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Abstract

Considerable effort is required to test software thoroughly. Even with automated test data generation
tools, it is still necessary to evaluate the output of each test case and identify unexpected results.
Manual effort can be reduced by restricting the range of inputs testers need to consider to regions that
are more likely to reveal faults, thus reducing the number of test cases overall, and therefore reducing
the effort needed to create oracles. This article describes and evaluates search-based techniques, using
evolution strategies and subset selection, for identifying regions of the input domain (known as subdo-
mains) such that test cases sampled at random from within these regions can be used efficiently to find
faults. The fault finding capability of each subdomain is evaluated using mutation analysis, a technique
that is based on faults programmers are likely to make. The resulting subdomains kill more mutants
than random testing (up to six times as many in one case) with the same number or fewer test cases.
Optimised subdomains can be used as a starting point for program analysis and regression testing.
They can easily be comprehended by a human test engineer, so may be used to provide information
about the software under test and design further highly efficient test suites.

Keywords: testing, search, input distribution, subdomains, evolution strategy

1. Introduction

Despite a recognition of the importance of soft-
ware testing by the industry and a significant in-
vestment in its practice, many faults are often still
not found. For example, the Java Compatibility
Kit [1] is an extensive test suite developed for the
Java Development Kit (JDK), yet there are still
thousands of additional JDK bug reports in Sun’s
bug database [2]. The main problem is that soft-
ware is complex; programs have too many paths
to show that they are all correct [3]. As a re-
sult, software testing is expensive and it is often
performed incompletely.
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Automatic test data generation is seen as a so-
lution to some of the challenges involved with soft-
ware testing [4]. It saves time and money by pro-
ducing a greater number of test cases more quickly
and with less manual involvement. In theory, this
should allow a higher standard of testing to be
achieved with fewer resources, as it frees testers
to focus on the overall strategy rather than indi-
vidual test case design and implementation.

Yet the quality of the testing process is also
dependent upon the model (or oracle) used to
determine the expected outcome of each test [5].
Considerable effort is required to construct effec-
tive test oracles, even when a domain expert is
available [6]. For example, Weyuker [7] suggests
that a financial specialist may be able to distin-
guish whether a company’s assets are closer to
$1,000,000 or $1,100,000, but would find it diffi-
cult to specify exactly what this value should be.
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Existing techniques scatter test cases across the
input domain. Many of the values are obscure and
it can be difficult to understand their significance
[8]. The human tester is not told which values
are of particular importance, nor whether other
values might also detect the same faults. Testers
therefore become separated from the process of
generating test cases; their role is reduced to run-
ning the testing tool and evaluating its results.
Myers [9] claims that testing is performed poorly
because testers find it boring and repetitive.

Subdomains are more informative than test
cases because their optimal size and placement
suggest input regions that are particularly impor-
tant for testing. Compared to a set of inputs cho-
sen randomly from the whole input domain, less
manual effort is required to evaluate test cases
whose values are closer together and easier to un-
derstand [8]. Subdomains reduce the cost of con-
structing an oracle because they limit the range
of inputs testers must consider and decrease the
number of test cases they have to evaluate.

The choice of subdomains has a significant ef-
fect on the efficiency of random testing. For ex-
ample, the TriTyp (also known as Triangle) pro-
gram has three integer inputs (a, b and c) and
its branches contain conditions such as a=b=c.
Michael et al. [10] selected over 8000 test cases
from the entire input domain, but exercised less
than half of the program’s branches. Duran [11]
selected 25 test cases from the subdomains ([1,5],
[1,5], [1,5]) and exercised all the branches. Ran-
dom testing can therefore be made more efficient
by carefully tuning the subdomains.

Since subdomains require a large number of test
cases for their optimisation, other techniques may
be computationally more efficient. Yet, we expect
subdomain testing will be less labour-intensive be-
cause there are ultimately fewer test cases to eval-
uate. Compared with other testing techniques,
subdomains have three main advantages:

1. They improve the effectiveness of ran-
dom testing and provide a means to
find faults more efficiently
Subdomains target regions of input mutation
analysis predicts likely to reveal faults.

2. They can be used as a starting point for
regression testing more readily than a
set of individual test cases
Subdomains are more robust than test cases
to small changes in a program’s values.

3. They provide information about the ex-
ecution behaviour of a program that is
useful for constructing further tests
Subdomains suggest important parameters
and key thresholdss for branch conditions.

This article introduces a new technique for op-
timising subdomains that can be sampled from
at random to produce highly efficient test suites.
The new technique combines elements of both
white-box and black-box testing. Subdomains
are optimised through direct manipulation of the
source code (mutation analysis), rather than iden-
tified by inspection of its specification. Yet opti-
misation is performed by evolving bounds for each
subdomain in the input domain and once the sub-
domains have been evolved, test cases can be sam-
pled without further analysis of the source code.
It can be difficult to determine which subdo-

mains to use and why. For example, Andrews et
al. [12] report that the subdomain [0,31] gave the
best results in testing a dictionary, but do not
explain how they discovered this ‘magic number’.
Rather than using trial and error to find the best
subdomains to use with random testing, it is more
productive to take a systematic approach. We op-
timise subdomains using an evolution strategy so
that they are efficient at killing mutants.
Evolution strategies have been shown to be ef-

ficient at fine-tuning numerical values [13]. They
optimise numbers directly, rather than represent-
ing them as bit strings and focus on adaptation
over recombination [14]. This means that any
disruption from recombination is largely avoided.
Mutation analysis subsumes various other testing
techniques, including MC/DC and statement cov-
erage [15]. It has also been shown to detect more
faults than all-uses and prime path coverage on
a number of Java programs [16][17]. Finally, ex-
periments with the Siemens test suite and a civil
nuclear program suggest mutants are representa-
tive of the faults programmers make [18][19].
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2. Subdomain Optimisation

We optimise subdomains initially using muta-
tion score (proportion of non-equivalent mutants
killed) as our fitness function. A mutant is killed
by a test case if it produces a different output to
the original program for the same input values.
The higher the mutation score the subdomains
achieve, the fitter they are considered to be.
A candidate solution consists of one subdomain

for each input parameter to the software under
test. At every generation, test input values are
sampled numerically for each parameter. A can-
didate solution consists therefore of a set of subdo-
mains with intervals in the following three forms:

Numerical subdomains
are represented with lower and upper bounds
(rounded to whole numbers to keep the sub-
domains simple). Values are sampled inclu-
sively within these bounds as real numbers,
such that subdomain [3,6] includes values 3
and 6, but also every value in-between.

Boolean chance values
are described with an integer value between
0 and 100. Rather than defining a boundary
within which test inputs are sampled, this
value represents the percentage chance that
a particular test input value is ‘true’.

Character array subdomains
are fixed in length (by default to five char-
acters). Special characters (wildcard, clo-
sure etc.) are identified from the program
code and given their own chance of inclusion,
whilst characters from the basic Latin alpha-
bet are selected uniformly at random.

Evolution strategies differ from some genetic
algorithms in that they optimise numerical val-
ues rather than bit strings and focus on mutation
over recombination [14]. Evolution strategies op-
timise numerical values through Gaussian adap-
tation. Gaussian adaptation is a suitable mech-
anism for generating new candidate solutions be-
cause it favours values close to the old ones, but
still allows exploration of values further away.

