): 13 

Lower approximation of customer A’s lower and upper class: 14 

 15 

Upper approximations of customer A’s lower and upper class: 16 

 17 

, thus, according to Eqs. (5) to (8), A’s lower limit and upper limit equals to: 18 

 19 

 20 

 , and A’s lower and upper rating range is calculated by Eqs. (11) and (12) as interval rough 21 

numbers: 22 

  23 

According to Zhai et al. (2008), rough number uses boundary intervals to describe the imprecision 24 

of data. Therefore, the arithmetic operations defined in interval analysis (Kaufmann et al. 1985; Moore 25 

1966) can be extended to the proposed interval rough number method. Thus, based on Eqs. (11) to (14), 26 

the overall average upper and lower importance ratings of each CR can be determined as follows: 27 

(15) 28 

, where AIR(CRi) stands for the average importance rating of CRi ; M is the total number of 29 

( ) ( )( )
1

M

i j i
j

AIR CR w RN Ct j
=

=∑

{ }1( *) (1) 1lApr I Apr= =

( ) ( ) { }1 * 1 1, 3, 3lApr I Apr= =

{ }1( *) (3) 3, 3uApr I Apr= =

( ) ( ) { }1 * 3 3, 3, 5uApr I Apr= =

( ) ( )1

1
(1)* 1 1

1lLim LimI = = × = ( ) ( )1

1
3 (3 3)

2
* 3uLim LI im= = × + =

( ) ( )1

1 7
(1 3 3)

3 3
* 1lLim LimI = = + + = ( ) ( )1

1 11
(3 3 5)

3
* 3

3uLim LimI = = + + =

( ) ( ) ( )1 * 1
7

, 1
3

1 ,lRN Lim LI im== ( ) ( ) ( )1 ,
11

* 3 3 3
3

= ,uRN Lim LimI =
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customers involved in ratings; wj  is the weight of jth customer; and RN(Ct(j)) is the calculated interval 1 

rating range given by the jth customer for CRi . Taking requirement R* as an example, if the weights of 2 

customer A, B, C are (0.2, 0.3, 0.5), then based on Eq. (15), the lower class average importance ratings 3 

is:  4 

 5 

 6 

, and the upper class average importance rating is:  7 

 8 

Step 4: Determine if the design is consistent 9 

 In order to determine the rating is acceptable, the average importance ratings are first normalized 10 

and depicted in a bar graph, as shown in Fig. 2. The normalization process is represented as: 11 

 12 

(16) 13 

, in which ( )iAIR CR  stands for the normalized average importance rating and max rating 14 

stands for the maximum number in the rating scale. In Fig. 2, if no intersection is found between upper 15 

and lower class, the red part shows the range of lower class, which stands for the customers’ lower 16 

perceptions towards the importance ratings; and the purple part show the range of upper class, which 17 

stands for the customers’ higher perceptions towards the importance ratings. If intersection is found, 18 

the green part shows the intersection part of upper class and lower class of importance ratings, which 19 

the lower range and upper range is defined by adding the green part to the red and purple part, 20 

respectively. Since the range of each class is determined by customers’ various perceptions, it shows 21 

the fluctuation of customers’ importance ratings of each CR. The larger the range of a class is, the more 22 

vague (or different) customers’ perceptions of this CR are. For example, in Fig. 2, both the upper and 23 

lower class fluctuation of customer perceptions of CR3 are smaller than any other CRs. 24 

 25 

Fig. 2 Bar-graph of customer importance ratings of CRs 26 

As shown in Fig. 3, if the upper range and lower range of customer importance rating has no 27 

intersection part, we call it consensus rating which means that customers are consistent towards the 28 

“WHATs”. However, if the upper range and lower range has intersection, we call it controversial rating 29 

(Fig. 3). The intersection means customers have controversial attitude towards ‘WHATs’. The larger 30 

intersection part overlaps, the more controversy it has.  31 

In the scope of controversial rating, there are two types of rating, i.e. acceptable rating and 32 

