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Flooding is a very costly natural hazard in the UK and is expected to increase further
under future climate change scenarios. Flood defences are commonly deployed to protect
communities and property from flooding, but in recent years flood management policy has
looked towards solutions that seek to mitigate flood risk at flood-prone sites through targeted
interventions throughout the catchment, sometimes using techniques which involve working
with natural processes. This paper describes a project to provide a succinct summary of
the natural science evidence base concerning the effectiveness of catchment-based ‘natural’
flood management in the UK. The evidence summary is designed to be read by an informed
but not technically specialist audience. Each evidence statement is placed into one of four
categories describing the nature of the underlying information. The evidence summary forms
the appendix to this paper and an annotated bibliography is provided in the electronic
supplementary material.

1. Introduction
Flooding is among the most damaging natural hazards globally, with inundation leading to
disastrous consequences including the loss of lives and destruction of property. Flooding may
be fluvial, pluvial, coastal or groundwater related, or caused by a combination of these processes.
Here, we focus on fluvial (river) floods, which occur when the amount of water in a river exceeds
the channel’s capacity. They are caused primarily by the downstream flow of run-off generated
by heavy rainfall on wet ground.

Flooding is a natural process, but floodplains are also ideal for agriculture and urban
development close to water resources and navigation. Consequently, development in floodplains
has increased the exposure of people, property and infrastructure to floods. In many cases it is
not practical, cost effective or politically feasible to relocate communities, property and economic
activities away from areas prone to flooding, so measures are put in place to manage flood
risk by reducing the probability of inundation and/or the negative consequences when a flood
does occur.

In this restatement, we concentrate on the scientific evidence concerning the effectiveness of
human interventions in river catchments that are intended to reduce fluvial flood hazard.1 This
hazard is typically associated with high river flows. The hazard is characterized by the depth
of water at locations where it may cause harm, and also by the velocity of that water, the rate
of rise of water levels, duration of inundation and water quality. Interventions in river channels
and floodplains that have been widely used to manage flood risk include the building of flood
detention reservoirs and flood defences, channel straightening and dredging.

Recent years have seen increasing interest in management interventions that seek to modify
land-use and land management, river channels, floodplains and reservoirs (where present), in
order to reduce the frequency and severity of flooding, which we refer to here as ‘Catchment-
Based Flood Management’ (CBFM). One subset of CBFM is ‘Natural Flood Management’
(NFM), which seeks to restore or enhance catchment processes that have been affected by
human intervention. These activities aim to reduce flood hazard, while also sustaining or
enhancing other potentially significant co-benefits including enhanced ecosystem services
(aquatic, riparian and terrestrial) such as greater biodiversity, improved soil and water quality,

1It is conventional to distinguish between the three components that constitute flood risk to people and economies: hazard
is the phenomenon with potential to cause harm (i.e. unusually high water levels); exposure describes the people or assets in
harm’s way; and vulnerability is the susceptibility of people and property to loss when exposed to a hazard.
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carbon sequestration, reduced soil erosion, greater agricultural productivity and improved public
health and well-being.

While it is recognized that implementation of CBFM or NFM can produce multiple co-benefits,
it is not easy to establish the precise nature and extent of those benefits. Often a complex set of
trade-offs exists between costs and benefits that accrue to different stakeholder groups within
and outside the catchment. Also, while the benefits are well understood in principle, uncertainty
around the quantitative predictions of the potential for CBFM/NFM interventions to reduce
local and downstream flood hazards remains high, especially in large catchments and for major
floods. Differences between river catchments make it difficult to transfer empirical evidence from
one location to another. The relative importance of the multiple factors that influence flooding
varies spatially and with time, which means that even if an intervention may be beneficial
locally, a positive impact on flooding downstream cannot be guaranteed for all possible events
in all locations.

The aim of this restatement is to review the scientific evidence for the impacts of CBFM and
NFM strategies on downstream flood hazard in the UK. Here, we focus on the natural science
evidence base; the social sciences and economics also provide important evidence for policy-
making but this is not considered here. The objective is to review processes that impact flood
frequency2 and hazard potential, principally with respect to flood volumes and flood levels but
also velocity, duration and water depth. These include modifications to land cover and land
management to retain water on and within the land before it flows into rivers, and modifications
to and protection of channels and rivers to slow the flow of water and reduce water levels in
floodplains downstream where there is a flood hazard (table 1).

2. Material and methods
The restatement is intended to provide a succinct summary of the natural science evidence
relevant to policy-making in the UK as of June 2016. The restatement offers a consensus judgement
on the strength of the different evidence components using the abbreviated codes established in
previous Oxford Martin School restatements:

[Data] a strong evidence base involving experimental studies or field data collection, with
appropriate detailed statistical or other quantitative analysis;

[Exp_op] a consensus of expert opinion extrapolating results from relevant studies and well-
established principles;

[Supp_ev] some supporting evidence but further work would improve the evidence base
substantially; and

[Projns] projections made using well-established models that are based on the available physical
principles and/or robust empirical evidence gathered in a wide range of settings.

The categories employed are based on those used in previous restatements [2,3], which
were themselves developed from the medical and climate change literature. The statements are
qualitative in nature and are not intended to form a ranking. We note that, in many cases, evidence
is context- or scale-specific. Moreover, interventions that may be effective in one location and at
one scale may have a different effect in another setting. Where further gradation is necessary to
reflect the quality of evidence, this is done in the accompanying text.

We note in particular the wide range of models used in hydrological science. Some models
are based on well-established physical principles such as conservation of mass, energy and
momentum, which are fundamental properties of physical systems but which nonetheless require
generalizations about parameter values or model equations in order to be applied. Other models
represent generalizations from necessarily limited sets of observations whose conclusions cannot
be expected to hold in settings different from those in which they were generated.