Our initial experiments were conducted using a
traditional (1+1) form of evolution strategy. The
evolution strategy maintains one candidate solu-
tion (set of subdomains) at a time. Each candi-
date solution is represented using a numerical set
of values (x1 . . . xn), as determined by the coding
of subdomain types described previously.
At every generation, a single new candidate so-

lution (x′
1 . . . x

′
n) is perturbed from the current

one through Gaussian adaptation. It is generated
such that x′

1 = x1 + ǫ1 . . . x
′
n = xn + ǫn, where

ǫ1 . . . ǫn ∈ N (0, σ2). The new candidate replaces
the current solution if it evaluates as being su-
perior (i.e. test cases sampled from it achieve a
higher mutation score), otherwise it is discarded.
Effort may be wasted in pursuit of locally op-

timal regions unless the optimisation process bal-
ances the development of strong candidates with
the exploration of new regions [20]. Rechenberg’s
one-fifth rule states the convergence rate is opti-
mal when one out of five new candidates perform
better than the previous solution [21]. Following
advice from Schwefel [22], the standard deviation
of the Gaussian distribution (σ) is adjusted by
applying Equation 1 once every ten generations.

σ′ =











σ ∗ 0.85, if r < 2

σ/0.85, if r > 2

σ, if r = 2

(1)

(where r is the number of adaptations in every 10
generations that increase the fitness evaluation)

Algorithm 1 describes the process used to opti-
mise lower (l) and upper (u) boundary values for
input parameters (α . . .Ω). The evolution strat-
egy is set up so that it has the ability to ex-
plore a wide range of potential candidate solutions
quickly, then narrow its focus to exploit those sub-
domain values found to be the most efficient.
Subdomain values are initially assigned uni-

formly at random, between 0 and 100 for numeri-
cal and Boolean input parameters and within the
size of the alphabet for character array parame-
ters. Gaussian adaptation has an initial variance
of 50. These initial values were found to be a good
starting point for the programs under test. The
evolution strategy can, as its search progresses,
move outside of these initial boundaries.
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Algorithm 1 Synthesising an optimal solution [αl, αu], [βl, βu], . . . , [Ωl,Ωu]

Input: s=number of test cases with which to evaluate each candidate solution (we later
experiment with 10, 100 and 1000); n=number of input parameters to the program under test.

1: Select initial random values (x1 . . . xn) for αl, αu, βl, βu, . . . , Ωl and Ωu.
2: Generate s test cases from [x1, x2], [x3, x4], . . . , [xn−1, xn].
3: Count the number of mutants m killed by the test cases
4: repeat
5: r = 0
6: for i = 1 → 10 do
7: Sample new values from a normal distribution:

x′
1 = x1 + ǫ1, x

′
2 = x2 + ǫ2, x

′
3 = x3 + ǫ3, x

′
4 = x4 + ǫ4,

. . . , x′
n−1 = xn−1 + ǫn−1, x

′
n = xn + ǫn where ǫ1 . . . ǫn ∈ N (0, σ2)

8: Generate s test cases randomly within the bounds [x′
1, x

′
2], [x

′
3, x

′
4], . . . , [x

′
n−1, x

′
n].

9: Count the number of mutants m′ killed by the test cases
10: if m′ > m then
11: x1 = x′

1, x2 = x′
3, x4 = x′

4, xn−1 = x′
n−1, xn = x′

n, r = r + 1.
12: end if
13: end for
14: if r < 2 then σ2 = σ2 ∗ 0.85 (ensures optimal rate for convergence [22])
15: else if r > 2 then σ2 = σ2/0.85
16: until generations>300 and mutation score no longer increases

3. Optimising Multiple Sets of Subdomains

As well as single sets of subdomains, we also
optimise multiple sets, so as to kill specific mu-
tants more precisely. Consider a program with
two mutants (M1 and M2) and one input param-
eter (x); M1 can only be killed if x = 1 and M2
can only be killed if x = 1000. The smallest sub-
domain for x capable of killing both M1 and M2
is the interval [1, 1000]. Widening the subdomain
to this interval reduces the efficiency of the sam-
pled test suite so the probability of killing each
mutant is 1/1000. It is therefore more efficient to
evolve separate subdomains, one for each mutant.

Multiple sets of subdomains are optimised one
at a time, in a similar way to single sets, except
with a more sophisticated fitness function (see
Equation 2) and a new form of evolution strat-
egy (Covariance Matrix Adaptation). Each can-
didate set is evaluated by sampling test cases from
within its bounds. The candidate is saved if it
kills mutants a certain number of times out of a
fixed number of trials and the search continues to
optimise further sets for the remaining mutants.

Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) was chosen because it is a
population-based technique, so does not get stuck
in a local optimum as often as 1+1-ES. CMA-ES
adapts the search distribution at the same time
as the candidate solutions. It can solve difficult
optimisation problems (including non-linear fit-
ness landscapes) without the need for manual pa-
rameter tuning. In a recent black-box compar-
ison study with 25 benchmark functions, CMA-
ES outperformed other optimisation algorithms
in terms of the number of function evaluations
before the global optimum value is reached [23].
Subdomains are trained initially against the

complete set of mutants; then later they are
trained against mutants for which no effective
subdomain has yet been found. In this way, some
subdomains are produced to target a large num-
ber of easy to kill mutants, whilst others are pro-
duced to target a small number of difficult to kill
mutants. The resulting subdomains complement
each other by targeting different groups of mu-
tants. Mutants can therefore be killed efficiently
with as few sets of subdomains as possible.
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CMA-ES represents the search neighbourhood
using a multivariate Gaussian distribution [24].
Compared with the univariate approach, multiple
dimensions of variance allow the search to adapt
more precisely to the underlying fitness landscape.
A covariance matrix is used to represent the shape
of the distribution and a scaling factor to repre-
sent its size. CMA-ES adjusts the size and shape
of the distribution according to pairwise depen-
dencies identified in the covariance matrix [24].

Figure 1 explains how CMA-ES is used to op-
timise multiple sets of subdomains. In our ex-
periments, candidate solutions are evaluated by
sampling 100 test suites of 5 test cases, randomly
from within the bounds of each subdomain. A
mutant is considered covered if it is killed at least
once in 95 out of 100 test suites sampled from the
subdomains. Although we found these settings to
be effective, alternatives may also be used.

The new fitness function (see Equation 2)
favours subdomains that target a distinct group
of mutants. It maximises variance in the number
of times each mutant is killed and minimises vari-
ance in the number of times the same mutant is
killed. Each numerator represents the differences
within the same mutant and each denominator
represents the differences between mutants. By
minimising this function, subdomains are selected
that consistently kill the same group of mutants.

∑

s∈S

∑

m∈M

(Ks,m − K̄m)
2

(K̄m − K̄)2

K̄m = (
∑

s∈S

Ks,m)/100

K̄ = (
∑

m∈M

Ks,m)/#M

(2)

(S is the set of test suites, M the set of mutants,
Ks,m is the number of times s kills m, K̄m is the
average number of times m is killed and K̄ is the
average number of times any mutant is killed)

Once subdomains are found to cover a par-
ticular group of mutants, the search continues
to identify and target a new group from among
the remaining mutants. If no new mutants have
been covered after 50 generations, the program is
transformed through a process known as ‘program
stretching’ to make individual mutants easier to
kill one at a time. The search is terminated if,
after the stretching process is completed for each
mutant, no new mutants have been covered.
Program stretching was originally suggested as

a technique for improving branch coverage [25].
It transforms a program to make difficult search
goals easier to achieve, then gradually transforms
it back to the original code, retraining the test
data at each stage. Program stretching adapts
the fitness landscape dynamically so as to guide
the search towards achieving a specific goal.