( ) 7 7 7 31 43
* 0.2 1, 0.3 ,3 0.5 ,3 = ,

3 3 3 15 15lAIR R
       = × + × + ×              

( ) 11 11 11 53 73
* 0.2 3, 0.3 ,5 0.5 ,5 = ,

3 3 3 15 15uAIR R
       = × + × + ×              

( ) ( )i
i

AIR CR
AIR CR

Max rating
=
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inconsistent rating. It is determined by comparing the normalized range of intersection part with a 1 

threshold value k based on designer’s experience. If the overlapping range is bigger than the threshold 2 

value, it means that customers’ perception of the specific CR is controversial and further investigation 3 

needs to be conducted. Only acceptable rating and consensus rating are regarded as consistent and 4 

could be taken into further definition of relative importance range. 5 

 6 

Fig. 3 Definition of consensus rating and controversial rating 7 

Step 5: Define upper and lower class relative importance range 8 

After Step 4, if the design is acceptable or consensus, we define the relative customer importance 9 

range of CRi , represented by ܴܰ(I i*) is defined as:  10 

 11 

   (17) 12 

 13 

, let 14 

(18) 15 

 16 

(19) 17 

, where ( )*L
iRN I  stands for the lower boundary of relative customer importance range of CRi , and 18 

( )*U
iRN I stands for its upper boundary, e.g. the relative customer importance range of R* is:  19 

   20 

 , and its lower boundary and upper boundary are: 21 

 22 

Step 6: Transform importance range into final RIR 23 

To covert the relative importance range of each CR into crisp number of final RIR, we define an 24 

indicator Ȝ i  (0 ߣ 1) to transform the rough boundary interval into final ܴܫ)ܴܫ  Based on Eqs. 25 .(כ

(9), (10) and (15), the transformation calculation is as follows: 26 

(20) 27 

(21) 28 

From Eqs. (20) and (21), one can find that Ȝ i  is determined by the average lower and upper 29 

( )
( )( ) ( )( )( )
( )( ) ( )( )( )

min , ,
*

ma

*

* *x ,

*
i

ui l i

ui l i

AIR Lim AIR Lim
RN I

AIR

I I

Lim A R Lim III

 
 =  
  

( ) ( )( ) ( )( )( )* min ,* *ui l
L

i iRN I AIR Lim AIR LimI I=

( ) ( )( ) ( )( )( )* max ,* *ui l
U

i iRN I AIR Lim AIR LimI I=

( )1

43 53

15 15
RN I

 =   
,

( ) ( )1 1

43 53
;

15 15
L URN I RN I==

( )( )
( )( ) ( )( )

*

* *

 

    
i

ui

li ui

RB AIR

RB AIR RB AIR

I

I I
λ =

+

( ) ( ) ( )* * (1 ) *L U
i i i i iRIR I RN I RN Iλ λ= + −
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importance ratings. Take R* as an example: 1 

 2 

 3 

 4 

4. An illustrative example 5 

To validate the proposed method, this work gives an illustrative example on a mountain bicycle 6 

frameset from a local bicycle company in New Zealand. The company intends to develop a customized 7 

frameset with multiple options for customers’ selection. The initial marketing analysis has already been 8 

conducted by the company’s marketing team, and 8 major CRs are elicited and refined by online 9 

questionnaire and after sale feedback. Affinity diagram is utilized to organize these CRs into 3 10 

categories (Step 1), i.e.:  11 

Functional group:  12 

CR1: the frameset need to be robust for mountain road (reliable)  13 

CR2: the frameset should be light-weighted and easy to carry (light weight) 14 

CR3: the frameset need to consider speed issues when assembling with headset and wheels 15 

(sporty) 16 

CR4: the shape of the frameset can be adjustable to fit multi-use (flexible) 17 

CR8: the frameset need to be waterproof (rust resistance) 18 

Affective group: 19 

CR5: the frameset should look great with personalized options (e.g. painting, shape) (aesthetic) 20 

CR6: the frameset should be comfortable to ride on (comfortable)  21 

Cost-related group: 22 

CR7: the frameset should be economical (low cost) 23 

In this example, the importance rating scale of CRs is defined in 1-9 scores, of which: 1 – not at 24 

all; 3 – little; 5 – medium important; 7 – important; 9 – extreme important. Also, for simplicity and to 25 

compare the ranking result with existing methods (i.e. rough number method, fuzzy weighted average 26 

method) which do not distinguish customers’ relative importance, the rating process (Step 2) was 27 

conducted twice by focus group from 9 lead customers (Ct) with equal importance. They were 28 

introduced about the prospective product with CRs, and had an interactive discussion with other 29 

members before they were asked to give the RIRs of the CRs both in crisp number and in interval 30 

numbers respectively, as shown in Table 3.  31 

Table 3 Importance ratings towards WHATs (CRs) in both crisp and interval number 32 

*

20 15 5

12 15+ 20 15 8Rλ ==

( ) 5 43 5 53
* (1 ) 4

8 15 8 9
RIR R = × + − × =
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Based on the definitions described in Section 3.1, the rough approximations and interval rough 1 

numbers of importance ratings towards WHATs (see Table 3) can be easily calculated. In such case, the 2 

