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Surface and subsurface changes as a result of tribocorrosion at the stem-neck interface of 

bi-modular prosthesis. 

 

ABSTRACT  

 

This study presents a detailed multi-scale analysis of the degradation processes occurring on both 

the CoCrMo and TMZF alloy surfaces at different regions across the taper interface. Co-ordinate 

measurement machine, scanning electron microscopy, transmission electron microscopy and X-ray 

Diffraction methods have been utilised to identify the roles of degradation from the mm to nm scale. 

Dependant on the region of interest, varying topographies and subsurface morphologies were 

observed across both surfaces. In regions where high pressures are expected, retention of the 

surface topography was seen on the CoCrMo trunnion. This was complimented by gross shear and 

plastic deformation of the subsurface material. In regions where maximum penetration was seen, 

evidence of fretting-corrosion was seen and a loss of the nano-crystalline layer. For the TMZF 

surface, refinement of the alloy was seen in the top 5 µm, with fatigue cracks within the bulk 

present. Precipitation and formation of oxide species were observed at depths of 2 µm. The 

degradation of bi-modular prosthesis is a complex multifactorial process. It is hypothesised that this 

formation of oxide species at the interface and within the bulk alloy play an important role in the 

degradation through a combined work-hardening and corrosion process.  

 

 

1. Introduction  

 

Modular taper interfaces are ubiquitous in modern Total Joint Replacement (TJR). Whilst their initial 

conception was to enable larger intra-operative range of choice of implants and reduced complexity 

of the surgical procedure, the introduction of such interfaces has proved problematic since the early 

1960’s [1]. Although modern TJR is considered a generally successful procedure, wear and 

corrosion at such interfaces is still one factor that can limit the lifetime of the prosthesis [2-5]. High 

revision rates owing to Adverse Reaction to Metal Debris (ARMD) and pseudotumour formation 

have been linked to metal ion release associated with the modular taper interfaces [6,3,5,7].  

Bi-modular prostheses have been implicated in higher revision rates owing to metallosis, ARMD and 

neck fracture [8-10]. Interest into their degradation mechanisms and biomechanics has been 

renewed due to the public withdrawal and recall of some products [11]. A number of recent 

publications have detailed the clinical presentation at revision, surface topography and regions in 

which degradation are commonly found [12-15]. All studies are consistent, reporting that 
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degradation of the implant is due to wear and corrosion; most present findings from the CoCrMo 

component in the system.   

Buente et al [16] recently quantified the material loss from 27 failed Rejuvenate™ prostheses 

(Figure 1). Material loss of the CoCrMo trunnion was observed. A correlation between total material 

loss and implantation time was observed with mass loss concentrated on the medial – lateral and 

anterior – posterior edges and evidence of debris across the surface of the trunnion component 

(Figure 1). The findings complemented those of Lanting et al [8]. Over the past 20 years extensive 

research has aimed to elucidate biomechanical, electrochemical, patient and system factors in the 

ultimate performance of conical modular taper systems [3,17,4,18]. Whilst a lot of work has been 

conducted in this area a full understanding of the degradation processes occurring within the local 

regions of the interfaces still does not exist around. 

This work presents a detailed evaluation of the surface and subsurface characteristics of a retrieved 

bi-modular THR, as reported in [16], with the aim of identifying how the combined actions of wear 

and corrosion affect local surface and subsurface appearance. It also aims to explain why 

accelerated degradation of the CoCrMo trunnion part is observed when compared to the Ti alloy. 

Using a variety of different evaluation tools, a detailed view of the degradation processes occurring 

at modular stem-neck interfaces is assessed across a number of different length scales.  

2. Methods 

2.1.  Implant type 

 

A single bi-modular prosthesis (Rejuvenate™, Stryker, USA), was evaluated in this study. The 

prosthesis consisted of a dual taper Ti–Mo–Zn-Fe (TMZF™, Stryker, USA) femoral component, and 

a Co–Cr–Mo (Vitallium™ Stryker, USA) modular femoral neck (Figure 1). Details of implant bearing 

combination, Goldberg taper score [19] and patient presentation can be found in [16] and can be 

identified as implant #14. Prior to evaluation surfaces were subjected to sterilisation wash and 

degreasing with acetone.  

2.2. Surface metrology analysis  
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In order to assess the location and distribution of tribocorrosion degradation occurring on both 

surfaces at the interface, tactile measurements of both the trunnion and taper portions were 

obtained using a co-ordinate measurement machine (CMM) and evaluated using methods and 

algorithms presented in [16]. The contours developed as a result aided the selection of areas in 

which to focus attention. Areas that presented regions of high, low and no deviation in depth about 

the reference plane were of interest. In addition localised areas of retained topography in regions of 

high wear (ie high gradients between degraded and non-degraded) were also of interest.  