Figure 1: Optimising Multiple Sets of Subdomains
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Program stretching is used in this article as a
means to kill more mutants. For this to happen,
the mutant must be reached, infect a difference
in the data state and propagate this difference to
the output. The program transformations used in
this research were designed to address these goals.
Figure 2 summarises the process used to find ef-
fective subdomains for difficult to kill mutants by
stretching and un-stretching the program code.
The following code transformations are used:

Path stretching forces branch conditions lead-
ing up to a mutant to be true or false, de-
pending on whether the branch was taken the
last time the mutant was killed.

Mutation stretching alters the mutation by an
offset of 100, for example x >= y → x > y
becomes x > y+100 with the aim of increas-
ing its impact on the program.

Branch condition stretching adds an offset of
100 to a difficult branch condition in order to
make it easier to meet, for example x == y
becomes (x <= y + 100)&&(y <= x+ 100).

Program stretching is performed so that the
mutant that has been killed the most number of
times is targeted first, then the next most fre-
quently killed and so on. Once stretching is com-
pleted, the main fitness function is reapplied to
take advantage of the stretching process on other
mutants that are killed by similar input values.

4. Subdomain Set Selection

We seek to identify small, but efficient, sets
of subdomains from those that have been op-
timised. Sequential Floating Forward Selection
(SFFS) was chosen because it is computationally
feasible, but still allows backtracking whenever it
improves the selection. Unlike branch-and-bound
techniques, SFFS is not guaranteed to find the
global optimum, but it is typically much faster at
making a selection [26]. SFFS is not restricted
to a fixed number of backtracking steps, as with
other sub-optimal (plus-l-takeaway-r) techniques.
It can make as many sweeps through the feature
set as are needed to identify an efficient selection.

Figure 2: Flowchart of the Program Stretching Process

Equation 3 describes the fitness criterion used
to evaluate subdomain set selections. 100 test
cases are sampled randomly from within the
bounds of each set to establish its ability to kill
each mutant. The current selection is evaluated
according to the sum (for each mutant) of the
maximum number of times a mutant is killed by
any of the included sets. In this way, the criterion
function seeks small selections of subdomain sets
that kill all the mutants as frequently as possible.

∑

m∈M

maxs∈S(killed(s,m)) (3)

(M is the set of mutants, S is the set of subdomains,
killed(s,m) is the number of times out of 100

that subdomain s kills mutant m)

Initially, none of the subdomains are selected.
Then, one at a time, subdomains are chosen that
most improve the criterion evaluation (mutation
adequacy). After a subdomain is added, other
subdomains are removed as long as the resulting
subsets improve the criterion evaluation at that
level. Once a selection has been confirmed and
backtracking has been completed, the selected
subdomains will never be changed. This makes
it straightforward to identify the point at which
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adding another set of subdomains will not in-
crease the mutation score any further. The tech-
nique is therefore suitable for removing redundant
sets of subdomains and finding the smallest selec-
tion from which test cases can be sampled without
having a detrimental effect on fault finding ability.

5. Research Questions

The overall hypothesis of this paper is that soft-
ware testing can be made more efficient by sam-
pling test cases from efficient sets of subdomains.
We consider whether such test cases are more ef-
fective at killing mutants and if the subdomains
from which they are sampled reveal information
that will help the tester to construct an oracle.
Finally, we consider whether multiple sets of sub-
domains and subset selection can be used to im-
prove software testing efficiency even further.

RQ1: Are test suites sampled from an op-
timised set of subdomains more effi-
cient at killing mutants than unopti-
mised random testing?
A test suite is considered more efficient if it
kills more mutants with the same number of
test cases. Mutation analysis is used to deter-
mine whether optimised sets of subdomains
are more efficient than unoptimised random
testing for test suites of 10, 100 and 1000 test
cases. If 10 test cases can be sampled such
that they kill as many mutants as 100 or 1000
test cases, this can be considered as a ten or
hundred-fold improvement in efficiency.

RQ2: To what extent does the relative ef-
fectiveness of each set of subdomains
(at killing mutants) reveal information
about the program under test?
Upper/lower boundaries and chance values
clearly have an affect on the effectiveness of
sampled test suites. The challenge is to un-
derstand how the relative characteristics of
subdomains impact their effectiveness, so as
to determine the causal relationships between
specific subdomain values and the effective-
ness of the resulting test suites. Once this
is achieved, it should be possible to produce
new more efficient subdomains in the future.

RQ3: Are test suites sampled from multiple
sets of subdomains more efficient at
killing mutants than single sets?
Multiple sets of subdomains can be targeted
to kill specific groups of mutants more pre-
cisely than a single set of subdomains. Mul-
tiple sets are therefore expected to be sig-
nificantly more efficient at killing mutants
than single sets. To find out whether this
is the case, mutation analysis is applied to
test suites sampled from the subdomains pro-
duced by each technique. Multiple sets of
subdomains can be considered to be more ef-
ficient if they kill more mutants than single
sets with the same number of test cases.

RQ4: Does it take longer to optimise multi-
ple sets of subdomains than single sets?
Even if multiple sets of subdomains are more
efficient than single sets, it is also important
that it does not take much longer to optimise
them. Multiple sets are evolved one after the
other, so that optimising a large number of
sets can be computationally expensive. Yet,
it is only necessary to cover one group of mu-
tants at a time, so the stopping criterion for
each set is less demanding. This question at-
tempts to discover the trade-off between com-
putation time and efficiency. The efficiency
of the evolved subdomains is more important
than the time it takes to evolve them, since
computation is typically cheaper than human
effort, but testers still do not want to wait a
long time for the subdomains to be produced.

RQ5: Is it possible to reduce the number
of sets of subdomains without signifi-
cantly impacting their effectiveness?
Sets of subdomains can be removed to further
improve fault finding efficiency and reduce
human effort, but some mutants that could
be killed before may no longer be killed. Se-
quential Floating Forward Selection (SFFS)
is applied to discover how much of the orig-
inal effectiveness can be retained for various
sizes of selection. This will reveal whether it
is possible to remove subdomains optimised
by the multiple set approach without signifi-
cantly impacting their effectiveness.
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6. Test Subject Programs

We conduct experiments on 10 Java programs
(see Table 1) often used in testing research, since
they are well known and understood. We chose
programs that represent a variety of computation,
so that our results are valid for a wide range of
applications [31]. The programs are small (35 to
500 lines of code), which means we can repeat our
experiments a large number of times.

Power, TrashAndTakeOut and Cal perform
numerical calculations. They were published in a
textbook on software testing [27]. FourBalls

calculates the values of four integers (the weights
of balls) relative to each other. It was first used
to evaluate evolutionary test data generation [32].

TCAS is an air traffic collision avoidance sys-
tem. It was first used by Siemens to investigate
data flow and control flow coverage criteria [33].
TriTyp (also known as the triangle program)
classifies triangles as equilateral, isosceles or sca-
lene. It has been used extensively in research since
being introduced by Ramamoorthy et al. [34].

Schedule and Replace process character ar-
rays. Schedule uses an array of instructions with
specific command codes, whereas Replace applies
a search and replacement string to the source file.