2Flood frequency is a measure of likelihood, which in this restatement we measure using Annual Exceedence Probability
(AEP). The AEP is the chance of a flood of this magnitude or greater occurring in any particular year.
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Table 1. Catchment-based measures that could contribute to flood management. After [1].

Flood Risk Management theme specific measure examples

retaining water in the landscape:
water retention through
management of infiltration
and overland flow

land-use changes arable to grassland conversion, forestry and
woodland planting, restrictions on hillslope
cropping (e.g. silage maize), moorland and
peatland restoration

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

arable land-use practices spring cropping versus winter cropping, cover
crops, extensification, set aside

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

livestock land practices lower stocking rates, restriction of the grazing
season

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tillage practices conservation tillage, contour/cross slope
ploughing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

field drainage (to increase
storage)

deep cultivations and drainage to reduce
impermeability

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

buffer strips and buffer
zones

contour grass strips, hedges, shelter belts,
bunds, riparian buffer strips, controls on
bank erosion

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

machinery management low ground pressures, avoiding wet conditions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

urban land-use increased permeable areas and surface storage
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

retaining water in the landscape:
managing connectivity and
conveyance

management of hillslope
connectivity

blockage of farm ditches and moorland grips

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

buffer strips and buffering
zones to reduce
connectivity

contour grass strips, hedges, shelter belts,
bunds, field margins, riparian buffer strips

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

channel maintenance modifications to maintenance of farm ditches
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

drainage and pumping
operations

modifications to drainage and pumping
regimes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

field and farm structures modifications to gates, yards, tracks and
culverts

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

on-farm retention retention ponds and ditches
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

river restoration restoration of river profile and cross-sections,
channel realignment and changes to
planform pattern

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

upland water retention farm ponds, ditches, wetlands
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

making space for water: floodplain
conveyance and storage

water storage areas on- or off-line storage, washlands, polders,
impoundment reservoirs

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wetlands wetland creation, engineered storage scrapes,
controlled water levels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

river restoration/retraining river re-profiling, channel works, riparian
works

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

river and water course
management

vegetation clearance, channel maintenance
and riparian works

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

floodplain restoration setback of embankments, reconnecting rivers
and floodplains

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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3. Results
The summary of the natural science evidence base relevant to catchment-based ‘natural’ flood
management in the UK is given in the appendix, with an annotated bibliography provided as the
electronic supplementary material.

4. Discussion
In this restatement, we have drawn attention to some important evidence gaps. We highlight
several immediate priorities:

1. National monitoring networks provide essential data for estimating flood risk and
determining the efficacy of interventions. Maintenance and enhancement of monitoring
systems should pay particular attention to the accurate measurement of high water levels
and out-of-bank flows. Significant uncertainty about the impacts of different types of
intervention both when used individually and in combination arises in part because there
has not been sufficient research to establish causal links between CBFM and NFM actions
and downstream effects. Long-term monitoring is necessary because major floods are rare
events; it is also necessary that prospective studies establish good experimental controls
and collect accurate baseline data.

2. Recent model studies have begun to reproduce field measurements from relatively small
monitored catchments. These models could now be used to simulate the impact of
changes in land use and management practices in larger catchments. Model studies of
large recently flooded catchments (e.g. Yorkshire Ouse, Eden, Parrett, Thames) could
help to establish the scale and spatial location of different types of catchment-based
intervention that might be required to have a notable effect on flooding. It is important to
investigate whether the models’ findings can be extrapolated to regions larger than those
for which they have been evaluated, given the constraints posed by their formulation and
uncertainties in validation data, and to understand whether the benefits of CBFM/NFM
measures are more, less or equally predictable than the benefits of hard engineered assets.

3. The Environment Agency’s Catchment Flood Management Plans (CFMPs) assess flood
risks across a catchment and can include maintaining or restoring natural processes
among the measures that might be taken in the course of flood risk management.
Moreover, a large number of catchment-based schemes are currently underway,
promoted by Rivers Trusts, Wildlife Trusts and flooded community groups, for example.
Many of these local initiatives are neither being planned nor evaluated at larger spatial
scales. The lack of monitored baselines and experimental controls creates a risk that
the wider and scale-dependent impacts cannot be properly investigated or used to
inform decision-making. Research and data available within the water management
industry (e.g. water companies, Internal Drainage Boards, land and estate management
organizations) would add to the evidence base if it were disseminated more widely.

4. The performance, longevity and operation and maintenance of CBFM/NFM should
be systematically compared with traditional engineering solutions. The risks and
uncertainties and benefits associated with each approach need to be more fully
understood and communicated. The interactions between fluvial floods and other flood
types (e.g. pluvial, coastal and groundwater) and sequences of events also warrant
further systematic study. The potential for CBFM/NFM interventions in groundwater-
dominated and heavily engineered and drained river systems needs further research.
The extent to which these interventions add resilience to the impacts of climate change is
also worthy of further investigation.

5. A practitioner toolkit would help to share practical experience (while noting context-
specific issues), paying attention to appropriate design criteria. A practitioner toolkit
might comprise a set of documents outlining best practices and the situations in which
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their effectiveness has been demonstrated, drawing on well-studied examples. This
could be accompanied by a protocol for coordinated, high quality, monitoring of the
catchment, river corridor and hydro-meteorological conditions, drawing on modern
sensor, communications and information technologies.