2.3. X-ray Diffraction Analysis (XRD) 

XRD analysis was conducted to in an attempt to identify the crystalline nature of the alloys and to 

assess if any changes atomic arrangement or increase in residual strain within the microstructure 

had occurred due to the wear and corrosion processes. These were conducted on both alloys in 

regions of interest. An approximate volume of 5 mm x 2 mm x 4-6 µm deep (based on instrument 

used) was evaluated in all cases representing an average of the subsurface in a particular area. 2θ 

scans between 10° and 60° were carried out using Cu Kα radiation (X’Pert3, PANlytical, Almelo 

Lelyweg, Netherlands). The scan range selected allows the unambiguous determination of the 

coexistence of any organic or metallic phases. All scans were taken a minimum of three times. XRD 

measurements allow the quantification of bulk crystalline state at approximately 2-5 µm depth. 

2.4. Electron Microscopy and Chemical Evaluation 

Areas of particular interest were subsequently observed under both Scanning and Transmission 

Electron Microscopes (SEM/TEM) to facilitate image on the mm-µm and nm scale respectively. 

SEM analysis was conducted using a Carl EVO MA15 and Supra 55 VP FEG-REM (Ziess, 

Hamburg, Germany). Both microscopes were equipped with Energy Disperse X-ray Spectroscopy 

(EDS) to facilitate elemental analysis.  

To facilitate nano-scale evaluation of the surface and subsurface, a Focused Ion Beam (FIB) 

preparation method and subsequent TEM and EDX analysis was conducted. This was done 

according to the method outlined by Bryant et al [20]. FIB sections were taken from regions of 
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interest on both trunnion and taper components with effort made to ensure that the mating surface 

were analysed from each component. Reference samples were prepared from surfaces of the same 

implant that had undergone the same manufacturing processes as those in contact at the interface 

but had not been subjected to the mechanical or crevice corrosion conditions established within the 

interface (i.e. surface not within the interface).  Indexed diffraction patterns with associated miller 

indices can be found in the supporting materials. 

For the CoCrMo trunnion component, all analysis was conducted on an as-received component (i.e. 

no sectioning required due to its size). To facilitate electron microscopy and FIB preparation 

methods, the TMZF taper surface was sectioned using two methods. Wire erosion was used where 

local heating of the local surfaces was not deemed to be an issue (i.e. bulk sectioning and areas of 

interest of reasonable distance away from cut surface). For surfaces in which local heating was not 

desirable a MCS 300 Laser-MicroJet Cutter (Synova, Switzerland) was employed to eliminate any 

thermal damage which may be induced. 

3. Results 

 

3.1. CoCrMo Trunnion Analysis 

 

3.1.1. Surface deviations 

CMM contour plots are shown in Figure 2 for the CoCrMo trunnion component. Material loss varied 

as a function of the interface height and angle. High amounts of material loss was observed at the 

proximal-medial edges of the CoCrMo trunnion. A preserved patch of material was observed, 

surrounded by regions of high wear. Three areas of interest were highlighted by the CMM analysis 

and subject to further examination. These are indicated on Figure 2 and described as: 1 – 

Reference (i.e. unworn material outside the region of contact), 2 – Retained patch (i.e. localised 

region within the highly worn area where original topography was retained) and 3 – Highly worn (i.e. 

regions of highest material loss). The taper component was also analysed in the same regions. 

Details of this particular patient can be found in [16] (Patient 4).  

3.1.2. SEM Analysis 
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Figure 3 demonstrates the surface topographies observed on the CoCrMo trunnion component at 

revision. A number of different topographies existed due to the different contact conditions 

established at the interface; a result of the local variations in device geometry, surgical placement 

and loads established during daily activities. These range from the original machined topography 

(Figure 3a, Figure 2 region 1), regions that depicted evidence of fretting-corrosion (Figure 3b and c, 

Figure 2 region 3) and areas that seemingly retained the original machined surfaces whilst 

surrounded by regions of high wear (Figure 3 d-f, Figure 2, region 2).  In regions where surface 

topography was seemingly retained (Figure 2, region 2), a ‘wrinkled’ type surface morphology was 

observed. Localised areas of debris emanating from the TMZF taper component was observed on 

the patch area (Figure 3e-f, Figure 2 region 2). This was confirmed using EDS analysis as 

presented in section 3.1.5. In regions in which fretting corrosion was observed, scalloping and 

directionality of the surface was observed.  

3.1.3. XRD Analysis  

Figure 4 presents the XRD driffractograms of the CoCrMo trunnion in areas of no measurable wear 

and those that demonstrated high wear (Figure 2). Due to the geometry and localisation of the 

medial patch observed in this type of prosthesis XRD plots could not be obtained in these areas. It 

could be seen that both FCC and HCP phases existed within the alloy: an observation reported 

extensively within the literature. From the XRD spectra, no significant differences in subsurface 

crystallinity or excessive amounts of strain within the lattice were observed by shifts in peak position 

(strain effect) or broadening (changes in crystallite size). This is likely due to the sampled area size, 

the inability to locally probe regions of high degradation and the possibility of preferred 

texture/orientation of the crystalline structure.  