SVD (Singular Value Decomposition) and
Schur (Schur Transformation) have a more com-
plex (matrix) input data structure. We evolve
numerical subdomains for each diagonal of a four-
by-four matrix for SVD and each value of a three-
by-three matrix for Schur.

7. Experimental Design

Subdomains are optimised for their ability to
kill mutants generated by MuJava [35]. MuJava
is based upon research into selective mutation
[36][15], which suggests modifying arithmetic, re-
lational, logical and conditional expressions to be
the most effective way to mutate program code.
We optimise single sets of subdomains using a

1+1-ES (see Section 2). Subdomain values are ini-
tialised randomly between 0 and 100. The adap-
tation variance is set to 50, then updated using
Rechenberg’s one-fifth rule every 10 generations.
Although we found this to be effective, other op-
tions may also work well. A more sophisticated
algorithm could be used, but for illustrative rea-
sons we made our technique as simple as possible.
Multiple sets of subdomains are optimised us-

ing a CMA-ES with 95% mutant coverage as its
selection criterion (see Section 3). The means and
covariances of the multivariate Gaussian distribu-
tion are updated automatically by the algorithm.
We only sample 5 test cases from each set of sub-
domains, so as to keep their total number small.
Optimised subdomains are compared to the ex-

pected mutation scores for unoptimised random
testing (see Equation 4). A test suite of 100 000
random test cases was used because it is impor-
tant that N is much larger than s for accurate
results. Numerical input values were generated
between 0 and 100, Boolean values were given a
50% chance of being true and character arrays
were generated from the basic Latin alphabet.

Table 1: Test Programs Used in our Experiments

Program Mutants LOC Function Source
Cal 280 134 Counts days between dates [27]
FourBalls 189 40 Calculates the ratio of inputs [28]
Power 58 35 Calculates the value of xy [27]
Replace 1632 500 Performs substring replacement [29]
Schedule 373 200 Determines execution order [29]
Schur 2125 497 Matrix transformation [30]
SVD 2769 298 Matrix decomposition [30]
TCAS 267 120 Processes air traffic control [29]
TrashAndTakeOut 111 60 Mathematical calculation [27]
TriTyp 310 61 Classifies triangle shapes [28]
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e(s) =
∑

m∈mutants

1− (1−K/N)s (4)

(s: expected number of test cases, N : actual number

of test cases, K: number of test cases that killed m)

8. Results and Analyses

8.1. Results for RQ1: Are test suites sampled
from an optimised set of subdomains more
efficient than unoptimised random testing?

RQ1 is answered using a (1+1) evolution strat-
egy to optimise subdomains for test suites of 10,
100 and 1000 test cases. The aim is to deter-
mine whether optimised subdomains are more ef-
ficient than unoptimised random sampling. Table
2 lists the mutation scores achieved for each size
of test suite and Table 3 compares these results
for optimised subdomains, the initial random sub-
domains and unoptimised random testing.

Optimised subdomains achieve a higher muta-
tion score than the initial subdomains for every
program and all sizes of test suite. They also ex-
ceed the mutation scores for unoptimised random
testing with three exceptions (shown in bold). In
these cases, all the mutants are expected to be
killed by random testing, but the evolution strat-
egy sometimes becomes stuck in a local optimum.
Table 4 shows (at a 95% confidence interval) these
differences are not significant. By contrast all the
other differences are statistically significant.

There is a relationship between the size of a pro-
gram and the mutation score achieved. Most of
the mutants can be killed from the smallest pro-
gram (Power) with 10 test cases and little opti-
misation (see Figure 3c), whereas the largest pro-
gram (Replace) has a low mutation score after
600 generations and 1000 test cases (Figure 3h).

Table 2: Mutation Scores Achieved by Optimised Subdomain Initial Subdomains and Expected Random Testing

Program Initial Subdomains Random Subdomains Optimised Subdomains
s=10 s=100 s=1000 s=10 s=100 s=1000 s=10 s=100 s=1000

Cal 0.400 0.417 0.421 0.776 0.939 0.950 0.899 0.947 0.969
FourBalls 0.291 0.299 0.304 0.362 0.756 1.000 0.847 0.992 0.993
Power 0.947 0.945 0.940 0.971 1.000 1.000 0.995 0.999 0.999
Replace 0.255 0.332 0.305 0.223 0.329 0.321 0.376 0.439 0.438
Schedule 0.173 0.823 0.747 0.254 0.836 0.837 0.376 0.842 0.879
Schur 0.494 0.724 0.749 0.599 0.961 0.962 0.788 0.988 0.990
SVD 0.115 0.217 0.219 0.162 0.232 0.238 0.267 0.403 0.406
TCAS 0.083 0.099 0.099 0.050 0.057 0.060 0.316 0.470 0.471
TrashAndTakeOut 0.669 0.682 0.702 0.782 0.954 0.998 0.968 0.970 1.000
TriTyp 0.515 0.514 0.498 0.407 0.780 0.912 0.661 0.942 0.942

Table 3: Difference Between Optimised Subdomains and Random Benchmarks

Program 1) Compared to Initial 2) Compared to Random
s=10 s=100 s=1000 s=10 s=100 s=1000

Cal +125% +127% +130% +15.9% +0.859% +2.00%
FourBalls +191% +231% +226% +134% +31.3% -0.733%
Power +5.04% +5.72% +6.30% +2.45% -0.0645% -0.0918%
Replace +47.5% +32.4% +43.7% +68.5% +34.9% +31.6%
Schedule +117% +2.25% +17.6% +48.0% +0.667% +5.04%
Schur +59.4% +36.5% +32.1% +31.6% +2.81% +2.96%
SVD +132% +85.4% +84.7% +65.3% +73.7% +69.4%
TCAS +379% +377% +376% +533% +728% +687%
TrashAndTakeOut +44.7% +42.2% +42.4% +23.8% +1.68% +0.176%
TriTyp +126% +82.9% +83.2% +62.4% +20.7% +3.30%

Bold font indicates the optimised subdomains achieved a lower mutation score than random testing
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A program’s size does not always determine
how many mutants can be killed. Cal has twice
the number of mutants as Fourballs, but 89%
were killed by 10 test cases, compared to 83% with
FourBalls (see Figures 3a and 3b). TriTyp

has one more line than TrashAndTakeOut, but
only 64% of its mutants are killed (see Figures 3h
and 3g). Using 10 test cases, the mutation score
is correlated to the number of mutants and lines
of code with -0.690 and -0.667 Spearman’s rank
coefficients. The z-scores for these statistics are
-23.3 and -22.1, which means we can reject the
null hypothesis that there is no correlation.

None of the initial trials with TCAS produced a
mutation score above 0.05, the prediction for ran-
dom testing. Inspection of the code reveals TCAS
uses large constants in its branch conditions. For
example, unless Cur V ertical Sep is greater than
600, most lines will not be executed. As this
value lies far outside the range of the initial sub-
domains, the probability of this condition being
met is low. Widening the initial subdomains im-
proved the mutation score, but only slightly.