9 lead customers’ perceptions of importance ratings are defined by interval numbers rather than a crisp 3 

number. Take CR1 in Table 3 as an example: 9 customers provided four lower classes and four upper 4 

classes for the importance rating of CR1. In the lower classes: class “4” rated by customer 5 and 6 (Ct5, 5 

Ct6); class “5” rated by customer 3 and 7 (Ct3, Ct7); class “6” rated by customer 1, 4, 8 and 9 (Ct1, Ct4 6 

Ct8, Ct9); and class “7” rated by customer 2 (Ct2). In the upper class: class “4” rated by customer 6 7 

(Ct6); class “6” rated by customer 5 (Ct5); class “7” rated by customer 4, 7 and 8 (Ct4, Ct7, Ct8); and 8 

class “8” rated by customer 1, 2, 3 and 9 (Ct1, Ct2, Ct3, Ct9). Using Eqs. (1) to (8), the lower and upper 9 

limits, the rough boundary interval, and the interval rough number of both lower class and upper class 10 

can be calculated, as shown in Table 4 and Table 5, respectively. Then, following Eqs. (15) and (16), 11 

the average rating range of each CR is normalized and depicted in bar graph, as shown in Fig. 2 (Step 12 

3). 13 

 14 

Table 4 Calculation result of importance ratings of lower interval rough numbers 15 

 16 

Table 5 Calculation result of importance ratings of upper interval rough numbers 17 

 18 

From Fig. 2, one can find that CR1, CR3, CR5, CR6, CR8 has no intersection part, which means 19 

that the importance ratings from customers are consistent, known as consensus rating; and CR2, CR4, 20 

CR7 has an intersection part, respectively. It shows the vagueness among customers towards the 21 

importance ratings, known as controversial rating. Assuming the threshold value k = 0.2, thus, CR7 22 

(0.078) is acceptable for further product planning process, i.e.: acceptable rating, while CR2 (0.267), 23 

CR4 (0.267) are inconsistent ratings, which needs to be re-investigated by marketing team for 24 

consistency (Step 4). 25 

For the later comparison with rough number method and fuzzy weighted average method (Section 26 

5), it is assumed that data in Step 4 are all acceptable. Thus, according to Eqs. (17) to (19), the upper 27 

and lower class relative importance range are calculated (Step 5), as shown in Table 6. For example, 28 

customers’ perceptions towards CR7: low cost is: [6.0, 7.6] for lower class and [6.9, 8.4] for upper class, 29 

respectively. Finally, according to Step 6, the indicator and its corresponding final RIR is calculated 30 

based on Eqs. (21) and (22), as shown in Table 7. From the table, one can find that the importance 31 

ranking of the CRs is: CR3 > CR7 > CR5 > CR1 > CR8 > CR2 > CR4 > CR6. 32 

 33 

Table 6 The calculation results of average importance ratings of CRs in lower and upper classes 34 

 35 

Table 7 The calculation result of relative importance ratings of CRs 36 
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 1 

5. A comparative study 2 

A comparative study among Zhai et al. (2008, 2009) rough number method, Chen et al. (2006) fuzzy 3 

average weighted method and the proposed one is conducted based on two concerns: consistency of the 4 

fused ordering and the robustness of evaluation. 5 

5.1 Ranking result of existing methods 6 

5.1.1 Rough number method 7 

The customers’ importance ratings of CRs using rough number method are calculated based on the 8 

crisp ratings of customers (Table 8). Since it follows the same arithmetic operation rules as interval 9 

rough number, the normalized results of customer importance ratings of CRs (WHATs) using rough 10 

number method is depicted in Fig. 4. According to the ranking rules of Zhai et al. (2008, 2009), in such 11 

cases, the preference order of CRs is: CR3 > CR7 > CR5 > CR1 > CR8 > CR2 > CR4 > CR6, which is 12 

the same as the proposed method. 13 

 14 

Table 8 Calculation result of importance ratings of WHATs using rough number 15 

 16 

Fig. 4  Normalized customer importance ratings of CRs using rough number method 17 