3.1.4. TEM analysis: Reference Surface 

Figure 5 shows bright field images and electron diffraction data for the CoCrMo section prepared 

from the unworn, undamaged area of the implant (Figure 2, area 1). Figure 5a shows the top 5 µm 

of the CoCrMo alloy surface.  It can be seen that within the top 250 nm of the surface, a nano-

crystalline region exists. This is typified by the ringed diffraction pattern inset in Figure 5b.This was 
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indexed as a Hexagonal Close Packed (HCP) atomic structure and, as detailed in literature; arises 

from the strain induced transformation (SIT) from the manufacturing processes.  Evidence of a Cr 

and O rich oxide film was also observed at the interface and confirmed with EDX analysis (Figure 5c 

and 5e, between the red dashed lines). Towards the subsurface, a regular cellular structure was 

observed (Figure 5d). Electron diffraction indicated that the atomic packing was Face Centred Cubic 

(FCC). Evidence of shear banding (localised areas of shear strain) and the formation of ɛ -

martensite was observed (Figure 5a and d). This is further supported by the angular streaking of the 

electron diffraction image; characteristic of lattices containing high strain.   

3.1.5. TEM analysis: Retained Patch 

Figure 6 shows bright-field TEM and electron diffraction analysis of subsections prepared from the 

patch area of the CoCrMo trunnion component (ie Region 2, Figure 2). It must be noted that this is 

the area in which surface topography was seemingly retained whilst surrounded by regions of high 

material loss. Within this region it is hypothesized that a tribological regime with sufficiently high 

contact pressure and low displacement is established so a stick or partial slip fretting regime exists 

resulting in a retention of an unworn area and worn gradient across the surface similar to that 

described by [21]. Figure 6a shows refinement of the microstructure within the top 300 nm, 

formation of ɛ -martensite, stacking faults and the presence of twinning when compared to the 

reference subsection (Figure 5a). Deformation of grains and evidence of directionality was observed 

within the top micron of the surface (Figure 6b). Bulk single crystals being sheared to form a nano-

crystalline layer was observed in the absence of any visible ɛ -martensite. This correlated with the 

direction of joint loading.  

Electron diffraction analysis was taken in three areas of interest (Figure 6b). It can be seen in region 

1 (Figure 6c), a nano-crystalline structure with no preferred orientation was observed with crystals in 

the region of 50 nm. This again was indexed at a HCP structure. In region 2 (Figure 6d), a nano-

crystalline structure was also observed. This again was indexed to a HCP structure. However 

preferred orientation was observed. Towards the bulk of the alloy (region 3, Figure 6e) a composite 

electron diffraction pattern was obtained, this was could be indexed as both FCC and HCP atomic 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

8 
 

orientations suggesting a composite diffraction signal. The formation of ɛ -martensite, stacking faults 

and shear banding was observed in the lower subsurface (>3 µm) (Figure 6f). FIB and subsequent 

TEM was conducted on the areas of localised debris observed on the patch area (Figure 3f). Layers 

in the region of 1-2 µm were observed (Figure 7). STEM-EDX analysis demonstrated that this was 

rich in Ti and O with traces of Cr, Fe and Al (Figure 8).  

No depletion or segregation of any elemental species was seen at the interface or within the bulk 

material of the CoCrMo trunnion. Electron diffraction data indicates that the debris on the surface is 

compact and nano-crystalline nature (Figure 7c-e). Evidence of martensitic transformation and high 

amounts of residual strain within bulk crystals was observed directly below the transferred debris 

indicating high levels of strain within the microstructure.  

3.1.6. TEM Analysis: Worn Surface 

Typical subsurface microstructures observed in the sample taken from the highly worn regions on 

the CoCrMo trunnion (Figure 2, region 3) can be seen in Figure 9.  A loss of the nano-crystalline 

layer was observed with no evidence of reformation. A bulk single crystal structure remained at the 

interface. Less residual strain was seen within the crystals, indicated by sharp, streak-free electron 

diffraction pattern. This was indexed as a typical FCC orientation found for bulk CoCrMo alloys. An 

interfacial layer, presumed to be Cr2O3, was observed and confirmed by EDX at the CoCrMo-Pt 

interface in the region of 3-5nm.  

3.2. TMZF Taper Analysis 

3.2.1. Surface deviation 

Figure 10 shows the tactile CMM contour plots obtained from the TMZF taper components. 