A significantly greater improvement in muta-
tion score was made by scaling the program con-
stants so that they lie within the initial subdo-
mains. The program was transformed by divid-
ing eight of its constants by 10, thus bringing
them within the 0-100 range used for the ini-
tial bounds of each subdomain. When the sub-

domains were optimised for the transformed pro-
gram, they achieved an average mutation score of
0.316 with 10 test cases, 0.470 with 100 test cases
and 0.471 with 1000 test cases (see Figure 3d, NB:
the s=100 line is covered by s=1000 line).
Subdomains discovered on the transformed pro-

gram can be scaled up for use on the original
program by multiplying the relevant values by
10. The subdomains identified by scaling and de-
scaling TCAS achieved an average mutation score
of 0.401 for 1000 test cases, with one of the trials
achieving 0.625. This is comparable to the 0.643
mutation score achieved by Papadakis et al. [29]
with dynamic symbolic execution test generation.
The approach could easily be applied to other

programs by manually identifying the relationship
between the input parameters and the internal
program constants to determine which parame-
ters should be scaled. This could however be time
consuming for a human tester who needs to test
more complex programs. Our approach for opti-
mising multiple sets of subdomains addresses this
problem with automated program stretching.
Summary for RQ1: Optimised subdomains

achieve a higher mutation score than random test-
ing whenever the mutation score is not already
100%. The size of a program is correlated to how
difficult its mutants are to kill. The mutation
score for TCAS is increased from 0.05 to 0.401 by
scaling (and descaling) its internal constants.

Table 4: Z-Scores and Cohen’s d Effect Sizes for the Improvements Achieved by Optimised Subdomains

1) Compared to Initial 2) Compared to Random
Program s=10 s=100 s=1000 s=10 s=100 s=1000

z d z d z d z d z d z d

Cal 323 45.7 161 22.8 292 41.3 34.8 7.72 2.36 1.25 7.84 1.11
FourBalls 92.9 13.1 125 17.7 120 17.0 86.9 16.0 137 19.46 -1.19 -0.17
Power 5.13 0.725 11.8 1.67 16.8 2.38 5.07 0.837 -0.15 -0.02 -0.23 -0.03
Replace 23.4 3.31 22.2 3.14 32.3 4.57 30.5 6.06 29.6 4.15 19.2 2.72
Schedule 541 76.5 3.88 0.55 20.1 2.84 21.2 15.4 1.84 1.86 9.64 1.36
Schur 72.0 10.2 51.3 7.25 62.6 8.85 57.2 16.7 3.71 0.564 4.59 0.649
SVD 27.1 3.83 33.9 4.79 42.5 6.01 23.3 7.66 370 53.2 27.1 3.83
TCAS 130 18.4 89.4 12.6 75.0 10.6 45.1 10.1 76.5 10.8 98.9 14.0
Trash 49.4 6.99 48.4 6.84 64.5 9.12 72.1 12.0 2.06 0.838 12.0 1.70
TriTyp 34.4 4.86 75.3 10.6 102 14.4 67.9 20.2 27.0 3.82 9.25 1.31

Bold font indicates it is not possible to reject the null hypothesis at the 95% confidence interval
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(a) Cal (b) FourBalls

(c) Power (d) Replace

(e) Schedule (f) TCAS

(g) TrashAndTakeOut (h) TriTyp

Figure 3: Mutation Scores for Random Test Suites and Evolved Subdomains (Averaged over 100 Trials)
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8.2. Results for RQ2: To what extent does the rel-
ative effectiveness of each set of subdomains
(at killing mutants) reveal information about
the program under test?

RQ2 is answered by recording information on
the mutation scores achieved by test suites sam-
pled from various sets of subdomains. This infor-
mation is used by the evolution strategy to dis-
cover more efficient subdomains, but it can also
be used to reveal useful information about the
characteristics of the program under test.
Power inputs two integers (x and y), then re-

turns the value of xy by applying y − 1 multipli-
cations of x. If the value of y is less than or equal
to zero, Power does not enter its multiplication
loop, instead returning the value of x. As the ma-
jority of mutable statements occur in or around
this loop, most of the mutants will not be exer-
cised unless positive values for y are generated.
Setting the lower boundary of y to a positive

value prevents negative numbers being generated
and produces a mutation score around 95% (see
Figure 4). Yet, to exercise all the mutants, it is
necessary to include at least one negative and one
zero value. 100% mutation score is only achieved
if the lower boundary of y is negative.

Figure 4: Lower Boundaries for ‘y’

TCAS has a large number of input parameters,
each of which have a different effect on the pro-
gram. For example, to achieve a high mutation
score, the upper boundary of ‘Cur Vertical Sep’
must be greater than 60. This corresponds to a
(global constant) threshold condition of 600 in the
untransformed program code. It is also important

to have a high chance for ‘High Confidence’ to be
true, as much of the code is not executed if it is
false (see Figure 5).

Figure 5: Chance values for ‘High Confidence’

It is tempting to think TriTyp requires small
subdomains close to zero to increase the likelihood
of isoceles, equilateral and invalid triangles. In
reality, there is little pressure towards the use of
smaller subdomains (see Figure 6). It is only nec-
essary for the upper boundary to be large enough
to support each type of triangle. This contradicts
the findings of Michael et al. [10] and Duran [11].

Figure 6: Upper Boundaries for ‘side1’

Subdomain optimisation can be used to pre-
dict branch structure. The results of FourBalls
show four distinct levels of mutation score (see
Figure 7 ). They correspond to four branches in
the program code, conditioned upon the value of
‘cual’ (1, 2, 3 or other). Figure 7 suggests the
‘cual’ subdomain must be small to achieve a high
mutation score (values greater than three produce
the same result).
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Figure 7: Size of Subdomains for ‘cual’

Subdomain optimisation is capable of revealing
information about the programs under test, but
it has at least one significant limitation. If values
in the input domain necessary for killing mutants
are spaced far apart, the highest mutation score
will be achieved when the subdomain includes all
these values. Yet, widening the subdomain has a
negative effect because the likelihood of sampling
these values is reduced. Subdomain optimisation
is torn between widening the subdomains to make
it possible to kill more mutants, or focussing on
an efficient area of the input domain. This issue
is discussed further (with regards to optimising
multiple sets of subdomains) in the next section.
An illustration of this limitation can be found

in the results for Schedule. There are useful ar-
eas within the input domain for ‘prio 1’ at around
500 or -500 (see Figure 8). Yet, due to the like-
lihood of sampling these values from such a large
subdomain, many of the evaluations produce low
mutation scores. More mutants can be killed with
a smaller test suite by evolving multiple sets of
subdomains, one for each group of mutants.

Figure 8: Centre Points for ‘prio 1’

Figure 9 provides 3D representations of the per-
centage of trials that achieve a particular muta-
tion score as the evolution strategy progresses.
For each generation on the x-axis, the y-axis plots
the mutation scores (binned into 0.1 intervals)
achieved by each trial of the evolution strategy
and the z-axis plots the number of trials (out
of 100) that achieve this mutation score. These
graphs provide insight into the process involved
in optimising subdomains for each program.

It is immediately apparent from the graphs
that there is a distinction between programs for
which all the mutants are killed straight away (e.g.
Power) and programs for which many of the mu-
tants are difficult to kill (e.g. TCAS). Since high
mutation scores are achieved quickly for Power
and many of the TCAS mutants are not killed,
there are large flat areas in their graphs where
there is little or no selection pressure. By con-
trast, programs reveal the most useful information
for testing if their mutants are difficult but still
possible to kill, as their subdomains are highly
specialised by the end of the optimisation process.