6. There would be benefits from improved communication and collaboration between
groups undertaking research in river catchments (e.g. water quality, sediment transport,
river restoration, biodiversity, agriculture and forestry), which are all relevant to flood
risk management. On the basis of current evidence, the cost-effectiveness of NFM at
medium-large scales is likely to rely on understanding interactions between flows, debris
and sediment management taking into account the range of ecosystem service benefits
that accompany NFM.
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Appendix A. A restatement of the natural science evidence concerning
catchment-based ‘natural’ flood management in the UK

(a) Introduction and aims
(1) Background

Flooding causes hundreds of millions of pounds of damage in the UK and climate change is
projected to increase the frequency and intensity of heavy rainfall in the future. Flooding may
be fluvial, pluvial,3 coastal or groundwater related, or a combination of these. Here we focus on
fluvial floods, which are primarily caused by the downstream flow of run-off generated by heavy
rainfall on wet ground. Most investment to reduce flood risk goes into engineered systems like
flood defences and channel modification. ‘Catchment-Based Flood Management’ (CBFM) consists
of interventions of any kind that seek to modify land-use, land management, upstream river
channels and floodplains, in order to reduce the frequency and severity of flooding. CBFM aims to
alter flood risk by making changes within the wider catchment rather than managing flood hazard
locally at the point where flooding occurs. One subset of CBFM is ‘Natural Flood Management’
(NFM4) which seeks to restore catchment and river processes that have been adversely affected
by human intervention. CBFM and NFM may help reduce the frequency and severity of flooding
as well as delivering other environmental, social and economic benefits. However, because CBFM
and NFM interventions often occur alongside other factors that influence flooding, including
spatial and temporal variability in rainfall and run-off, assessing the effectiveness of these
interventions is challenging.

3Pluvial flooding is caused by excess surface water during locally intense rainfall.

4The terms Working with Natural Processes (WwNP), Nature Based Solutions (NBS) and Building with Nature (BwN) are
often used synonymously with NFM.
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(2) Principles

The magnitude of fluvial flooding depends upon (i) the rate of run-off from hillslopes into
river channels, (ii) the rate of propagation of the run-off downstream in river channels, and
(iii) how run-off contributions from multiple hillslopes and sub-catchments combine via the
channel network to generate the downstream flood hydrograph. In small catchments,5 the peak
of the flood hydrograph is dominated by run-off from hillslopes in response to storm rainfall. In
larger catchments, the river channel network determines which areas of the catchment contribute
to the peak of the flood hydrograph to cause flooding [Data]. The impact of NFM/CBFM measures
on flooding therefore depends on their location within the catchment, the size of the catchment
and the connectivity of the channel network [Projns]. Simple extrapolation of small-scale changes
to larger catchment areas is therefore not possible, and the effects of NFM/CBFM must be
assessed within the context of the whole catchment [Exp_op]. Relatively few studies adopt such a
catchment-scale framework; some of those that do are summarized in §20 [Exp_op].

(3) Evidence

Many individual studies have investigated the direct effect on run-off and river flow of variations
in natural land cover, human-modified land-use and specific details of land and river channel
management practices. Several integrated studies have investigated the potential effect of CBFM
and NFM on flooding. Together, these strands of research have generated a large amount of
important, policy-relevant information. However, because each flood is a consequence of a unique
combination of conditions, evidence needs to be interpreted with care. Here, we summarize the
evidence base relevant to policy-making in the areas of CBFM and NFM, in the UK, as of June
2016. We look principally at evidence from the UK, but make reference to studies undertaken
overseas where appropriate. We focus mainly on peer-reviewed academic studies, although
we have indicated the existence of practitioner-led evidence databases and catalogues where
relevant.

(4) Aim

We provide a consensus judgement on the nature of the different evidence components using
the abbreviated codes, which are based on those used in previous Oxford Martin School
Restatements:

[Data] a strong evidence base involving experimental studies or field data collection, with
appropriate detailed statistical or other quantitative analysis;

[Exp_op] a consensus of expert opinion extrapolating results from relevant studies and well-
established principles;

[Supp_ev] some supporting evidence but further work would improve the evidence base
substantially; and

[Projns] projections made using well-established models that are based on the available physical
principles and/or robust empirical evidence gathered in a wide range of settings.

(b) Meteorological drivers of flooding
(5) Meteorological data and trends

The UK benefits from a meteorological observation network that is dense by global standards.
Annual precipitation totals vary considerably from year to year, but there has been no detectable
long-term change in spatially averaged annual precipitation totals since the eighteenth century
[Data]. Over this time period, the UK has, however, experienced a statistically significant increase
in winter precipitation, and a reduction in summer precipitation (figure 1a) [Data]. Winter
precipitation in uplands has increased more than in lowlands [Data].

5We assess interventions at the plot scale (approx. 100 m2), hillslope scale (approx. 0.1 km2), small catchment scale (less than
20 km2), medium catchment scale (20–100 km2) or large catchment scale (more than 100 km2).
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(a)

Figure 1. Climate variability and flooding. (a) England and Wales precipitation seasonality (1776–2015); the blue line shows
winter (DJF) precipitation; the red line indicates summer (JJA) precipitation. Data from [4]; http://www.metoffice.gov.uk/
hadobs/hadukp/. (b) Annual mean flood index (1871–2015). The blue and red shading shows flood-rich and flood-poor periods
respectively Data from ref. [5]; https://crudata.uea.ac.uk/cru/data/lwt/.

(6) River flow variability and trends

Extensive catchment and river channel modifications including impoundments, diversions and
water withdrawals have modified river flow, making climate-driven trends, if present, difficult
to detect. The challenge is exacerbated by changes in measurement techniques and instrument
locations. ‘Benchmark’ river basins that have not experienced widespread channel modification,
abstraction or urbanization during the period of record show a pattern of increased winter
extremes between the 1960s and the early-2000s in the north and west of the UK, but this trend is
not present in their southeastern counterparts [Data].

(7) Flood magnitude and frequency

Increases in flood frequency do not always imply increases in flood magnitude [Data]. The
longest UK river flow datasets show that flood magnitudes observed since 1960 are not unusual
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compared with earlier observations. The Thames, which has the longest gauged record in the UK,
shows no significant long-term trend in flood magnitude since 1883 [Data]. Similar results hold
for the Wye and Scottish Dee, back to the 1930s [Data].