Measureable material loss had occurred within the resolution of the CMM. However the depth of 

material loss was less compared to the CoCrMo trunnion (Figure 2). Evidence of material loss could 

be observed in the transverse section of the TMZF component with a maximum penetration of 14 

µm being observed at ± 35-120˚ (Compared to 38 µm around ±25˚ for the CoCrMo trunnion 

component). The TMZF taper presented a different wear pattern with no localisation of degradation 

been observed when compared to the CoCrMo trunnion (Figure 2).  SEM, FIB-TEM analysis was 
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conducted in similar regions to those described in Figure 1 in attempt to identify local degradation 

modes. For the reference surface, region 3 (Figure 10) was used as this provided a non-contacted 

blasted surface; the same found in the contacting regions.  

3.2.2. SEM Analysis 

Figure 11 shows the surface topographies observed on the TMZF taper component. Again, a range 

of topographies could be observed as a function of location. In regions where little to no degradation 

was observed (Figure 10, region 1 and Figure 11a) topographies were homogenous in texture and 

similar to those obtained through a blasting process was observed. Towards the mid portions of the 

interface a loss of surface topography and the presence of a surface deposit was seen (Figure 11b). 

Back scattered detection imaging indicated areas of deposit consisted of a lower atomic mass (ie C, 

Ca, P, O). Towards the distal portion of the interface, Figure 11c, a similar topography was 

observed to Figure 11a. A textured surface similar to that of a blasted surface was again observed. 

Figure 12 shows semi-quantitative SEM EDX mapping at 20 kV for the image presented in Figure 

11b. Areas where a surface deposit was observed were rich in Cr, C and O. A depletion of Ti was 

observed in this area. No Co was observed at 20 kV. At higher magnifications, deposits were seen 

to be localised between the asperities of the rough surface. 

Further point EDX analysis was conducted at 5 kV in order to quantify the surface chemistry of the 

upper most surface (≈100 nm, Figure 13). Table 1 shows the semi-quantitative values obtained from 

point EDX analysis at 5 kV using Lα emission lines.  Across the different areas an in-homogeneous 

surface chemistry was observed. Surfaces were seen to be rich in C and O with Si, P and Mo 

observed in all areas analysed. Ti, Cr, Co and Zr were observed in spectrum 1 and 3 however Co 

was observed at low levels compared to the other elements. 

3.2.3. XRD Analysis  

Figure 14 presents the XRD plots obtained for the reference TMZF alloy and areas that had 

incurred highest incidences of degradation (Figure 10). For the reference TMZF surface a 

predominantly β-phase alloy was observed with evidence of α-phases at lower intensities. This is as 

expected according to literature regarding the metallurgy of the alloy [22]. Distinct difference 
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between the reference and degraded surface were observed. A loss of the α-Ti peaks was observed 

in the highly degraded regions. Significant broadening of the β-phase peaks was also observed, 

characteristic of an increased strain within the crystal lattice and reduction of crystal size. A gain of 

peaks at 2Ɵ  ≈ 46 and 47˚ was observed. These were unidentifiable from XRD data libraries due to 

the lack of higher angle peaks however maybe related to the formation of Fe compounds as 

demonstrated later through TEM analysis. It is evident from XRD data that phase transformation 

and a high degree of strain is introduced into the TMZF alloy due to the degradation and plastic 

deformation processes occurring at the stem-neck interface. 

3.2.4. TEM Analysis: Reference Surface 

Figure 15 shows TEM electron micrographs of the TMZF alloy taken from manufactured surfaces 

which had not being subjected to any wear processes. A poly-crystalline structure was observed 

(white arrows indicate grain boundaries). Multiple electron diffraction micrographs of the subsurface 

were taken for the reference samples. Two distinctly different diffraction signals were observed.   In 

regions 1 and 3 a ringed diffraction pattern (Figure 15) was observed. In combination with bright-

field TEM images (Figure 15a) it can be seen that a two phase structure exists with β-grains 

containing a mixture of nano-crystalline intragranular α-precipitates.  A 50 nm interfacial layer was 

also observed. Closer examination of the film indicated that a mixture of amorphous and crystalline 

material (Figure 15d).  

3.2.5. TEM Analysis: Retained Patch 

 

In the regions in which surface topography was retained on the CoCrMo trunnion component, 

refinement of microstructure in the bulk alloy and the formation of a metallic oxide layer could be 

observed on the counterpart TMZF surface (Figure 16). A nano-crystalline microstructure with 

preferred orientation of the crystals was observed (Figure 16a). It can be seen in Figure 16b that 

areas with different microstructure exist within the polycrystalline structure as highlighted by the 

white arrows. Precipitation and oxidation of elemental species from and within the subsurface of the 

TMZF alloy was confirmed with combined STEM–EDS analysis (Figure 17). In comparison with the 
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reference TMZF subsurface, a transformation of the subsurface microstructure and formation of 

metal oxides at the surface was observed.   