For some programs (e.g. TriTyp) optimisation
progresses smoothly from start to finish, whereas
for others (e.g. FourBalls) there are peaks or
‘ripples’ in mutation score where optimisation has
become stuck in a local optimum. This distinc-
tion can also be seen in the scatter plots to a lesser
extent. Ripples correspond to branch conditions
that are difficult to meet. One way to address this
problem is to restart a trial once it has become
stuck. Another (less disruptive) way is to mod-
ify the fitness landscape so the trial is no longer
stuck. Multiple set optimisation transforms the
branch conditions to make them easier to meet.

Summary for RQ2: The relationship be-
tween subdomain values and the mutation scores
they achieve can be characterised through the use
of graphs. In particular, 3D plots of the optimi-
sation process can be used to infer the number of
branches in a program. Scatter plots of subdo-
main lower and upper boundaries reveal thresh-
olds that must be met to satisfy particular branch
conditions. Scatter plots of subdomain sizes indi-
cate when a narrow range of values is needed to
exercise branch conditions efficiently.
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(a) Cal (b) FourBalls

(c) Power (d) Replace

(e) Schedule (f) TCAS

(g) TrashAndTakeOut (h) TriTyp

Figure 9: Subdomain Optimisation Process for Single Sets

8.3. Results for RQ3: Are test suites sampled
from multiple sets of subdomains more effi-
cient at killing mutants than single sets?

RQ3 is answered by comparing the effectiveness
of multiple optimised sets of subdomains (with
program stretching) against single optimised sets
of subdomains (without program stretching). The
results are presented graphically in Figure 10 and
numerically in Table 5. Subdomains use the ini-
tial interval [0,100] (50% chance of being true for
Booleans). In the interest of fairness, both tech-
niques were evaluated with the same number of

test cases (5 for each set of subdomains) and the
results are averaged over 100 trials. We do not
include Power and TrashAndTakeOut in these
results, as their mutants were previously shown to
be trivial to kill using a single set of subdomains.

Multiple sets of subdomains achieved 33%
higher mutation score on average than single sets
and 230% higher than random testing (see Table
5). The difference in mutation score between mul-
tiple sets and single sets is small compared to the
difference between either technique and random
testing. Yet, for all but one program (Schur),
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multiple sets achieved a higher mutation score
than single sets. For a 95% confidence interval, all
of these differences are considered significant. In
the case of Schur, single sets and random testing
already achieved a high mutation score, so there
is little improvement that could be made.
Multiple sets of subdomains were particularly

effective at meeting difficult branch conditions.
Take for example the TCAS program, which for
single sets required manual parameter scaling.
The multiple set optimisation technique renders
this unnecessary by automatically stretching the
program code to make mutants easier to kill.
Multiple sets of subdomains achieved a 71% in-

crease in mutation score on the TCAS program
compared to single sets. Multiple set optimisation
is particularly effective for difficult branch condi-
tions, because it can assign a set of subdomains
for the purposes of meeting each condition.
Summary for RQ3: Test suites sampled from

multiple sets of subdomains achieved 33% higher
mutation scores than single sets on average. Mul-
tiple set optimisation stretches programs auto-
matically, without the need for manual parameter
scaling. For the TCAS program, this increased the
mutation score by an average of 71%.

8.4. Results for RQ4: Does it take longer to op-
timise multiple sets than single sets?

RQ4 is answered by comparing the mutation
scores achieved by single and multiple set subdo-
mains throughout their optimisation process. Fig-
ure 10 plots the mutation scores as an averaged

continuous curve (across 100 trials) against the
time it took to evolve them. Least squares log-
arithmic curve fitting is applied to compare the
averaged results at each minute of computation
time (between 0 and 2000 minutes). We correct
the curve with a cut-off at the average point after
which no further mutants were covered.

For half of the programs, it took longer to
evolve multiple sets than single sets, whereas for
the other half it took less time to evolve multiple
sets. The difference in time is typically large, for
example it took more than seven times longer to
evolve single sets for TCAS than multiple sets. All
of the differences can be considered significant at
the 95% confidence interval. Yet, on average it
took only 11.6% longer to evolve multiple sets of
subdomains than single sets (see Table 5).

The variability in time taken to identify sub-
domains (and reach a point at which there is no
more improvement in mutation score) is a result of
differences in the rate at which mutants are killed
and the time required to execute the program.
Typically, most mutants are killed quickly, but it
takes a long time to kill the remaining mutants.
A long value for time may indicate the program
takes a long time to run, the subdomains are diffi-
cult to evolve (and as a result a low mutation score
is achieved) or a large number of subdomains are
evolved (and a high mutation score is achieved).

Multiple sets of subdomains quickly achieve a
higher mutation score than single sets on half of
the programs (TriTyp, TCAS and SVD). Yet, it
still takes longer for SVD to reach its maximum

Table 5: Optimisation Time and Mutation Score for Single and Multiple Sets of Optimised Subdomains

Program
Mutation Score Time∗ (mins)

Tests†
Single‡ Multi‡ Z-score Cohen d Single‡ Multi‡ Z-score Cohen d

Replace 0.520 0.566 13.6 1.92 746 1410 260 36.8 455
Schedule 0.850 0.930 19.6 2.77 1053 1310 66.9 9.46 40
Schur 0.986 0.920 -11.2 -1.58 958 885 -17.1 -2.42 45
SVD 0.397 0.632 45.5 6.42 524 546 5.86 0.828 125
TCAS 0.457 0.780 57.6 8.14 364 50.6 -305 -32.1 205
TriTyp 0.951 0.998 8.22 1.16 78 8 -96.5 -13.6 135

∗ Time taken to reach point at which optimisation stops i.e. no new sets of subdomains are identified.
† In the multiple set approach, 5 test cases are sampled from each set of subdomains.

‡ The results are averaged over 100 trials.

15



mutation score with multiple sets compared to
single sets (the final value is much higher).

With Schedule and Replace, multiple sets
of subdomains perform similarly to single sets at
first, but then eventually overtake it. The muta-
tion score for Schedule is lower with multiple
sets for the first 13 hours and the first 9 hours for
Replace. Multiple sets never achieve as high an
average mutation score for Schur, but it takes
on average 73 minutes less time.

Summary for RQ4: Overall, multiple sets of
subdomains do not take much longer to evolve
than single sets. On some programs, multiple sets
take less time and for others they take more time.
For the programs on which multiple sets of sub-
domains takes longer, the higher mutation scores
outweigh the added computational expense.

8.5. Results for RQ5: Is it possible to reduce the
number of sets of subdomains without signif-
icantly impacting their effectiveness?

We also evaluated the effect selecting smaller
sets of subdomains (from the optimised sets) has
on the mutation score for each program. The the-
ory is that, since multiple sets of subdomains may
kill the same mutants, removing some of the sets
can improve the fault finding efficiency of the re-
sulting test suites without affecting their effective-
ness. Figure 11 and Table 6 present the results of
selecting every possible number of sets of subdo-
mains, from a single set all the way up to include
every set identified by the optimisation process.

Reducing the number of sets of subdomains im-
proves fault finding efficiency as long as it only
has a small effect on the mutation score. The
Spearman’s correlation coefficient between selec-
tion size and mutation score is significant for all
programs at the 95% confidence interval (see Ta-
ble 6). Yet, it is possible to remove some sets of
subdomains with a minimal reduction in mutation
score. Removing a quarter of the optimised sets
of subdomains only reduced the mutation score
by 0.0252 on average. Selecting a quarter of the
sets of subdomains of TCAS only reduces the mu-
tation score by 3.6% of that achieved using all the
sets.