(8) Flood-rich and flood-poor periods

Climate variability results in clusters of flood-rich (e.g. 1908–1934, and 1998–present) and flood-
poor periods (e.g. 1950–1980; figure 1b) [Data]. Flood-rich episodes are associated with westerly
airflows and cyclonic conditions across the UK [Data]. The flood-rich period starting in the
late-1990s has been attributed to warmer conditions in the North Atlantic Ocean [Supp_ev].
Sedimentary deposits laid down after torrential flood flows in small catchments provide evidence
for a similarly flood-rich period between 1840 and 1890; in the seventeenth to nineteenth centuries
floods were both more frequent and more severe than those experienced since 1998 [Data].

(9) Climate change projections

Projections from the latest global and regional climate models do not suggest a systematic change
in annual rainfall totals in the UK between now and 2080 (80% of the simulations show between
a 16% reduction and a 14% increase) [Projns]. The models suggest some change in the spatial
distribution of rainfall, with a projected increase in winter rainfall on the west coast of between
+9% and +70%, and reduction in summer precipitation in southern England of −65% to −6%
by 2080 [Projns]. Higher rainfall maxima are expected, and storms are expected to occur more
often, especially in the summer [Projns]. Winter upland rainfall totals may also increase [Projns].
Under warmer conditions, winter precipitation is more likely to be in the form of rain rather than
snow [Projns].

(c) The effects of land cover and land management on flooding
(10) Historical changes in land cover

Land cover has changed radically in the UK due to human influence, with forest covering much
of the UK in prehistoric times and declining to a minimum of 6% in 1930 and then increasing
to 12% currently (2007 figures) [Data]. There have been major changes to agricultural practices,
upland management, and to the extent and type of urbanization [Data].

(11) The influence of land cover on flooding

At small spatial scales (less than 20 km2) the effect of land cover and land management on
flood flows is evident in some studies, but not for the most extreme floods [Supp_ev]. Measured
data for land-use impacts in larger catchments (more than 100 km2) are lacking [Supp_ev]. The
Flood Studies Report and Flood Estimation Handbook concluded (from studies of 553 and 943
catchments, respectively) that urban extent was the only land cover factor that was significantly
related to the magnitude of the mean annual flood in UK rivers [Data]. Numerical modelling
suggests that the effect of land cover changes on river flows in the Thames catchment is small
compared with natural climatic variability [Projns].

(12) Effects of forest cover

The impacts of upland conifer forestry on water availability and run-off have been the subject of
several experimental studies in the UK. One of the longest-running investigations was based in
two UK experimental catchments at Plynlimon (10.6 km2 and 8.7 km2) in mid-Wales where:

(a) Mature forest produced higher evaporative losses than grassland under equivalent
conditions, owing to the greater amount of water intercepted within the tree
canopy [Data].
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(b) For smaller storms (less than 20% of the mean annual flood), flow peaks per unit area
were smaller in the forested catchment than under grassland although it is noted that
these storms do not usually pose a significant flood hazard [Data].

(c) By contrast, during high flood flows no significant difference was found between flood
peaks (per unit area) in the two Plynlimon catchments [Data].

Limited suppression of flood peaks in the forested catchment was attributed to the relatively
small amount of canopy storage and generally drier soils beneath forest stands compared with
grassland [Exp_op]. Under sustained winter rainfall, soil saturation will occur and little mitigation
of high flood flows would be expected [Exp_op].

(13) Timber planting and harvesting; forestry operations

Planting forests and harvesting timber can have long-lasting effects on run-off, stream flow
and flood risk due to soil compaction by machinery, construction and use of forest roads,
artificial drainage and by increasing soil loss. The magnitude of these effects depends critically on
management practices [Data].

(a) Evidence from Europe and North America shows timber harvesting can exacerbate peak
flows and lead to flooding [Data]. UK studies (e.g. Plynlimon) show augmented low flows
but not increased peak flows [Data]; the difference with international studies is attributed
to good forestry practice [Exp_op].

(b) In two small highland catchments in Scotland, approximately 30 km northeast of Stirling
at Balquhidder (6.85 and 7.70 km2), clear-felling of 50% of the catchment is estimated
(with the aid of a model) to have led to a small increase in total flow of approximately 3%.
The calculated difference is likely to be within the range of model calibration uncertainty
[Projns].

(c) Establishment of conifer plantations in the 1.5 km2 Coalburn catchment in the Kielder
Forest (northwest England) on previously rough grazing land increased the rate of
run-off after storms for 20 years [Data], probably due to improvements to drainage
prior to planting [Exp_op]. Once the plantation forest in this location reached maturity,
a 200–300 mm decrease in annual run-off was observed, compared with that prior to
afforestation [Data].

(d) Simulated peak flows are higher at Coalburn when small trees are present compared with
taller trees, but the bigger the flood the smaller is the difference [Projns].

(14) Impact of agricultural practices

Changing agricultural practices over the last century have led to (i) removal of hedgerows to
create larger fields; (ii) soil compaction; (iii) land drains; (iv) increased flow through cracks and
sub-surface drains (macropore flow); (v) concentrated overland flow in ditches, tracks and wheel
tracks; (vi) narrowing or removal of non-agricultural riparian corridors and buffer strips; and (vii)
changes in crop type and switches from spring-sown to autumn-sown arable crops. Grassland
management practices, including intensive grazing, have led to soil structural degradation in
local cases and these changes have been shown to increase run-off production [Data]. Localized
increases in flooding at the plot and hillslope scale have been attributed to changes in land cover,
crop type (including the expansion of crops such as maize) and intensification of farming [Data].

(15) Impact of land drainage

Drainage to control water levels has complex effects on run-off, which depend on the type of
drainage used and the sequence of events.

(a) At the plot scale, drainage reduces peak flows from impermeable (e.g. clay) soils, but
increases those from more permeable soils [Data].

(b) By drying soils, drainage increases their capacity to store water after a rainfall event, but
when the soils become saturated drainage increases flows [Data].

 on May 24, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


11

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160706

...................................................