Films consisting of metallic oxides were seen to range between 100-500 nm in thickness (Figure 

16c) depending upon location. The thickest films were seen in areas around 0 degrees according to 

CMM contour plots (Figure 2 and 9). These were compact, crystalline and granular in nature. Films 

were seen to penetrate into the bulk alloy. STEM–EDX analysis (Figure 17) showed films to be Cr 

and O rich. Cracking of the interfacial surface and ingress of the Cr and O rich debris into the 

subsurface could be seen. Segregation of Fe at and below the interface was seen. The formation 

and propagation of subsurface cracks was also witnessed in this area (Figure 16d). 

3.2.6. TEM Analysis: Worn Surface 

In areas where high amounts of degradation could be observed on the CoCrMo trunnion component 

(Figure 2, region 3), changes in the subsurface microstructure were also observed for the 

counterpart TMZF surfaces. The formation of a nano-crystalline microstructure was again seen 

(Figure 18a and b) along with evidence of subsurface cracking and propagation.  

The oxidation and segregation of species within the subsurface region of the alloy was evident. This 

was consistently seen up to depths of ≈ 5-10 µm. Dark-field TEM micrographs (Figure 18c and d) 

present evidence of nano-crystalline material, directionality and ‘flow’ or mechanical mixing of the 

TMZF alloy. STEM-EDX (Figure 19) analysis further identified the formation of oxides within the 

subsurface of the alloy at depths of at least 2 - 5 µm. These were Fe and O rich with depletion of Ti 

in the areas where iron oxides had formed. C was also found to be present and at localised regions 

within the subsurface of the TMZF alloy.  

4. Discussion and Conclusion 

 

Issues have surrounded bi-modular TJR since their conception; many of the initial issues concerned 

with fatigue and fracture were eliminated through system designs and material changes [10]. 

However this was a short term solution and femoral stems with exchangeable necks still have twice 

the rate of revision compared to fixed stems with metal related pathologies been the highest for 
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CoCrMo/Ti alloy combinations according to the Australian Joint Registry [23]. The nominal mode of 

degradation occurring at modular taper interfaces has been described extensively in the literature. It 

is widely accepted that a tribocorrosion degradation mechanism occur at these interfaces; coined 

mechanically assisted corrosion (MAC) by Gilbert et al [24] which also further discusses the role of 

possible intergranular corrosion due to the heterogeneity of metal alloys. This consists of a 

combination of mechanical (e.g. wear) and electrochemical (corrosion) processes resulting in 

accelerated degradation of the metal and release of metallic ions and debris into the biological 

environment. Similar observations have been identified in this study, albeit evidence of intergranular 

corrosion attack. Directionality of surface and evidence of mass loss was seen suggesting both 

corrosion and wear exist at the interface complimenting results presented by Lanting et al [8]. 

However due to the composite contact conditions established during loading (i.e. varying contact 

pressures and displacements across the interface), the severity and type of degradation is thought 

to vary across the interface as a function of contact pressure and displacement. Local variations in 

contact pressures and displacement will be established giving rise to very different local tribological 

and subsurface damage processes as discussed further below.  

This study also provides insight into the underlying mechanisms contributing to the unexpectedly 

higher rates of degradation of CoCrMo when compared to the ‘softer’ titanium counter-face. This is 

consistent with the tactile measurements performed elsewhere [25], and supports the mesoscopic 

data by Buente et al [16], along with other retrieval studies [6]. Cook et al [26] presented a case of 

two TMZF Accolade (Stryker, Warsaw, USA) stems used in conjunction with CoCrMo femoral 

heads. They hypothesised that the TMZF alloy, due to its increased nobility, cathodically protected 

itself at the expense of the CoCMo alloy accelerating the degradation of the CoCrMo component. 

Similar observations have been seen in other device combinations [27].  

Whilst counter intuitive of most engineering tribology theory, this has also been attributed to a 

tribocorrosion mechanism; owing to the formation of thick and hard surface oxides and subsequent 

abrasion of the CoCrMo surface [28]. Findings presented in this paper support these theories in 

part. Whilst small mass losses and negligible changes to topography may occur on the Ti alloy 
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surface, subsurface analysis suggest plastic flow of material, gross straining, refinement of 

microstructure and ‘mechanical alloying’ process; the extent of which varies dependent upon the 

region within the interface. The importance of subsurface and interfacial microstructure has been 

well documented in the orthopaedic sector [29,30]. Many authors have presented evidence of 

dynamic recrystallization [31], strain-induced transformation and the formation of nano-crystalline 

material of CoCrMo articulating surfaces in both retrieval and experimental studies [32]. However 

these have mainly been concerned with reciprocating hard-on-hard surfaces of which are now 

almost obsolete. It has been hypothesised that shear stresses present during sliding results in the 

formation of nano-crystalline layers at the upper most surface of the material. These have been 

associated with an increase in interfacial hardness and the origin of nano-scale debris typically 

associated with Metal-on-Metal bearings [33,34]. Furthermore the changes in subsurface 

microstructure and tribo-chemical processes (chemical reactions owing to the tribological 

interactions) have been hypothesised to contribute to the overall degradation of sliding interfaces 

[35-37]. Zeng et al [32] has recently demonstrated decreases in wear depending upon the initial 

interfacial crystallinity. Whilst the evolution mechanisms for microstructural changes appear to be 

strain dependant and similar regardless of the initial crystallinity, clinical findings do not correlate in 

the case for fretting contacts.  