For both SVD and Schedule, removing sets
of subdomains almost immediately decreases the
mutation score. These programs only had 8 and
24 sets optimised for them (see Table 5). This
limits the opportunity for redundant sets of sub-
domains and makes it more likely for reducing the
number of subdomain sets to have an effect on the
mutation score.
Even though there were on average only 9 sets

of subdomains (i.e. 45 test cases) evolved for
Schur, at least half of these sets can be removed
without significantly affecting the mutation score.
All the mutants generated for Schur are easy to
kill (even by random testing). As a result, the
subdomains produced are typically not mutant-
specific and can be removed with little impact on
mutation score.
It is also of interest that the mutation scores

for Schedule decrease and then increase again
as sets of subdomains are removed. This is con-
fusing, since removing a set of subdomains cannot
increase the criterion evaluation. The reason for
this is that the results are averaged over 100 trials
and in each trial a different number of subdomains
was initially evolved. Similarly, other graphs are
not completely smooth because each optimisation
run identified a different number of subdomains.
Along with the average mutation score, Fig-

ure 11 includes minimum and maximum muta-
tion scores (dotted lines). The minimum muta-
tion score is low for Schur when selecting the first
few sets of subdomains, but this changes quickly
after the fifth set is added. It is caused by an op-
timisation run in which no one set of subdomains
has a high mutation score by itself. In general,
the minimum, maximum and average values are
consistently close to each other, suggesting the re-
sults of RQ6 can be relied upon.
Summary for RQ5: Fewer sets of subdo-

mains can be selected for all but two programs
(SVD and Schedule) with minimal decrease in
mutation score. The potential for subdomain se-
lection depends on the number of subdomains
produced and their specificity for killing certain
mutants. This in turn is dependent upon the
number of mutants that are generated and how
difficult they are to kill.
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(a) Replace (b) Schedule

(c) Schur (d) SVD

(e) TCAS (f) TriTyp

Figure 10: Percentage of Mutants Covered by Evolved Subdomains during Optimisation (Averaged over 100 Trials)
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Table 6: Mutation Scores for Different Selection Sizes (Averaged over 100 Trials)

Program 25% 50% 75% 100% Spearman’s ρ Z-score
Replace 0.523 0.542 0.547 0.566 0.979 9.37
Schedule 0.686 0.862 0.828 0.930 0.876 8.38
Schur 0.883 0.920 0.921 0.920 0.774 7.40
SVD 0.460 0.531 0.579 0.603 0.977 9.35
TCAS 0.752 0.778 0.779 0.780 0.811 7.76
TriTyp 0.946 0.988 0.994 0.998 0.871 8.33

(a) Replace (b) Schedule

(c) Schur (d) SVD

(e) TCAS (f) TriTyp

Figure 11: Percentage of Mutants Covered by Evolved Subdomains during Subset Selection (Averaged over 100 Trials)

(Dotted lines represent the minimum and maximum mutation scores; solid lines represent the mean)
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9. Threats to Validity

Although optimised subdomains are efficient at
killing mutants, subdomain optimisation is com-
putationally expensive. Further experiments are
required to determine whether the total number of
evaluations is less than with random testing. The
goal of this research is not just to kill mutants, but
to identify subdomains that can be understood by
the tester. Yet, work is still needed to make our
techniques more efficient for use in industry.

The experiments in this paper were performed
on 10 relatively small programs, ranging from 40
up to 500 lines of code. Further research is re-
quired to determine whether the techniques we
describe are effective for larger programs. It might
not be as clear why subdomains evolved for more
complex programs are effective at killing mutants,
so it may be difficult to achieve results similar
to those presented in Section 8.2. It is necessary
to consider how subdomains can be optimised for
non-procedural (object-oriented) programs.

If test cases are only sampled from within the
optimised subdomains, it is possible to miss mu-
tants that for which subdomains have not been
evolved because they are difficult to kill. We have
addressed this by evolving multiple sets of sub-
domains for different groups of mutants. Yet, it
may be helpful to include some test cases sampled
from outside the subdomains. One solution is to
optimise input distributions that cover the entire
input domain rather than subdomains which just
cover certain key areas. Yet it is likely this would
require more computational resources and there is
a question as to whether these distributions would
be as straightforward for testers to understand.

Program stretching makes difficult to kill mu-
tants easier to kill by widening branch conditions
for paths along which that mutant was previously
killed. The problem with this technique is that it
requires the mutant to have been killed at least
once before it can be used. Difficult to kill mu-
tants are (by their nature) less likely to be killed
during optimisation. It may be helpful to stretch
paths along which a mutant has been reached (or
partially reached) and use static analysis to pre-
dict paths for which a mutant is likely to be killed.

10. Related Work

There are three main types of technique that
improve fault finding and reduce human effort:

Improved random testing reduces the num-
ber of test cases needed to find faults by sam-
pling them from a non-standard distribution.

Structural test data generation uses the un-
derlying program structure as an aid to effi-
ciently target test cases at specific goals.

Test case selection removes some of the test
cases once they have been produced, accord-
ing to some evaluation of their usefulness.

The efficiency of random testing can be im-
proved by distributing test cases evenly, so that
they cover the input domain more quickly. For
example, Adaptive Random Testing (ART) has
been shown to halve the number of test cases
needed to find the first failure for some programs
[37]. As ART does not take the specific behaviour
of a program into account, there is a limit to the
improvements it can make [38]. The added ex-
pense can sometimes outweigh the benefits [39].
Hamlet [40] recommends partitioning the input

domain into contiguous regions for which the pro-
gram behaves the same. If the partitions are ho-
mogeneous, we only need to sample one test case
from each one. This is typically approximated us-
ing structural or functional coverage criteria and
sampling a few values from each partition. Ham-
let [40] claims emphasis should be placed on fail-
ures that are likely to occur more often. This can
be achieved by sampling more test cases from cer-
tain partitions according to a usage profile.
Poulding and Clark [41] aim to give equal

emphasis to each part of a program by mod-
elling the dependencies between parameters with
a Bayesian network. They adjust the width of a
series of bins, so as to maximise the least covered
program branch. By contrast, Andrews et al. [42]
optimise a single subdomain for each scalar type
using a genetic algorithm to maximise statement
coverage. We also optimise subdomains (rather
than partitions) to improve code coverage, but for
each input parameter instead of each data type.
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Structural test data generation techniques typ-
ically involve dynamic symbolic execution and/or
automated search. Dynamic symbolic execution
solves branch conditions leading to a goal as a se-
ries of constraints [29][43]. Search based software
testing optimises branch conditions as a series of
fitness criteria [44]. In this paper, we have chosen
to take a search-based approach because this al-
lows us to target mutants without having to spec-
ify in advance which particular path to follow.

A wide variety of search-based optimisation
techniques have been used to target structural
components for test data generation. These in-
clude (amongst others): genetic algorithms [42],
genetic programming [45], simulated annealing
[46], tabu search [47], scatter search [48], bac-
teriological algorithms [49] and artificial immune
systems [50]. We use evolution strategies (1+1-
ES and CMA-ES) because they are conceptually
straightforward and have been shown to be highly
effective at fine tuning numerical values.