(c) At the plot scale, higher flow peaks result from open ditches compared with sub-surface
drains. Higher peaks arise from the use of a ‘mole plough’ to create sub-surface channels
in impermeable soils (‘mole’ drainage) in combination with other forms of sub-surface
drainage [Data].

(d) Extension of drainage networks up hillsides increases the speed with which run-off is
transported to rivers [Data].

(16) Soil compaction

Both arable and livestock agriculture practices can cause surface and sub-surface soil compaction,
and at local scales this has been demonstrated to increase surface run-off [Data]. Effects at
catchment scale have not been identified, though there have been few relevant studies [Exp_op].

(a) Soil compaction due to higher livestock density increased the flood peak after a storm in
northwest England by 7%, according to a model simulation in the 36 km2 Scandal Beck
tributary of the River Eden in northwest England [Projns].

(b) A recent survey in southwest England has shown that 75% of survey plots that had been
planted with late-harvested crops (e.g. maize or potatoes) suffered severe degradation of
soil structure due to soil compaction, generating additional surface run-off and surface
water pollution, and reducing aquifer recharge [Data].

(c) In a plot-scale experiment at Pontbren in mid-Wales, tree-planted plots produced
between 48% and 78% less run-off than grazed control plots, although there was a high
degree of variability between sites [Data]. Five years on, soil infiltration rates were 67
times higher in tree-planted plots compared with grazed pasture, and the effect of tree
planting was separate from the effect of excluding sheep [Data].

(17) Upland and peatland impacts

Upland areas often receive heavy rainfall. Management practices affect peak water flows
downstream [Data]. Most evidence demonstrating flood response to upland interventions is at
the small catchment scale (less than 20 km2) rather than at the large catchment scale (more than
100 km2).

(a) Higher flood peaks and shorter times to reach peak flow are associated with peatland
degradation and removal of vegetation cover [Data].

(b) Locating dense ground cover such as Sphagnum moss along more gentle gradient slopes
and near watercourses has the greatest impact on flood peak reduction (or the converse
for bare ground) when compared with having the same proportion of dense surface cover
elsewhere in the catchment [Projns].

(c) A study of the effects of heather burning to encourage grouse found mixed effects: slower
run-off after moderate rainfall (owing to deeper water tables) but faster run-off for the
highest 20% of events (owing to faster flow over sparsely vegetated, saturated ground)
[Supp_ev].

(18) Upland ditch blocking

Upland ditches may increase or decrease flood peaks at the local scale depending on the layout of
the drains, topography and flood peak synchronization in the main channel [Projns]. Upland ditch
blocking (i.e. using sequences of dams along each ditch) has been common over the last 15 years
in the UK, mainly to benefit biodiversity or water quality or both.

(a) Ditch blocking in upland peat is effective in reducing flow peaks only in the steepest,
smoothest drains; surface roughness of the surrounding vegetated peat may be more
important than the presence or absence of ditches [Projns].
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(b) A 5-year monitoring study in the Peak District showed that the effects of drains depended
on their configuration, and on the velocity differential between overland flow and flow
in the drains themselves [Data]. Modelling studies have suggested that ditch blocking can
sometimes reduce peak flows, though to a degree dependent on the details of topography
and how ditches are blocked [Projns].

(19) Impacts of urbanization and sustainable drainage systems (SuDS)

Urbanization tends to increase peak flood flows because of reduced infiltration under paved areas
and rapid flow over the surface, along channelized streams and through culverts and pipes [Data].
Urban flooding is generally greatest from intense convective storms in summer [Data].

(a) Engineering interventions, including permeable paving, stormwater retention and
storage basins and sustainable drainage systems (SuDS), can avoid, mitigate or even
reverse the adverse effects of urbanization on surface run-off [Data];

(b) Restoration of urban watercourses and their vegetated riparian corridors, plus
reconnection of their floodplains can be used to convey or store urban run-off while
encouraging infiltration and improving water quality [Data].

(20) Catchment-scale effects of land management practices

Understanding how local changes in land cover and land management affect water flows
and flood risk downstream in large catchments is a major research challenge, which has
been addressed by several large projects including the Catchment Hydrology and Sustainable
Management Programme (CHASM), Flood Risk Management Research Consortium (FRMRC)
and Flood Risk from Extreme Events (FREE) research programmes. Nonetheless, the hydrological
responses to land-use change tend to be context-specific and translating results between one
context and another is difficult.

(a) Under the United Utilities’ Sustainable Catchment Management Plan (SCaMP) project,
changes to upland land-use management have been carried out in the 260 km2 Hodder
catchment (a tributary of the River Ribble, northwest England) primarily to reduce
suspended sediment and coloration in water used for public supply. The changes, which
covered 25 km2 within a 58 km2 sub-catchment, included moorland ditch blocking in
areas of blanket peat, tree planting and reduction in livestock stocking density. The
possible consequences of these changes for downstream flooding were evaluated at
multiple scales, to test whether small-scale impacts propagate through the river network.
SCaMP changes had minimal short-term effects on the pattern of flood flows [Data]. No
effects were found at the larger scale of the entire Hodder catchment (260 km2) during the
period of study [Data]. This finding was corroborated by a modelling study that showed
that the median reduction in the flood peak associated with an extreme rainfall event
produced by a realistic suite of land-use management changes was only 2%, assuming
that channel conveyance did not change, but with an uncertainty range of a 1% increase
to a 6% decrease [Projns].