Mathew et al [35] has recently shown the effect of SIT on the corrosion response of CoCrMo 

supporting findings by Montero-Ocampo et al [38]. It has been shown that HC CoCrMo alloys 

possess lower passive corrosion currents when in bulk like FCC form. Whilst a wealth of knowledge 

exists for sliding interfaces, in which the tribology has been refined over a number of years, only one 

study deals with the processes occurring at the nano-scale for modular taper surface [39] (either 

stem-neck or head-neck). This is surprising considering the breadth of research currently been 

conducted in this area.  

For the CoCrMo trunnion component, changes in subsurface morphology incurred during 

implantation can be summarised as follows (Figure 20): 
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· In the regions where high contact pressures exist (ie patch areas) [8,40-42], little changes to 

the topography could be seen. However subsurface analysis (Figure 6) revealed evidence of 

martensitic transformation processes, shear material and higher strain within the CoCrMo lattice 

when compared to the reference sample (Figure 5). The retention of topography similar to that 

of unworn areas in this area may suggest evidence of a ‘stick’ fretting regime in which no 

relative micro-motion occurs at the interface. For elastic fretting couples such as (CoC-Ti alloys) 

the elasticity of the Ti alloy will dominate and slip at the interface will be accommodated by 

nominal elastic deformation of the bodies [41]. Swaminathan and Gilbert [42] suggest within 

these regimes, tribocorrosion contributions to mass low tend to be low as abrasion of the oxide 

film does not occur. Evidence of galling and transfer of TMZF alloy to the CoCrMo patch area 

was observed (Figure 8). Layers composed of Ti and O with evidence of oxidation of other 

species within the films suggests that such layers may be formed due to fatigue and transfer of 

the TMZF to the CoCrMo surface during daily loading activity rather than during disassembly. If 

transfer of material occurred during dis-assembly it would be expected that this would be bulk 

material. EDX analysis (Figure 7) demonstrates this is not the case. Transfer of oxidised 

material is extensively reported in classic fretting data of elastic differential alloy systems 

[43,41,44]. 

· TEM analysis in highly degraded region demonstrated a different subsurface response. A loss of 

the manufactured induce nano-crystalline layer was observed resulting in a single crystal FCC 

being observed at the interface (Figure 9). Although difficult to quantify from retrieval analysis 

which only presents one point in time, loss of any nano-crystalline layers may occur as a result 

of mechanical and electrochemical processes. For this particular contact, electrochemical 

reactions could become dominant as the crevice depth becomes sufficiently deep enough so 

mechanical deformations are insufficient to result in metal-metal contact, mechanical material 

removal and further subsurface microstructural changes. Acidification of the solution at the 

interface is likely to occur increasing rates of dissolution due to localised crevice corrosion. Such 
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phenomenon has already been reported by Bryant et al [20] for the stem-cement interface. 

Further research into understanding these mechanisms is needed.  

To the authors knowledge the interactions between fretting-corrosion, subsurface damage 

mechanisms and ‘mechanical alloying’ processes observed on the TMZF alloy have not yet been 

reported. Considering the current debate as to why CoCrMo alloys degrade compared to the softer 

titanium alloy when used in a modular taper arrangement, results presented in this paper present a 

new hypothesis concerning the mechanisms acting at the modular-taper interface. Evidence of the 

formation of tribo-materials (i.e. a material formed as a result of tribology), fatigue of the TMZF (i.e. 

crack initiation and propagation), plasticity (i.e. permanent change in subsurface morphology) and 

oxidation and the formation of new phases at the interface is shown in Figure 16 and 18.  

The formation of tribomaterial consisting of nano-crystalline material and discreet oxide phases 

within the subsurface material presents a fascinating system characteristic; raising questions as to 

how the initiation and propagation of wear and corrosion at the modular interface will be effected. β-

titanium alloys are known to show improvement in their wear resistance due to their ability to 

facilitate strain hardening and microstructure refinement, assumable through a martensitic 

transformation mechanism. In a review by Long and Rack [22], they highlighted that sub-surface 

wear damage of cp-Ti has been investigated with cross sections of wear samples revealing a layer 

of compacted debris at the worn surface, with plastic flow of the material beneath. Refinement, 

transformation of the TMZF microstructure and the formation of oxide phases within the subsurface 

material, hypothesised as a result of cyclic loading, fatigue and corrosion, was observed in this 