 18 

5.1.2 Fuzzy weighted average method 19 

According to Chen et al. (2006), customers’ vague expressions are represented by triangular fuzzy 20 

numbers (TFNs) in the fuzzy sets, and the fuzzy boundary interval is defined by designer’s 21 

interpretation as a number “2” constantly, as shown in Table 9. For example, in fuzzy cases, customer’s 22 

perception of medium importance is defined as a TFN (3, 5, 7) within the predefined fuzzy set. In such 23 

case, the weight of each CR is determined by:  24 

 25 

(22) 26 

where 
k
iw stands for the kth customer’s normalized rating of ith CR and n stands for the number of 27 

customers. In this case, the normalized RIRs of CRs is depicted in Fig. 6, which the ranking result can 28 

be derived as: CR3 > CR7 > CR5 > CR1 > CR8 > CR2 > CR4 > CR6, which also matches the proposed 29 

method. 30 

1

1 n
k

i i
k

w w
n =
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All in all, f rom the perspective of ranking results, it can be inferred that the proposed method can 1 

perform as well as the existing methods. Moreover, from the perspective of ranking objectivity, the 2 

rough number method and proposed method outperforms the fuzzy weighted average method by 3 

computing within the inherent data from customers’ own information rather than subjectively selecting 4 

the fuzzy membership function by designers. Thus, the calculation result of rough set based methods is 5 

more objective and somehow reliable than fuzzy one. Also, in rough set based methods, the more 6 

vagueness of customers’ perceptions will result in a bigger rough boundary interval (see Fig. 2 and Fig. 7 

5), while it is not reflected in fuzzy weighted average method due to its rigid fuzzy boundary interval 8 

selection. This again, outperforms fuzzy weighted average by displaying the customer heterogeneity 9 

more straightforward. Besides, the proposed interval rough number method enables the flexibility of 10 

customer ratings, and also takes the relative importance of customers into the RIR decision making 11 

process, which excels the existing rough number method as well. 12 

Table 9 Calculation result of importance ratings of WHATs using TFNs 13 

 14 

Fig. 5 Normalized customer importance ratings of CRs using fuzzy weighted average method 15 

5.2 Consistency of the fused ordering 16 

The consistency of the fused ordering here is defined as the consistency between the output 17 

ranking result of the proposed interval rough number method and the input customer preference 18 

orderings. It can be demonstrated in a simple way, which the fused ordering and the customers’ 19 

preference orderings are pairwise compared between CRs (Franceschini et al. 2015). 20 

For simplicity, we take the consensus ratings from the first 4 rankings (i.e.: CR3 > CR5 > CR1), 21 

and the last 4 rankings containing controversial ratings of the fused ordering into consideration. For 22 

example, from CR3 > CR5 > CR1, we can obtain the information CR3 > CR5, CR3 > CR1, CR5 > CR1. 23 

Following this, the pairwise comparison relations are depicted in Table 10 and Table 11, respectively. 24 

It can be seen that, in the ranking only with consensus ratings, for each pairwise comparison, the 25 

relation gained from the fused ordering is always the most frequent in customers’ preference orderings, 26 

while in the ranking with controversial ratings, due to the large fluctuation of customer perceptions, it 27 

may not be consistent with customers’ preference orderings (e.g. CR8 and CR2). 28 

In the existing methods, such as rough number method and fuzzy weighted average method, they 29 

do not take this controversy into consideration when fusing the customer information, and thus 30 

sometimes they cannot reflect customer preferences accurately. In our method, we outperformed those 31 

methods by setting a threshold value k regarding the controversial ratings of customers. If the 32 

fluctuation range is bigger than k, it is suggested that the customers’ importance ratings of the CR be 33 

re-investigated rather than just fused with little care. In such case, the consistency of the ranking can be 34 
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guaranteed by re-determining the ratings that are inconsistent (e.g. CR2, CR4) 1 

 2 

Table 10 Pairwise comparison between the consensus ratings among first 4 rankings of the fused 3 

ordering and the customer’s preference orderings 4 

 5 

Table 11 Pairwise comparison between the last 4 rankings of the fused ordering and the customer’s 6 

preference orderings 7 

5.3 Sensitivity analysis 8 

Since the proposed method is based on a direct assignment of ratings, the rating scale needs to be 9 

stable all along the rating process (Chuang 2001; Nahm et al. 2013). In such case, the evaluation of 10 

robustness is performed by a sensitivity analysis of the proposed method and the other two existing 11 

methods with respect to a slight variation of the sample size. We select only the first 8 customers as 12 

another sample, and compare the result with the original one in Tables 6 and 7.  13 