(b) Results from the Pontbren multi-scale experiment illustrate the potential use of tree
shelterbelts to reduce plot-scale run-off [Exp_op]. Plot-scale monitoring took place on
12 × 12 m plots at four sites in a 12 km2 catchment in the headwaters of the Upper Severn
in mid-Wales (see §16). Field-scale monitoring and modelling were used to investigate
the impacts of tree shelterbelts. Small catchment-scale monitoring looked at how land-use
impacts flows and sediments (see §22).

i. A field-scale modelling study suggested that planting tree shelterbelts near the
bottom of all improved grassland fields in a 6 km2 sub-catchment might reduce
peak flows by 13–48% for the largest storm seen in the study period (peak rainfall
intensity 54 mm h−1), with a 15 min reduction in time-to-peak [Projns].
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ii. For a hypothetical extreme storm with rainfall of 140 mm over 2 days (estimated
0.6% Annual Exceedance Probability (AEP)6) the simulated reduction in peak flows
was 2–11% and there was no reduction in time-to-peak [Projns].

iii. The authors note the high levels of uncertainty associated with their model
predictions and leave open the question of whether reductions in flood peaks would
be possible at spatial scales larger than 6 km2 [Exp_op].

(c) In the River Axe catchment (288.5 km2) in southwest England, an assessment of the
observable historical effects of land-use change on basin-scale run-off showed they are
limited to high flows that arise from moderate rainfalls (10–30 mm day−1) after a period
of dry weather [Data]. For flows of this magnitude (which usually remain within the
river’s channel), the results suggest that farming practices that minimize soil degradation
and compaction may produce a reduction in river flows in this catchment [Supp_ev]. The
authors note, however, that in nine other catchments no significant changes could be
identified, owing to natural variability and data limitations [Data].

(21) Summary

There is clear evidence that appropriately chosen land-use and land-cover interventions can
reduce local peak water flows after moderate rainfall events [Data]. The evidence does not
suggest these interventions will have a major effect on nearby downstream flood risk for the
most extreme events [Supp_ev]. The evidence available for the downstream effects of upstream
land-use changes at large catchment scales is more limited, but at present it does not suggest
that realistic land-use changes will make a major difference to downstream flood risk [Exp_op].
Moreover, it should be recognized that, although the UK landscape has undergone extensive
change due to the multiplicity of intensive farming interventions over many decades, the effects
of these interventions on flooding have been difficult to detect. Long-term monitoring is needed
to separate the effects of land management from those of climatic variability; without this it is
unwise to extrapolate the findings from individual studies to larger scales, or to settings with
different soil and vegetation types [Exp_op].

(d) Channel flow
(22) Geomorphic processes and river channel form
Erosion, transport and deposition of sediment can, over time, result in major changes in channel
morphology (cross-section and profile) and even channel pattern in some cases [Data]. If the
amount of sediment flow from a catchment increases, some of it will tend to accumulate
downstream in places where the pattern of water flow is insufficient to keep material in
suspension. Sedimentation reduces the channel’s capacity to convey flow, resulting in higher
water levels for a given discharge, and increasing the frequency of flooding [Data]. These processes
are commonly overlooked in flood risk mapping exercises, but are likely to be important in any
river system which receives high rates of sediment delivery and which in the past would have
deposited much of its sediment on the floodplain [Exp_op].

(a) A simulation study of a river in Yorkshire showed that over a 16-month period change
in channel configuration due to coarse sediment deposition led to a substantial increase
in the area that flooded for the highest flows that were recorded during the study period
[Projns].

(b) In a simulation study of 41 rivers across England and Wales it has been calculated that,
on average, a 10% reduction in channel capacity would increase flooding by 1.5 days per
year and that, conversely, a 10% increase in channel capacity would decrease flooding by
1.5 days per year [Projns].

6AEP, Annual Exceedence Probability, the chance of a flood of this magnitude or greater occurring in any particular year.
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(c) Some agricultural land practices are known to cause sediments to accumulate in drainage
channels and rivers [Exp_op]. Annual surveys of sediment accumulation in 10 small
wetlands built on four farms in Cumbria and Leicestershire have shown that on-farm
interventions can trap significant quantities of sediment (in this case 0.04–0.8 t ha−1 y−1),
particularly during intense rainfall at times when crop cover is poor [Data].

(d) In Pontbren in mid-Wales (see §20), sediment loads were 5–12 times higher in a stream
draining improved grassland than in one draining traditionally managed moorland, with
implications for sediment delivery downstream [Data].

(23) Hydraulic effects of channel modification

Traditional flood-control channel designs have included enlarging the natural channel cross-
section and straightening meanders to increase the hydraulic gradient and therefore conveyance
of water. While increasing the channel cross-section will reduce local water levels, the resulting
higher flows can increase the flood hazard downstream [Exp_op]. In a large flood, when much of
the water flow is outside the river, the effect of channel modification is relatively small [Exp_op].

(24) Sedimentary effects of channel modification

Excessive widening or deepening of natural watercourses can initiate channel instabilities
resulting in erosion and sedimentation, requiring maintenance work to preserve the design
capacity of the scheme [Exp_op]. Dredging to re-grade the channel slope in order to increase flood
conveyance is particularly susceptible to such problems [Exp_op]. Greater flow velocities can result
in more sediment from upstream riverbeds being transported and deposited in lower reaches,
requiring further dredging at these sites to maintain the artificial channel form [Exp_op]. Removing
sediment from the channel can have significant negative effects on aquatic biodiversity [Data].

(25) Bank stabilization

River management that prevents flooding and the consequent deposit of sediment on the flood
plain often results in the build-up of sediment and a reduction in the capacity of the river to
move water downstream [Exp_op]. Conversely, where past management has destabilized banks
leading to erosion and unnatural widening, bank stabilization can reduce further erosion and
consequent sediment deposition and so reduce flood risk. In these cases, stabilizing banks by
re-vegetation can be particular effective [Exp_op]. Riverbank stabilization performed to prevent
natural bank erosion is likely to exacerbate flood risk in aggrading river reaches because, without
lateral shifting, channel conveyance capacity cannot be maintained [Exp_op].

(26) River restoration

River restoration seeks to recreate natural channel properties in rivers that have been modified—
often ‘channelized’—in the past. Where it increases the ability of the river to flow onto its
floodplain, or creates storage in areas that were once part of the river’s floodplain, river
restoration can reduce flood risk downstream [Exp_op]. In many cases, the motive for river
restoration is conservation of biodiversity, with the aim that there should be no negative flood
impact.