study. Consequently a material whose interfacial properties that are very different to their bulk 

mechanical properties will be generated, effecting the wear and corrosion processes occurring at 

the interface. The formation of iron oxides, thought to arise from an ingress of fluid and oxidation of 

bulk material, also shows that the interfacial chemistry is also affected by a combined mechanical 

and electrochemical process. The oxidation of iron is not surprising considering its thermodynamic 

tendency for oxidation [45]. However the standard cell potentials (Eo) for the species present in the 

alloy are not signifanlty more negative than Ti, Mo and Zr; hence thermodynamic principles cannot 
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be solely applied to this situation. This now raises question around the kinetic of the reaction 

processes and how external factors, such as stress, occurring at the surface and subsurface 

influence the formation of these species.  

Whilst the exact mechanisms and rates of degradation cannot be determined in this study, an 

insight into the mechanisms behind high rates of wear and corrosion of CoCrMo surfaces when 

used in conjunction with a Ti alloy counter-face can be gained. Figure 20 shows a schematic of the 

CoCrMo and TMZF subsurface based on location analysed. A composite material with an increased 

interfacial hardness and different surface chemistry when compared to the bulk is likely to form as a 

result of initial degradation within the interface. Literature reports some iron oxides to have a 

hardness in the region of > 5 GPa depending upon their nature; similar to the hardness of the 

CoCrMo alloy. It is quite credible that the combination of a refined microstructure, formation of oxide 

phases and in increase in residual stress within the alloy subsurface may result in a material surface 

capable of inducing higher wear and corrosion on the CoCrMo surface. Furthermore taking into 

account the fact that in highly worn regions of the CoCrMo a bulk single crystal FCC structure was 

observed, the hardness at the interface may be less making it more susceptible to wear processes. 

Galvanic interactions at the interface between the mixed metals may also contribute to the 

accelerated degradation of the CoCrMo alloy due to potential differences established by each 

material. However due to the nature of the interface this almost impossible to quantitatively assess 

this; further experimental work utilising novel contact arrangements will be developed to simulate 

this in-vitro. 

4.1. Limitations of Study 

This study presents the in-depth analysis of a single implant as part of a retrieval series presented 

by Buente et al [16]. As such, this study is limited to a single case. None the less provides important 

information about interfacial processes occurring at CoCrMo-TMZF fretting interfaces as a function 

of interfacial contact conditions. The finding presented demonstrate the synergy and interaction 

between the two material when in contact in-vivo and the subsequent evolution of subsurface 

microstructure and surface chemistry.  Further work will involve the observation of further in-vivo 
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combinations and experimental investigation to determine the system variables and mechanisms 

behind the observations reported in this study. 

5. Conclusions 

From this study, it is evident that complex and synergistic degradation processes are occurring at 

stem-neck interface of bi-modular prosthesis. This consists of mechanical and electrochemical 

processes resulting in changes to interfacial properties of the materials. 

Detailed electron microscopy, has highlighted that the extent and type of degradation occurring at 

the interface depends upon the local mechanical contact conditions with difference in subsurface 

morphology and chemistry been observed at different points across the interface. In regions where 

high stress are established, retention of the initial topography and evidence of plastic deformation of 

the bulk material suggests that whilst no macroscopic topographical degradation is occurring, 

permeant subsurface changes have occurred.  

An further hypothesis as to why CoCrMo alloys experience higher rates of mass loss compared to 

the Ti alloy surface when used in modular taper contacts is also presented. Higher degradation of 

the CoCrMo alloy surface may arise from an increase in interfacial hardness of the TMZF alloy due 

to refinement of the subsurface microstructure and formation of oxides species at the interface. 

Further systematic, spatially resolved experimental studies are needed to identify the underlying 

mechanisms to progress the current understanding.  
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List of Figures 

Figure 1 – Schematic diagram of a Bi-modular prosthesis (Rejuvenate™, Stryker, USA) 
analysed in this study and the hypothesis of this study.  

Figure 2 – Tactile CMM contour plot for CoCrMo trunnion component. Regions of further 
investigation by SEM and TEM analysis is also shown. Note at -15mm represents the 
opening at the modular taper interface. Region 1 – Reference (i.e. unworn material outside 
the region of contact), 2 – Retained patch (i.e. localised region within the highly worn area 
where original topography was retained) and 3 – Highly worn (i.e. regions of highest 
material loss). 

Figure 3 – SEM SE images of the CoCrMo trunnion component in a) reference area 
(Figure 2, region 1), b-c) regions of high wear (Figure 2, region 3) and d) areas in which 
surface topography was maintained (Figure 2, region 2). Figure 2e and f show evidence of 
TMZF debris on the patch surface.  

Figure 4 – XRD difractrograms obtained for the trunnion CoCrMo component in unworn 
and worn area.  