On one hand, following the proposed procedures of determining the RIRs, the calculation results 14 

of the 8 customers’ sample are derived in Table 12. It can be found that the ranking of 8 customers’ 15 

preference is represented as: CR3 > CR7 > CR5 > CR8 > CR1 > CR2 > CR4 > CR6, which only CR8 16 

and CR1 exchange the ranking positions with respect to Table 7, and the importance rating difference 17 

of these two CRs remains very small, which somehow maintains its robustness in analysing CRs with 18 

limited information. Moreover, in Table 12, both the upper and lower class average ranges are different 19 

from the original ones. This is due to the calculation process based on Eqs. (1) to (8), which instead of 20 

having the same boundary intervals as fuzzy weighted average method, the intervals in interval rough 21 

number method are calculated by the inputs from the customer and their stability are determined by the 22 

consistent ratings from customers.  23 

On the other hand, the results of RIRs based on rough number method and fuzzy weighted average 24 

method are also calculated based on the previous work, as shown in Table 13. For the rough number 25 

method, the ranking can be derived as: CR3 > CR7 > CR5 > CR8 > CR1 > CR2 > CR4 > CR6, which is 26 

the same as the proposed method. Compared with the 9-customer sample, again, only the CR8 and CR1 27 

exchange the ranking positions with a small importance rating difference as well. As both methods 28 

share the similar calculation process, it is convincible that the proposed method can perform as well as 29 

the rough number method in robustness concerns. For the fuzzy weighted average method, the ranking 30 

is: CR3 > CR7 > CR5 > CR1 = CR8 > CR2 > CR4 > CR6, which only the ranking position between CR8 31 

and CR1 has been changed due to the scale down of sample size. Also, it can be found that in Table 13, 32 

the interval boundary of fuzzy weighted average method is kept the same by designer’s own 33 

membership function selection. 34 
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From the comparison result, one can conclude that the proposed method perform equally well as, if 1 

not better than the rough number method and fuzzy weighted average method in regards to the 2 

robustness of determining RIRs. 3 

 4 

Table 12 The preference rating result of each CR in the sample size of 8 customers 5 

 6 

Table 13 The RIR result based on an 8-customer sample by rough number method and fuzzy weighted 7 

average method 8 

 9 

6. Conclusion 10 

Determination of the RIRs and correspondingly the final importance ratings of CRs is a critical 11 

step in QFD product planning process. Due to the vagueness of CRs, in literature, both fuzzy numbers 12 

and rough numbers methods were utilized to quantify them so as to identify engineering characteristics 13 

in the QFD product planning phase. However, for fuzzy numbers methods, the selection of membership 14 

functions is normally subjective and remains unsolved. For the rough numbers method, though the 15 

measure of vagueness is computed based on the uncertainty already inherent in the data, the existing 16 

method lacks flexibility in customer rating and did not take customer heterogeneity into consideration, 17 

which may not truly reflect customer preferences in the RIR process.  18 

Aiming to improve the existing approaches by evaluating CRs more objectively and accurately, 19 

this paper proposed a weighted interval rough number method. CRs are rated with interval numbers, 20 

rather than a crisp number, which is more truthful and flexible in real life. The definition and analytical 21 

algorithms of the proposed method were introduced in details. Also, for customer heterogeneity 22 

concerns, the ‘reliability’ of fused ratings is determined by assigning each customer a weight. Then, the 23 

design rules and procedures of determining the RIRs of CRs are described. According to its design 24 

rules, in product planning stage, customer-oriented design could be classified into three categories: 25 

consensus design, acceptable design and confusing design. Only consensus design and acceptable 26 

design could be carried out in further design process, while confusing design should be re-investigated. 27 

To validate the proposed method, an example of bicycle frameset was undertaken in a local 28 

company, and both the ranking consistency and sensitivity of it had been analysed. A comparative study 29 

among fuzzy weighted average method, rough number method and the proposed one was conducted. 30 

The result showed that the interval rough number method can perform as well as the other two methods 31 

with regards to the robustness and consistency of RIRs calculation. Moreover, it has some advantages 32 

compared to the rough number method in two aspects. First, it provides a solution for treating 33 

hierarchical importance rating of CRs (customer heterogeneity) to engineers and marketing analysts, 34 
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which makes the rating process more accurately. Second, it gives customers more flexibility in 1 

determining the importance rating, which reflects the nature of customer perception vagueness. On the 2 

other hand, compared to fuzzy weighted average method, the result showed that the interval rough 3 

number method provides a more objective way in processing linguistic assessments and is more 4 

suitable for customised product planning process, especially when customer information is limited.  5 

The proposed method can be applied in "engineer-to-order" mode industries with a focus on 6 

customer-centric product development with limited CR information initially. However, the proposed 7 

method has its own limitations, as the large fluctuation of customer heterogeneity may result in 8 

inconsistency of RIRs. Therefore, it might not be applicable for product development which customer 9 

perceptions on each CR are significantly different. 10 
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