(a) In the New Forest, river restoration has been used to reconnect channelized rivers to
their floodplains. For small and medium-sized drainage basins (less than 100 km2) there
is evidence that restoration of river channel morphology and floodplain woodland with
associated large wood log-jams may reduce flood risk, although only for flows with AEP
greater than 50% [Data].

(b) Floodplain forest restoration can reduce peak discharge at the catchment outlet by a
combination of the processes described in §§27–29. For an event with AEP of 3%, peak
discharge was reduced by up to 19% under mature forest. In areas where only 20–35%
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of the overall catchment area was restored to forest, peak discharge was reduced by 6%
[Data].

(27) Channel and bank vegetation

Vegetation growing on banks and in the river itself can increase ‘channel roughness’ which slows
water flows and increases sediment deposition. Reduced vegetation in winter reduces roughness
and accounts for higher seasonal flows (by up to 50% in a study of the River Stour in Dorset)
[Data]. The cultivation and maintenance of bankside and river channel vegetation, which is often
of value for biodiversity, can induce a small decrease in water flow and hence reduce downstream
flood risk in their immediate vicinity in narrow rivers where the width is less than 16 times the
depth [Data].

(28) Riparian buffer strips

Non-agricultural riparian buffer strips of 10–30 m around channels limit catchment sediment
inputs to river channels, which is important in maintaining channel conveyance [Data]. Buffer
strips also provide co-benefits in the form of reducing movements of agricultural pollutants into
watercourses, and shading of river channels from excess heat which benefits aquatic biodiversity
[Data]. Wider buffer strips maintain habitat diversity and ecological functioning better than
narrow ones [Exp_op].

(29) Large wood

At local scales (approx. 1 km river reaches), large items of wood caught in the channel can
significantly increase the amount of water that flows over the bank, the quantity depending on
the size of the items and how they are trapped (often by bridges and other man-made structures)
[Data]. This causes local flooding but the water stored decreases flood risk downstream [Data].
During floods, wood can be mobilized and deposited at natural or artificial entrapment points
in the channel. Blockage of bridges, trash racks and culverts with large wood can cause flooding
upstream of the blockage [Data]. Log-jams can be installed to store flood water; their effectiveness
depends on log size and the density of wood entrapment sites [Data].

(30) Beavers

In general, beaver dams reduce the mean velocity and discharge downstream of dams. Beaver
ponds also trap sediment, the depth and volume of which substantially increases with dam age
and frequency [Data]. No evidence is available on their effects on extreme flows. Dam failures can
cause minor flood waves [Exp_op].

(a) The effects of beaver reintroductions on flood hydrology in the UK remain to be
established. The introduction of beavers in Knapdale, Argyll, Scotland, in 2009 resulted
in slight changes in the configuration of woody debris in streams, although the animals
in the study constructed only 0.3 dams km−1 (cf. 0.14–19 dams km−1 observed in other
countries) [Data], because the catchment concerned already contained well-vegetated
standing water [Exp_op].

(31) Summary

The effect of modifications to river channels depends on channel cross-section, roughness and
slope [Data] and on where they are situated within river networks. Inappropriately located
interventions may even worsen flooding due to synchronization of flood peaks. Interventions
intended to reduce flooding are also likely to have effects on sedimentary, geomorphological
and ecological processes in the river, as well as direct hydrological effects [Exp_op]. The role of
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Figure 2. Hypothesized impact of three types of engineering activities on the flood frequency curve. After [6].

sediment transport in affecting flood hazard is less well understood than that of hydraulics,
but it is known that accelerated sedimentation in rivers can significantly increase downstream
flood hazards, and that CBFM and NFM have the potential to reduce catchment sediment yields
elevated by intensive farming [Exp_op].

(e) Flood storage and floodplain conveyance
(32) Storage

Water is stored naturally in catchments in forest canopies, wetlands, soils, aquifer rocks, river
channels and floodplains. Management actions to increase storage may range from widespread
small-scale impoundments (such as blocked ditches and micro-ponds) to large-scale flood
detention reservoirs, which are major engineering works. All of these schemes store water
upstream and then release it slowly over varying lengths of time depending on capacity and
flood conditions. Their effectiveness at reducing flood hazard downstream depends on whether
the stored water would have contributed to the flood peak. Small stores may fill up early and
have no further effect in a large flood, while controllable larger storage (i.e. with gates or sluices)
can be synchronized to maximize the effect on the peak of the forecast flood wave.

(a) In the 5.7 km2 Belford Burn catchment in north Northumberland, a pond adjacent to
the river with 800–1000 m3 storage capacity was installed in a 0.5 km2 sub-catchment.
During a storm in September 2008, which delivered 96 mm of rainfall in 36 h (estimated
to be a rainfall event with AEP of 2%), the pond increased the average time-to-peak by
15 min [Data]. Several such features would thus be necessary in order to achieve a major
reduction in flood hazard (and once full cannot help if a further event occurs before they
have drained) [Exp_op].

(b) The ‘Slowing the Flow at Pickering’ scheme, within the 69 km2 Pickering Beck catchment,
is designed to protect the North Yorkshire town through: (i) measures in the upland
landscape (tree planting, large woody debris dams, timber-built bunds, heather bale
dams within moorland drains and gullies, farm woodland, riparian woodland and buffer
strips), and (ii) a clay bund and engineered off-line storage (designed to protect against
a flood with 4% AEP). Initial analysis of the scheme during a period of heavy rainfall in
December 2015 showed a complex relationship between rainfall and river flow, and the
need for more data to assess the performance of the measures, especially against the most
extreme rainfall events [Exp_op] figure 2.
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(33) Floodplain cross-section