Figure 5 – Reference CoCrMo alloy of the trunnion component of a) overview of the 
subsurface b) nano-crystalline uppermost surface (≈500nm) c) Pt-CoCrMo interface and d) 
crystalline subsurface (≈2-3µm). Evidence of a Cr and O rich interfacial layer (highlighted 
between red dashed lines could be observed (Region 1, Figure 2). This was supported by 
EDX line analysis (e) where the green spectra = Carbon, red = Cobalt, yellow = Cr, blue = 
O and purple = Pt. 

Figure 6 – Electron microscope and images of a) subsurface on patch b) higher 
magnification image of the interface with three regions of interest c-e) electron diffraction 
analysis of regions 1, 2 and 3 respectively and e) TEM bright-field image with electron 
diffraction pattern of bulk (>3µm) showing ɛ -martensite formation and stacking faults 
(Region 2, Figure 2)  

Figure 7- Electron microscope and images of a) debris and subsurface morphology on the 
patch area b) magnified image of the debris-CoCrMo interface c-e) electron diffraction 
patterns from regions of interest (Region 2, Figure 2).  

Figure 8 – EDX analysis of debris isolated on the patch area. 

Figure 9 – Electron images of a) interface and subsurface and b) magnification of the 
interface with associated electron diffraction pattern. (Region 3, Figure 2) 

Figure 10 - Tactile CMM contour for TMZF taper component. Regions of further 
investigation by SEM and TEM analysis is also shown. Note: 14 mm represents the 
proximal interface opening. The regions of interest closely resemble those identified in 
Figure 2.  

Figure 11 – SE SEM images of TMZF taper component obtained from a) area 1 b) area 2 
and area 3 indicated on Figure 9. Within region 1 and 3 (same as those in Figure 2) little 
deviation in surface topography was seen. In regions of high material loss (Figure 10, 
region 2) loss of original topography and surface deposits were observed.  

Figure 12 – EDX mapping for Figure 11b at 20 kV. 

Figure 13 – SEM image of distribution of debris across the surface of the TMZF Taper.  
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Figure 14 – XRD spectra for reference and degraded areas of TMZF alloy 

Figure 15 – a) Reference TEM images for TMZF Taper component with typical diffraction 
pattern from region b) 1 c) and 2. Figure 10d shows evidence of a films formed on the 
TMZF surface with possible short range ordering.  

Figure 16 –a) Bright field image with associated bulk electron diffraction pattern 
demonstrating TMZF reorientation and oxide layer formation (white arrows indicate layer) b) 
a dark-field image of TMZF alloy in the patch area showing evidence of local deviations in 
atomic ordering within the bulk alloy (shown by white arrows). Figure 10c represents bright-
field images of debris on the surface and d) evidence of subsurface fatigue and cracking 
(indicated by arrows).  

Figure 17 – STEM-EDX analysis of and subsurface microstructure of TMZF alloy in the 
patch region 2 on Figure 2.  

Figure 18 – An a) overview with associated bulk electron diffraction pattern b) magnification 
of the interface and evidence of subsurface defects c-d) dark-field images and evidence of 
re-crystallisation and mechanical mixing with the subsurface microstructure of TMZF alloy 
in highly degraded areas (Figure 1, region 3). 

Figure 19 - STEM-EDX analysis of and subsurface microstructure of TMZF alloy in the 
highly degraded region.  

Figure 20 – illustration of the subsurface morphology for CoCrMo taper and TMZF trunnion 
in each of the regions analysed.  
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List of Tables 

Table 1 – Chemical composition of the localised areas observed on the TMZF surface 

 

 

Element Wt% 

Spectrum Spectrum Spectrum Spectrum 

1 2 3 4 

C 16.92 40.25 24.09 51.33 

O 30.42 27.97 33.56 32.61 

Si 2.31 2.57 0.77 4.96 

P 0.72 0.45 - 0.60 

Ti 20.66 - 16.42 - 

Cr 7.10 - 7.02 - 

Fe 2.02 - - 5.43 

Co 1.27 - 3.90 - 

Cu 1.17 - - - 

Zn 1.62 - - - 

Zr 3.90 - 3.84 - 

Mo 11.88 3.63 9.81 4.41 

Ca - 25.13 - - 

Cl - - 0.58 - 

Al - - - 0.65 
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Highlights 

 

· Advanced surface analytical techniques have been applied to a retrieved bi-modular 

total joint replacement. 

 

· A combination of surface analytical techniques have been used to study the changes 

in topography and sub surface microstructure due to tribocorrosion at the modular 

taper interface. 

 

· Gross plastic deformation of the CoCrMo and TMZF alloy surfaces was seen. This 

varied depending on interface location. 

 

· TEM-EDS demonstrated ‘mechanical alloy’ processes on the TMZF surface. This is 

hypothesised to change the interfacial properties resulting in degradation of the 

CoCrMo surface. 