One way to target structural goals is with the
approximation level criterion [51], which indicates
the distance from the current path to a path that
contains the goal. The first statement in the pro-
gram has zero approximation level. Every time a
critical branch is encountered that if taken, would
prevent the goal from being reached, the approx-
imation level is incremented. This means state-
ments with the highest approximation level are
closest to the goal. In addition to targeting the ex-
ecution of goals, mutation analysis requires each
mutation to have an effect on the output.

In some cases it is possible to represent infec-
tivity as an additional branch condition [29]. Yet,
to propagate the effect of the mutant to the out-
put, heuristics are applied. Some researchers at-
tempt to predict which paths are more likely to
reveal a difference [29][43]. Another option is to
search for input values that maximise mutation
impact [44]. Our approach does not consider this
issue directly (additional criteria could be added
later). Our aim is to find subdomains that consis-
tently achieve a high mutation score. Therefore,
we search for efficient subdomain values by caus-
ing the execution to follow a path along which a
mutant has already been killed at least once.

Selection techniques are used to improve test ef-
ficiency by removing all but the most useful test
cases [52]. Test cases can be selected that cover
infrequently met test criteria [53], meet the most
number of unmet criteria [54] or consistently con-
tribute to the overall evaluation [55]. Test selec-
tion criteria are typically deterministic, since test
cases produce the same result each time they are
executed. In contrast, our approach to subdomain
set selection uses non-deterministic criteria. This
is because test cases are sampled probabilistically
from within the bounds of each subdomain.
Test selection methods are often based on the

greedy algorithm [52]. They add test cases one at
a time, selecting at each step the test case that
most improves the criteria evaluation. The prob-
lem is that criteria met by earlier test cases are
also often met by a combination of test cases se-
lected later in the process, thus making some of
the earlier test cases redundant. Our selection
technique applies backtracking as often as it helps
the evaluation. We also select test cases on the
basis of multiple evaluations to avoid over-fitting.
In contrast with the related work by other

researchers, we optimise continuous subdomains
rather than individual test cases, as evaluated by
mutation rather than structural coverage. Our
subdomains can be sampled again and again to
produce small but efficient test suites that achieve
a high mutation score.

11. Conclusions

The main aim of this research was to make
software testing more efficient by introducing new
techniques for identifying and evaluating efficient
sets of input subdomains for test data generation.
This was achieved through a combination of ran-
dom testing, mutation analysis, evolutionary op-
timisation and subset selection. Restricting the
range of inputs helps to decrease the manual ef-
fort involved in software testing because it reduces
the number of situations for which testers need to
consider the behaviour of the program under test.
We showed that subdomains can be used to re-
duce the number of test cases that are evaluated,
whilst still maintaining a high mutation score.
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Our single set optimisation technique increased
the mutation score of each test suite compared to
the expected result for random testing by an av-
erage of 80.1% for test suites of 1000 test cases.
Even greater improvements were made when us-
ing 10 or 100 test cases. The average increase
in mutation score for test suites of 10 test cases
was 98.5%. This shows that subdomain selection
is able to make testing more effective, whilst still
reducing the number of test cases that are used.

On the other hand, single sets of subdomains
required the input parameters of TCAS to be man-
ually scaled before optimisation can be effective.
This is not trivial, since an understanding of the
program code is necessary to determine which pa-
rameters to scale. Our technique for optimising
multiple sets of subdomains stretches the program
code automatically, without the need to inspect
its constants. In addition, each set of subdomains
is targeted at a different group of mutants, allow-
ing mutants to be killed more efficiently.

Sampling test cases from multiple sets of op-
timised subdomains achieved on average 33%
higher mutation score than single sets and 230%
higher than unoptimised random testing. Mul-
tiple sets of subdomains were on average only
slightly more computationally expensive to evolve
than single sets. They took less time for some pro-
grams and more time for others. Multiple sets of
subdomains were particularly effective at evolving
subdomains for TCAS. On average they achieved
71% higher mutation score than single sets and
took 1/7th of the time to evolve.

The subdomains identified by our optimisation
techniques can serve as a starting point for regres-
sion testing. They highlight specific regions in the
input domain that are effective at indicating when
the behaviour of the program has changed. This
is particularly helpful when those changes are un-
intended, but when the difference is intentional,
the evolution strategy should be able to adapt the
current set of subdomains more quickly than if it
had started from an earlier state. The speciali-
sations achieved by multiple sets of subdomains
allow the tester to track the effect that changes
have on the behaviour of the program with regard
to its requirements for testing.

The subdomains identified by our technique re-
veal information about the program under test.
For example, to achieve a high mutation score
with TCAS, test input values must be used for
‘Cur Vertical Sep’ that are greater than 600. This
information can be used to produce new more ef-
ficient test suites in the future. In this way, sub-
domains can be seen as an effective tool to sup-
port testing. Subdomain optimisation is compu-
tationally expensive compared to random testing
at first. Yet once efficient subdomains have been
identified, the cost of sampling new test cases is
insignificant and the ability of the new test cases
to find faults is substantially increased.
Subdomain selection can be performed, once

optimisation is complete, to significantly improve
the efficiency of the resulting test suites. Sub-
domain selection reduced the number of subdo-
mains for four out of six programs with little ef-
fect on mutation score. Subdomain selection is
successful as long as there is some overlap in the
mutants each subdomain kills. This was not the
case for SVD because its mutants were too easy
to kill or Schedule because too few subdomains
were evolved for it. Subdomain selection is com-
putationally inexpensive compared to subdomain
optimisation and acts as a useful tool, providing
significant improvement for certain programs.

12. Future Work

Three main continuations are envisaged:

1. Applying the experiments in this paper
to larger more complex software

2. Deriving efficient subdomains from the
results of previous test results

3. Optimising test input distributions to
cover the entire input domain

The largest program used in our experiments
(Replace) only has 500 lines of code. There is no
reason in principle why our techniques could not
be applied to larger programs. The biggest chal-
lenge we face in demonstrating this is the time it
takes to run each experiment. It took an average
of 23.5 hours to optimise multiple sets of subdo-
mains for Replace. We need to reduce this time
if our techniques are to be used in industry.
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Subdomain optimisation is computationally ex-
pensive and much effort is spent generating test
cases that are immediately discarded in favour of
the resulting subdomains. However, there is no
reason why subdomains could not be optimised
at the same time as the software is being tested.
Rather than generating test cases explicitly for

the purposes of subdomain optimisation, subdo-
mains may be derived from the results of other
test data generation tools. An advantage of this
is that it is no longer necessary for our subdomain
optimisation tool to generate effective test data.
A disadvantage is that the test data available from
other tools may not provide the most useful infor-
mation for characterising the input domain.
Another limitation of subdomain optimisation

is that it is necessary to sample outside the
evolved subdomains to test software thoroughly.
Our approach provides little information about
when to do this or which values are most likely to
be useful. One solution is to optimise input distri-
butions that cover the entire input domain rather
than subdomains which just cover certain key ar-
eas. Techniques to achieve this may be borrowed
from the field of structural statistical testing [41].
This extension of our technique would allow

each test case evaluation to have a more direct im-
pact on the shape of the input distribution than
is possible by using a CMA-ES to evolve sets of
subdomains. Statistical testing is more expres-
sive than subdomain testing and can take into ac-
count more of the information gained by test case
evaluation. One downside is that more compu-
tational resources may be required to optimise a
distribution for the entire input domain. Another
important question is whether a (potentially non-
smooth) input distribution is as straightforward
for test engineers to conceptualise and apply.
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