River flows that just exceed the bank-full level are stored in the floodplain, while the channel
remains the main mechanism for conveying water downstream. For higher flood flows, velocities
on the floodplain approach that in the channel and the floodplain has an active role in conveyance.
Modifications to the floodplain cross-section, typically by encroachment of built-up development
protected with flood defences, will modify these floodplain functions—by reducing the natural
floodplain storage and reducing the floodplain conveyance during extreme floods. Reducing
the floodplain cross-section in this way will increase the water depth in the flood plain for a
given flow. On the other hand, removing these obstructions increases the floodplain cross-section
and reduces water depths [Data]. When flood defences are overtopped or breaches occur, their
effect on water levels diminishes, although they may provide additional floodplain roughness
and resistance to flow [Exp_op]. These modifications will not only influence local water levels but
will also have downstream impacts, which can be verified with a well-calibrated hydrodynamic
model. In a model study of a 5 km reach of the River Cherwell, central England, construction of
embankments separating the river from its floodplain (thus reducing the floodplain cross-section)
increased peak flood flows downstream by 50–150% and raised water levels by up to 0.5 m [Projns].

(34) Floodplain roughness

Riparian and floodplain forests provide ‘floodplain roughness’ which dissipates flood energy
and provides resistance at times of high flow [Exp_op]. Removing floodplain roughness will
increase flow velocities and reduce water levels locally, although this may exacerbate flooding
downstream [Exp_op]. However, the effects of changes in floodplain roughness tend to be very
small, as floodplain flow velocities tend to be low in all but the largest of floods [Exp_op].

(35) Summary

Increasing the cross-sectional area of the floodplain (by retreating flood defences or removing
other obstructions from the floodplain) provides additional storage and conveyance capacity. The
relative importance of storage versus conveyance depends on the flow, with the conveyance effect
dominating as floodplain flows increase. The effect of storage on flooding downstream depends
on whether the stored water would have contributed to the flood peak [Exp_op]. Increasing the
floodplain cross-section will reduce flood water levels locally [Exp_op]. Increasing floodplain
roughness (e.g. by afforestation or other obstructive vegetation) has a very small effect on flood
levels, unless flow velocities on the floodplain are of the same order as the river channel, in which
case increasing roughness will slow the flow [Exp_op]. The downstream effects of modifications to
channel conveyance can be verified with hydrodynamic models [Exp_op].

(f) Co-benefits
(36) Co-benefits

CBFM and NFM can yield multiple co-benefits, including mitigation of diffuse pollution from
agricultural land, reduced water discolouration from peatland-fed watercourses, and mitigation
of soil erosion impacts on in-stream and lake ecology. The creation and restoration of terrestrial
(riparian, moorland, forest) and aquatic (river, wetland) habitats and associated carbon storage
may also be significant. Additional co-benefits may include aquifer recharge and retention of
water upstream that can supplement water resources at times of low flow, and protection from
the adverse ecological impacts of high water temperatures. These benefits can help to reduce
downstream water treatment costs, sustain the productivity of agricultural soils, preserve and
enhance ecosystems and biodiversity, enhance recreational value and help build the resilience of
ecosystems to other stressors, including climate change. While there are many co-benefits that
might arise from CBFM/NFM, to date there have been few studies that have systematically
quantified these co-benefits [Exp_op].
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Figure 3. Schematic diagram showing relative effects of catchment-scale interventions on flood peaks. (a) Effect of different
types of intervention on flood peak reduction [Exp_op]; (b) combined effect of CBFM interventions with flood magnitude and
catchment scale [Exp_op].We note that the effects achievable in practicewill depend on the details of the particular intervention
and the context in which it is deployed.

(g) Conclusion
(37) Conclusion I

The hazard associated with small floods in small catchments may be significantly reduced by
CBFM and NFM although the evidence does not suggest these interventions will have a major
effect on the most extreme events. Large fluvial floods are caused primarily by heavy rainfall
on wet, frozen or impermeable ground. It is possible that a flood will occur that is so extreme
that it will overwhelm any risk management measures or flood defences, natural or otherwise.
Land-use and channel form influence the severity of these floods in a fairly subtle way [Exp_op].
The effectiveness of NFM and CBFM varies with the severity of the event—for example, tree
shelterbelts or drain blocking may offer mitigation against small floods, but are likely to be
less effective during extremely intense or prolonged high rainfall [Exp_op]. Actions that provide
small-scale local benefits have not been shown to provide significant benefits at the spatial scale
of a larger catchment [Supp_ev]. Although a simple extrapolation would imply that many small
interventions (each creating local benefits) should combine to create large benefits at large scale,
this is not always the case because (i) local benefits are attenuated downstream by the channel
network, and (ii) interactions among local events mean that slowing water flow in one catchment
can make a flood worse further downstream when waters from several catchments meet [Exp_op].
Where multiple interventions have taken place it can be difficult to disentangle the effects of an
individual intervention, the effect of which depends upon catchment properties (in particular
size, shape, topography, geology, soils, and both hydrological and sediment connectivity) and
the extent and location of the intervention within the catchment [Exp_op]. With the current
state of scientific knowledge, it is not possible to state unequivocally whether the lack of
demonstrable effect at large scale is because noticeable flood mitigation could not be achieved
in a large catchment, or because a sufficiently large-scale set of interventions have not yet been
implemented [Exp_op].
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(38) Conclusion II

The larger the catchment and the larger the flood, the smaller is the scope for slowing the flood or
storing the floodwater to reduce the flood hazard. We highlight the following main conclusions,
which are summarized graphically in figure 3a,b: (i) Interventions that increase the ability of soils
to absorb and retain water (through changes to land cover and land management) are at their
most effective in smaller floods and at smaller scales. Once soils become saturated the effect is
no longer noticeable; (ii) storage (from distributed micro-ponds, through natural floodplains, to
large detention basins) can be effective in reducing flood risk, depending on how much storage is
provided, where it is located, and how and when it is used; and (iii) increasing the cross-sectional
area of floodplains by setting back flood defences that have disconnected areas of the floodplain
from the river can reduce peak river flows and flood water levels.
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